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LARGE-SCALE

SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHMS

Sarnuel Keith Eldersveld, Ph.D.
Stanford University, 1992

Abstract

The problem addressed is the general nonlinear programming problem: finding a local
minimizer for a nonlinear function subject to a mixture of nonlinear equality arid inequal-
ity constraints. Tile methods studied a.re in tile class of sequential quadratic programming
(SQP) algorithms, which have previously proved successful for problems of moderate size.

Our goal is to devise an SQP algorithm that is applicable to large-scale optimization prob-
lems, using sparse data structures and storing less curvature information but maintaining
the property of superlinear convergence. The main features are:

1. The use of a quasi.Newton approximation to the reduced Hessian of the Lagrangian

function. Only an estimate of the reduced Hessian matrix is required by our algo-
rithm. The impact of not having available the full Hessian approximation is studied
and alternative estimates are constructed.

2. The use of a transformation matrix Q, This allows the QP gradient to be computed
easily when only the reduced Hessian approximation is maintained.

3. The use of a reduced.gradient form of the basis for the null slmce of the working
set. This choice of basis is more practical than an orthogonal null-space basis for
large-scale problems. The continuity condition for this choice is proven.

4. The use of incomplete solutions of quadratic programming subproblems. Certain

iterates generated by an active-set method for the QP subproblem are used in place
of the QP minimizer to define the search direction for the nonlinear problem.

An implementation of the new algorithm has been obtained by modifying the code

MINOS. Results and comparisons with ,_I1NOSand NPSOL are given for the new algorithm
on a set of 92 test problems,
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Chapter 1

Introduction

The problem addressed in this report is that of finding a local minimizer for a. general
nonlinear function F(x) subject to a set of nonlinear constraints c(x) >_ O. This is the

general nonlinear programming problem (NLP):

minimize F(x)
• e_¢" NLP
s.t. c(x) >_O,

where F:_}_ '_ _ _}_and c:_ '_ _ _m.

There are a number of mathematically equivalent forms of NLP. The relevance of the

precise form of the problem to the efficiency of specific algorithms is discussed later. We
assume that the objective function F(x) and the nonlinear constraint functions ci(x), i =
1,..., m, are twice continuously differentiable.

A wide variety of algorithms exist for solving NLP, none of which can be considered

preferable for ali problems. For a general discussion of NLP the reader is referred to

Fletcher [Fie87] and Gill et al. [GMW81]. For a recent survey of methods see [GMSW89].

The particular focus of this report is the case of large, sparse NLP. By large and sparse

we mean that we are concerned with the instances of problem NLP in which n is large,
the m × n Jacobian of the nonlinear constraints is sparse, and usually n - m << n. Al-

though many algorithms have been proposed to solve NLP, few have been adapted for the
large sparse case. A notable exception is the Lagrangian method of Murtagh and Saun-

ders [MurS82]. This algorithm has been implemented as the mathematical programming
system MINOS [MurS87].

There is a concensus that the best methods for solving NLP when n is small are so-

called sequential quadratic programming (SQP) methods. Such methods make use of local

curvature information to construct a quadratic programming (QP) model or subproblem of
NLP. A local minimizer is found by solving a sequence of these QP subproblems. The rate

of convergence of SQP methods is usually superlinear under certain assumptions on the

closeness of the quadratic approximation. We are concerned with developing large-scale
SQP algorithms that are globally convergent to a local minimizer of NLP, and have a fast

rate of convergence.

Ali methods for solving NLP are iterative. In the case when n is small the efficiency

of an algorithm is usually measured in terms of the number of iterations, or possibly the
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number of function evaluations, required to attain some specified approximation to the
solution. In the large sparse case we also need to be concerned with the effort required
to compute the iterates. It is sometimes worthwhile to modify the definition of the iter-

ative sequence in order to compute the iterates more efficiently. We may then take more
iterations, but the savings in effort to compute the iterates is sufficient compensation.

1.1. Notation and definitions

Our notation in this report follows that used in [GMSW86b] and [Pri89]. In addition to
F, x and c defined above we shall use the following definitions and conventions:

• Subscripts on a function denote the value of the fimction evaluated at the variable

with the same subscript (for example, Fk = F(xk)).

• Bars on functions or variables or data will often be used to denote updated quanti-

ties (for example, when xk+l corresponds to the new iterate, the new value of the
constraints is denoted _"= c(x_+l)).

• )_ is the vector of Lagrange multiplier estimates for c.

• L(x,)_)= F(x) - ,_T¢(x) is the Lagrangian function.

• g(x) = VF(x) is the n × 1 gradient vector for F.

• J(x) is the m × n matrix of gradients for the constraint functions (the Jacobian).
Then Jij = Oci/Oxj.

(J(x) -I ) as the constraint matrix for QP subproblems. Often we willA(x)

refer toa partition ofA asillA= ( B S N ),where Bis nonsingular.

• We will often refer to a partitioned vector as in

P=( Po, Ps, PN )= Ps •

PN

In this notation the commas denote that the partitioned vector has a column dimen-
sion of one.

• Zdenotesabasisforthenullspaceofamatrixoftheform_= (B S N)I "

• Y denotes a matrix such that ( Z Y ) is nonsingular.

Q is a transformation matrix of the form Q(x)= (Z(x) Y(x) ).

• G(x) denotes the Hessian of F(x). Then Gij = 02F/OxiOxj.

• Gi(x) denotes the Hessian of ci(x).
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• W(x, A) = G(x) - _ AiGi(x) is the Hessian of the Lagrangian function.

• H is ali n X n approximation to W(x, A).

• s is the m-vector of slack va.l'iM)les for constraints c such that c(x) - s = O.

• l_ is the m-vector of QP multipliers (for A).

• ( = lt - ,\ is the search direction for Lagrange multiplier estimates.

• p is the search direction for z.

• q = (c - s) + Ap is the search direction for slack variables.

• x* is a solution of the constrained ol)timization problem NLP.

• ,_* is the vector of Lagrange multipliers at x*.

The above notation will be defined again when the terms involved are tirst introduced in

the text. This list is intended to be a convenient reference to save searching for definitions
in the text.

1.2. Optilnality conditions for NLP

A point x* is a weak local minimizer of NLP if c(x*) _> 0 and there exists a ?i > 0 such

that F(x) >_ F(x*) for ali x satisfying

IIx- x*ll<_ and c(x)_> O. (1.2.1)

If F(x) > F(x*) for a.ll x 7_x* satisfying (1.2.1), x* is defined as a strong local minimizer.

The above definition of a local minimizer is of little aid in determining x* or verifying

that some given point is indeed a minimizer. Most oI)timization methods (and all of the
algorithms described in this report) determine x* by seeking points that satisfy verifiable

oI)timality conditions on x*. These conditions a.re characterized by the first and second

derivatives of the Lagrangian function (see for example [FiaM68]). Assuming that tlm
Jacobian of active constraints _t a. solution to NLP has full rank, we now give optimality
conditions for NLP.

Necessary conditions for x* to be a. local minimizer are that there exist multipliers A*

such that (x*, A*) satisfy the Karush-h'uhn-7'ucker (NA'T) se:cond-order conditions:

c(x*) >_ 0; (1.2.2)

VF(x*) = A*'rA*; (1.2.3)

A* _> o; (1.2.4)

Z*YW*Z * is positive _'emi-definite, (1.2.5)

where I'V* - W(x*, A*)is tlm ]lessian of the Lagrangian, A* is the Jacol)ian of the active

cc,nstraints at x* a.nd Z* is a basis for tile l,,lllsl)a.ce of A". ,%.[.[icient conditions for (x*, A*)
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to be a local minimizer are that there exist multipliers A* such that (x*,A*) satisfy the
KKT conditions (1.2.2)-(1.2.3) and

A* > 0; (1.2.6)

z*Tw*z * is positive definite. (1.2.7)

A point x* with multipliers A* satisfying only KKT conditions (1.2.2)-(1.2.4) will be
referred to as a first-order KKT point, while a point satisfying only KKT conditions

(1.2.2)-(1.2.3) will be referred to as a constrained stationary point. It should be noted
that the algorithms developed for NLP iii this report do not require the provision of

analytical second derivatives. As a result, the algorithms presented in Section 2 only
guarantee that a computed solution x* is a tirst-order KKT point. Despite this theoretical

restriction oi; (Ill algorithms that (1o not ev_.luate second derivatives, it is important that

such algorithms still attempt to seek a minimizer and not simply a first-order KKT point.
Consider the case of unconstrained minimization. We could simply generate iterates

that reduce 9Tg. In so doing we would converge to a first-order KKT point that could

be either a maximizer, a saddle-point or a minimizer. If on the other hand we generate

iterates that reduce F(zr), we could still only be assured of finding a stationary point (i.e.
g(x) = 0) but it is more likely to be a minimizer. The gener_tlization of this idea for a

constrained problem involves choosing a suitable merit function (see Section 1.3).
It is also important to note that without a strong assumption on the form of the

1)roblem it is not possible to distinguish I)etween local and global solutions.

1.3. SQP algorithms

It is not possible in general to determine an optimal solution to NLP in a finite number of

iterations, except in special cases such as linear and quadratic programs. SQP algorithms
• OO

construct a sequence {Xk}k=0 whose limit l)oints a,ro,KKT points. Given a point xa, we
may ol)tain a new point xk+l by solving a. mathematical programming problem whose

solution xi,.+1 apl)roximates x*. One method of approximating the optimal step (x* - Xk)
is to find a minimizer of a local approximation to the problem. For SQP methods the

model prol)lem takes the form of a QP sul)problenl in which a quadratic approximation is
lna(le to the Lagrangian and linear approximations are made to the nonlinear constraints.

For each xk in the sequence, the !,-th QP sul)prol)lem may be stated a,s follows:

minimize ½pritap + gTp
pew' Qp
s,t. Akp >_ -cj,,,

where gk = VF(xk) a,n(l Hk is an approximation to W(xk,Ak), the Hessian of the La-

grangia, ll. The solution and Lagrange multipliers a.re denoted by the pair (Pk, #k).
Ideally, we hope to accept xk + pk as the next iterate, especially near the solution.

llowever, the QP subproblem is defined only by local information (i.e. at the current

iterate); the solution of the model problem may be a pool" approximation of the solution

to NLP when the cu:'rent iterate is not close to x*. Hence, we regard the solution to QP as
a search direction pi,. that will be a. descent direction [or some merit function, as discussed
next.
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1.3.1. Merit functions

In contrast to algorithms for unconstrained and linearly constrained problems, it is not

practical in general to generate a sequence {Zk}k_:_'_0such that ali points z_. are feasible.
Given two feasible points we can determine which is best by comparing F(x) evaluated at

the two points. Once the points are allowed to be infeasible it becomes problematical to
determine which is best. To illustrate this difficulty, consider Figure 1. Some of the five

points xi,..., xs are infea.sible with respect to the single inequality constraint c(z) > 0 and

it is not clear which offers the best approximation to x*. Beca.use the sequence {Xk}_=0

F(x*)
X3

_ ZI :_ Z* • 2:5
II

z • c(z)=0

Figure 1. Whicla is the best point?

in our algorithms may contain infeasible points it is necessary to order the iterates in
some way other than simply noting which iterate has tlm lowest function value. Many
algorithms for NLP do this by means of a merit function, which is used to determine a step
o'k. along a search direction pk. The requirement is that the new point xk + _kPk reduce
the merit function by a sufficient amount. The 1)oints xi,. therefore form a,n "improving"
seq uen ce.

One possible choice for a merit fllnction is the augmented Lagrangian merit function

due to Rockafellar [Roc73]:

J_(X, )_,p)-- F(x)- ,,_T_ + lp ,2 Ilell2 (1.3.1)

where p > 0 is a l)enalty l)a,'ameter and the vector ?:is defined as

I c;(._') if oi(x)- Ai/p < 0,
_i(x)

Ai/p otherwise. (1.3.2)

Note that this merit function assigns a positive penalty for increasing constraint violations.

To illustrale the use of (1.3.1), col,sider tllc followiilg example:
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minimize F(x) = xax'_
xEB¢2

s.t. 2- - >o.

The optimal solution is z* = (-0.81650,-1.1547) with optimal Lagrange multiplier A* =
0.81650. Figure 1 depicts the contours of F(x) with c(x) = 0 superimposed for this

example.

Figure 2 depicts the contours of the augmented Lagrangian merit function M(x, _*,p)
for the same problem as in Figure 1, using ,_* = 0.81650 and p = 0.1 and p = 1. Figure 3

' ; ! m m ! ;

Figure 2. Contours of M(x, A*, p) for p = 0.1 and p = 1

Figure 3. Contours of M(._', A*,p) for p = 10 and p = 100

shows tile contours of tile a.ugnlented Lagrangian finnction with p = 10 and p = 100.

Figures 2 and 3 demonstrate the complications that may arise in choosing the penalty

parameter p. If p is set too small as in the left part of Figure 2, the merit function may
become unbounded below. If p is set too large as in the riglkt part in Figure 3. the merit
function may become ill-conditioned.
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The steps re_:uired by an SQP method are summarized ill Algorithm 1.3.1 below. Each

step will be discussed in detail in Section 2.

Algorithm 1.3.1. (Model SQP algorithm)

Start with estimates Xo and Ho of a solution and the Hessian of the Lagrangian
at zo.

while not converged do

Set up and solve a QP subpvoblem to obtain a search direction Pk and La.
grange multipliers #k.

Compute a steplength tr to reduce some merit function.

Update x according to zk+l ,-- xk + apk.

Evaluate constraints c and gradients g and J at xk+l.

Update (or form) Hk+l, the QP Hessian to be used in the next subproblem.

end do
.-.

Figure 4. Model SQP algorithnl

1.4. Historical background

SQP methods for NLP were first introduced iii 1963. Here we outline the development

of SQP methods since then and emphasize some of the key ideas. For a more detailed

discussion of the history of SQP methods, see [GMWS1, Pow83, GMSW88].

1.4.1. Early SQP methods

Wilson [Wil63] is believed to have been the first to propose an SQP algorithm. In his
doctoral dissertation he proposed solving convex nonlinear programming problems using

a sequence of inequality constrained QP's in which the QP objective was defined using
the exact Hessian of the Lagrangian. Successive NLP iterates were obtained as ._ = x + p
(i.e. without the benefit of a merit function and linesearch).

In 1969, Murray [Mur69] proposed an SQP algorithm employing a quasi-Newton ap-
proximation to the Hessian of the Lagrallgian. He also introduced the important concept

of using the QP solution to define a. search direction and choosing the next iterate by
taking a step to reduce a merit function. The use of a quasi-Newton approximation and

a linesearch enabled Wilson's convexity assumption to be relaxed.

Notable developments in SQP algorithms occurred throughout the 1970's. Biggs
[Big72] proposed an algorithm using an equality-constrained subi)roblem, and a, term for

the multiplier estimate was added to the constraints, fian [l[an76] established sufficient

,:onditions for local and superlinear convergence of an SQP algorithm under the assump-
tion that the liessian of the Lagrangian is positive definite on the whole space. Powell

[Pow78a] used the framework of fian to provide a proof of superlinear convergence under
additional assumptions on how well the llessian of the Lagrangian is approximated.
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1.4.2. Merit functions

Much research has been done on tile choice of merit function for SQP iterates. Murray's

pioneering approach used ali e2 merit function [Mur69]. Since then the focus has been not

on the use of the merit function but on its form. ltan [Han76] and Powell [Pow78b] in
their SQP algorithms proposed the use of the el merit function (also known as an exact
penalty function ),

M(x,p) = F(x)+ Pllelll, (1.4.1)

where p is a nonnegative penalty parameter and _ contains only the values of constraints
c(x) considered to be violated at x. A virtue of the el merit function over the 12 merit

function is that there exists a bounded value of p for which x* is a minimizer of M(x,p).
This latter property makes convergence proofs relatively simple. However, the _1 merit
filnction is nonsmooth across constraint violations. Maratos [MarT8] in his doctoral disser-
tation (lemonstrated that imposing linesearch conditions using this merit function could

imI)ede the superlinear rate of convergence. To overcome this deficiency SQP methods

based on the ,_1 merit function nlust depart from a. pure SQP strategy.
As an alternative, consider the augmented Lagrangian merit function

M(x,A,p) = F(x)- AT_+ ½p_T_, (1.4.2)

where _ is defined in (1.3.2). Fletcher [Fie70] first proposed tile use of this merit function
(but not in the context of an SQP algorithm). In contrast to (1.4.1), (1.4.2) is a smooth
function. However, ii. requires estimates of the Lagrange multipliers A. In general, x*

is a minimizer of HI(x,A,p) only if A = A*. This requirement makes convergence proofs

for SQP methods using (1.4.2) somewhat more difficult than proofs using (1.4.1). Both
Wright [Wri76] and Scl_ittkowski [Sch82] proposed SQP algorithms based on this merit
function.

Consider next an augmented Lagrangian merit function defined in terms of slack vari-
ables .s as well as multipliers A a.nd variables x:

M(x,s,A,p) = F(x)- ATic- s)+ ½P(C- s)T(c-- s). (1.4.3)

lt is no longer necessary to restrict the terms involving c(x) in (1.4.3) to some subset of

the constraints. The merit function has the same continuity properties as F(x) and c(x).
Gill et al. [GMSWS6b] proposed this merit function in the context of an SQP method.
They showed under certain assuml)tions that xk -- x* and A_,.---, )_*. In his doctoral

dissertatio_l, Prioto [Pri89] showed that a tinite value of p suffices. The steplength cr is
(let(_rlnined by performing a search iii the sl)ace of x, s and ,_. This merit function has

1)ecn i_iil)lemented ill the nonlinear l)rogramming code NPSOL [GMSW86a].

1.4.3. Use of the reduced Hessian

For moderate-sized prol)lems, the most successful SQP algorithms to date have used dense

approximations to I4/, the llessian of the Lagrangian. A key concept for large-scale opti-
mization is the use of an apl)roximation to tile reduced Hessian zTwz. This is of prime

colnputatiol_al iml)ortan(:e for the following reasons:

• A (lellse al)l)roxilnation to ali of W may require excessive storage.
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• Computation of exact second derivatives may not be possible or may be too expen-
sive.

• Even if W can be evaluated cheaply, computation of the matrix product zTwz

ft'ore Z and W may be too expensive (unless Z has very few columns or some

special structure).

Gill and Murray [GilM73, GilM74, GilM77] are credited with the first use of reduced
Hessian approximations for linearly constrained l)roblems. Murtagh and Saunders in

[MurS78, MurS87] showed how to apply this approach to the large-scale case. Wright
[Wri76] and Murra.y and Wright [MurW78] proposed the use of a quasi-Newton approx-
imation to the reduced Hessian for nonlinearly constrained optimization. Coleman and

Corm [ColC84] analyzed an SQP method that approximated the reduced Hessian and
showed that the method when applied to equality-construined problems converges 2-step

superlinearly. Nocedal and Overton [NocO85], Coleman and Fenyes [ColF88], and Gur-

witz and Overton [GurO89] have all proposed algorithms in which approximations are
made to either zTwz or zTw.

1.4.4. Active-set methods

Although interior-point/barrier methods could be used within an SQP method, we shall
restrict our interest to the solution of the QP subproblems using active-set methods. This

does not preclude the use of barrier methods at the outer level of the SQP algorithm. That
is, inequality constraints could be removed by a barrier transformation and the algorithm

we propose used to solve the resulting barrier subproblem.

For an overview of active-set lnethods, see Gill et etl. [GMWS1] or Fletcher [Fle87].

1.4.5. Early termination of subproblems

As problem size grows, the number of iterations required by an active-set method to solve
a QP subproblem to optimality may become large. In a. large-scale SQP implementation

it is therefore desirable to impose a limit on the number of QP iterations allowed to solve
the subproblem.

Murray [Mur69] is credited as the first to suggest this early-termination approach.

Dembo and Tulowitzki [DemT85] defined an early-termina, tion rule for the QP subprob-
lem, ba.sed on the norm of the reduced gradient ZTg in the subproblem. Gurwitz and Over-

ton [GurO89] presented an implementation of an early-termination algorithm in which a
subproblem is terminated at the first stationary point (i.e. ZT(g + Hp) = 0). In the

work of Prieto [Pri89], global convergence was proved for an SQP algorithm in which the
search direction is defined from information available at any stationary point encountered

in the solution of the QP subproblem. Prieto also proved that use of a reduced Hessian
a.l)l)roximation in this context provides a 2-step superlinear rate of convergence.

1.4.6. Large-scale SQP

Nickle and Tolle [NicT89] have described a sparse SQP al)l)roach in which they maintain
an a.l)l)roxima.tion to W, the full Hessian of the l,agrangian. They sacrifice satisfying the
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quasi-Newton condition (see Section 4.2.2) in order to define an H with the same sparsity

pattern as W.

1.5. Contents and subsequent Chapters

III Section 2 a prototype SQP algorithm for solving NLP is presented. Each subproblem
uses all approximation to the reduced Hessian of the Lagrangian. A discussion of active-

set methods for QP subproblems is also given. In Section 3, important computational
building blocks are developed in order that the large-scale QP subproblems arising in the
SQP method may be solved efficiently. Section 4 discusses quasi-Newton updates for the

reduced Hessian of the Lagrangian and gives computational details. Section 5 presents

computational results for both small and large (i.e. dense and sparse) test problems from
a variety of applications.



Chapter 2

A Prototype SQP Algorithm

In this chapter we define the main theoretical tools for solving large-scale nonlinear pro-
grams and present an algorithm for solving NLP. The algorithm allows the use of incom-

plete solutions from QP subproblems.

2.1. Large-scale NLP

Many SQP methods have been proposed for solving NLP. Most of them perform algebraic
operations that ,tre al)l)ropriate for dense 1)roblems, but are not plactical for large and
sparse ones. For example, the storage required by dense methods may become excessive
when there are many variables. This section gives a standard form for large-scale NLP
and the optimality conditions modified for this form.

2.1.1. The form of the nonlinear problem

In methods for small or dense nonlinear programming problems both nonlinear equality

and inequality constraints (i.e. %(x) = 0 and ci(x ) _>0) are usually allowed. In large-scale
optimization the precise form of the problem is crucial, a.nd it is often computationally

convenient to assume that the problem is in the so-called nonlinear programming standard
form (NLPSF):

minimize F(x)
a:,8

s.t. c(:r)- s = 0 NLPSF

and l< (x)<u's

Each constraint ci(x) is a.ssociated with a slack variable si with upper and lower bounds Oll
its value as shown. The bounds on each sla.ck determine whether the associated constraint

is an equality or inequality. For example, if ci(x) corresponds to an equality constraint,
the bounds for slack si are zero.

The definition of the set of constraints considered to be binding at a point must be
modified for the standard form. At any point z, tile set of active constraints will consist

of ali functional constraints c(z)- s = 0, as well as tile set of active bounds at (x, s).

11
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lt may al)pear that increasing the number of variables for the problem in this way is
computationa.lly disadvantageous. For some methods of optimization this is true. How-
ever, it will be seen that this is not the case for the methods presented here.

It has been demonstrated since the earliest simplex codes that there are advantages
in using a standard form involving slacks. In particular, the standard form only requires
access to colulnns of the Jacobian (as opposed to cohlmns and rows). Also, when the
working-set basis matrix B is factorized (see Section 2.4), the columns associated with

slacks introduce no extra, nonzero elements (i.e. fill-in) in the LU factors of B. These same
advantages were retained for sparse NLP by Murtagh and Saunders [MurS78, MurS82].

2.1.2. Optimality conditions for large-scale NLP

In the discussion of optimality conditions it. will be convenient to assume that the slack
variables s are included ill the definition of the variables x. That is we augment the
variables x to include the slacks s:

(x):t'-_
8

so that for the NLP in standard form, x E ._U+m. We also modify the nonlinear constraints
to include the slack variables, Tile NLPSF may then be written:

minilni ze F(x )
xE_.n+m

s.t. c(x) = 0 NLPSF'
and 1 < x < u.

As discussed in Section 1, the Karush-Kuhn.Tucker (KKT) conditions describe local

solutions to NLP. These are characterized by conditions on the first and second derivatives

of the Lagrangian. Tile NLPSF' now has bound constraints on x (including slacks). This

will slightly change the conditions while making the tirst-order conditions easier to identify.
Define g* - VF(x*) and A* to be the Jacobian of c(x*) (that is, J is a matrix of row vectors

each corresponding to ci(x*) T for i = 1,..., t, where t is the number of active functional
constraints a.t z*). Let Z* be a basis for the null space of A* (so that A'Z* = 0). The

KKT necessary conditions for (x*, A*) to l)e a first-order KKT pair for NLP are

c(x*) = 0, (2.1.1)
*

x > l, (2.1.2)

* (2.1.3).T < U_

A'TA *-7 I+a = g*, (2.1.4)

,TT(x* -l) = O, (2.1.5)

aTiu-zt'*) = O, (2.1.6)

,j >_ O, (2.1.7)

a > O. (2.1.8)

Let a* be the j-th column of A*. Since the complementarity conditions (2.1.5) and (2.1.6)

' enforce 7li = aj = 0 when xi'* is not equal to either of its bounds, we can write the
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optimality conditions (2.1.4)-(2.1.8) ill what is for us a computationally more useful form

involving Z* and the explicit values of a and 71:

z*Tg * = 0, (2.1.9)

• * *TA*) > 0for n,(,tj - xj)(gj - aj _ j = 1,..., (2.1.10)

(x* lj)(g* ,r,, ., (2.1.11)- -ai ,_) < 0forj=l,.. n.

•* lying between their bounds will have the corresponding LagrangeOptimal variables xj
multipliers or )'educed costs equal to zero:

• , T_,
aj -- )li -" gj -- aj a -- 0. (2.1.12)

Optimality of the Lagrange multil)liers requires nonnegative (nonpositive) reduced costs
for variables on lower (upper) bounds.

2.2. Expansion of the model algorithm

Section 1 presented a model algorithm. The optimality procedures within Algorithm 1.3.1
consisted of(l) solving a QP subproblem, (2) performing a linesearch in conjunction with a
merit function, and (3) updating nonlinear quantities including the tIessian approximation

to be used in the next QP subl)roblem. A discussion of each of these steps follows.

2.2.1. Subproblem definition

A number of methods have been proposed for solving large-scale NLP. Two mentioned

in this section are SQP methods and a Lagrangian lnethod [MurS82]. Although not an
SQP method, the Lagrangian method is mentioned here because it offers one of the few

efficient methods currently available for large-scale problems. Also, the numerical results

of Section 5 coral)are the SQP algorithms l)resented in this report with the Lagrangian
method implemented in the form of MINOS. Both api)roaches use linearly constrained

subproblems. The Lagrangian method uses an augmented Lagrangian as the subproblem

objective, while SQP methods use a quadratic approximation to the Lagrangian. Both
methods involve the use of major and minor iterations. A major iteration is defined to

be the set of steps required to form and solve a single subprol)lem, while a minor iteration

constitutes a single iteration within a subl)roblem.

2.2.2. Linearly constrained subproblems

We may ol)tain a linearly constrained subl)roblem from NLP by replacing c(x) with a
linear al)proxinlation from its Taylor series expansion:

c(xk + p),_ c(.vk)+ J(xk)p, (2.2.1)

where J(xk). is the Jacobian of c evaluated at xk. Define JL,(xk) and Jt(xi,.) to be the

Jacobian of the nonlinear equality and inequality constraints respectively. The linearized
constraints are then

.]Ep = --cE( Xk ) and (2.2.2)

J_p > --cl(xk). (2.2.3)
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As (lescribed earlier, it is coml)utationally convenient to convert the linearly constrained
subproblena so that ali general constraints are equalities:

q = -(c- s). (2.2.4)

The only inequalities are then siml)le bounds on the variables:

l-xk<(P)<U-Xk._q _ (2.2.5)

The linearly constrained subprol)lem (LCS) can now be written

minimize f"( xk + p)
P,q

s.t. JkP- q = -(ck - sk), LCS

ik< (P)<uk'q-

where lk -- l - xi,. and uk = u -- xk.

The sul)problem objective in LCS may have many forms. For example in the La-

grangian Mgorithm of Murtagh and Saunders [MurS82],/_ takes the form of an augmented
La.g_'angian:

/:_(x, A,p)= F(x)- AT(_ - Akp) + ½pl[_- dkpl[ 2, (2.2.6)

where _ = c(x) - ck and p = x - xk. Note that this subproblem objective requires evalua-
tions of both F(x) and c(x)a.nd possibly their derivatives during each minor iteration of

the subproblem.

2.2.3. QP subproblems

SQP methods use the same linearized constraints, but the subproblem objective F is a
local quadratic model of the Lagrangian

I,(x, A)= F(x)- ,,_Tc(x)- ?lT(.1:- 1)- o'T(,t- x). (2.2.7)

The tirst two terms of the Taylor expansion of (2.2.7) define the quadratic model:

= Qj,.(p)= ½pTIIkp + gkTp, (2.2.8)

where Hk is an approximation to tlm Hessian of the Lagrangian (Hk _ W(xk, Ak)) and
gk = VF(xl,.). One resulting QP subprol)lenl at the point xi, is

minimize Qk(p) = ½pTIIkp + g_.'P
P,q

s.t. dkP- q = -(ck - ,sl,), QP(xk)

/k-<(P)<uk'q-

whose solution we denote by (Pa, qk) with Lagrange multipliers #k.



2.2 Expansion of the model algorithm 15

Note that tile linear term iii Qk(P) is defined using gk = VF(xk) and not Vz.L. In

general, replacing VxL by gk in (2.2.8) may affect the sequence {xk}. tIowever, if 71= _e
and a = aoe (the optimal QP multipliers from the solution of QP(xk)), then examination
of the KKT conditions for the QP subproblem shows that Pk(gk) = pk(VxL). To see why,

note that the KKT necessary and sufficient conditions require only that Pk satisfy

zTVQk(Pk) = O. (2.2.9)

Define A = (J -I). Recall from (2.1.10) and (2.1.11) that the terms r/and a correspond

to the reduced costs (g- ATA); hence, the only difference between the QP gradient in

(2.2.8) and that of the model function defined in terms of VxL is the addition of linear
terms involving A. These terms are annihilated by premultiplication by Z T in (2.2.9);
hence _he solution Pk of the subproblem QP(xk) is unaltered.

A side-effect is that, when (2.2.8) is used as the objective in QP(xk), the optimal

Lagrange multipliers #* for the constraints JkP = -(ck - SL) of QP(xk) are used as

estimates of A* (rather than as a search direction for Ak).
To obtain fast convergence it is necessary to include approximations to the second-

order constraint terms, which are part of W, the Hessian of the Lagrangian:

|'V(xk, AI,.)"= C(xk)- Z(Ak)iGitxk).
i---I

Also note that errors in Ak and #* will affect only the second-order terms in the model

function. This gives some insight into why these metho¢ls are SUl)erlinearly convergent.
Using the subproblem defined by QP(xk) does not require evaluations of the true

objective F(x) or constraints c(x) during minor iterations of the subproblem. This can be
a great advantage in some applications.

2.2.4. The merit function

As discussed in Section 1, much research has been undertaken on the form of the merit

function for measuring the progress of an SQP method. As in [GMSW86b] and [Pri89] we
use an augmented Lagrangian merit function and include slack variables for the nonlinear
constraints in the merit function:

A,p)- F(,L')- ½Pll(c(x)-- )112. (2.2.10)

As in NPSOL [GMSW86b], the slacks s = (sl,..., Sm) are specia.lly constructed for the
linesearch function:

0 if i E ,'?,

si = max(0, ci(x)) if iEZ and p=0, (2.2.11)
ma x(O, ci(x)- Ai/p) otherwise,

where C and I denote the sets of in(lices for the nonlinear equality and inequality con-

straints respectively. C,hoosing sk in this way is equivalent to setting the slacks at their
optimal feasible values if the merit functioll were being minimized only with respect to
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s. The merit function is thereby reduced. Define _k = ILk -- )_k as the search direction

for the Lagrange multiplier estimates )_k and (le :ue qk =--Akpk + Ck -- sl, as the search
direction for the slacks sk just defined. Finally, define Pk from the solution of QP(xk) as
the search direction for the variables Xk. To obtain the next iterate the linesearch for the

merit function is then performed along the triple search direction:

sk+l *-- sk + c_ qk • (2.2.12)

The requirement is that at the new iterate the merit function be reduced by a "sufficient"

amount. Ther( are a various ways to define "sufficient". Let ¢((_,p) (or sometimes ¢(c_))
(lelmte the (linesea,rch) merit function:

¢(c_,p) -- h'l(Xk + O'pk,Sk + c_'qk,Ak + O'_k,p). (2.2.13)

In our algorithm we shall choose a, to ensure the following conditions:

¢(a.)-q_(O)_ aa¢_(O), (2.2.14)

_< (2.2.15)

where 0 < a _K71 _< ½. For a proof that a point satisfying these conditions exists, see
[GMSW86b] and [MorS84].

2.2.,5. Choice of the penalty parameter

The performance of the SQP Mgorithm del)ends on the choice of the penalty parameter p.
In practice it is worthwhile having a parameter for each nonlinear constraint even though

for theoretical purposes a siagle parameter p would suffice. We take p to be au m-vector

of penalty parameters and we define D _= diag(pi), where pi is the penalty parameter for
the i-th constraint. With this definition the merit function becomes

ll4(X,S,A,p) -" F(x) - AT(c(x)- ._)+ ½(c(x)- s)TD(c(x)- s). (2.2.16)

At ea.ch iteration the vector p may be modified to ensure that the merit function is reduced
by a sufficient anmunt.

We now omit the subscripts k. Let ¢_ denote the derivative of ¢ with respect to a. We
can show that

¢'(0) = gTp + (2A - Jt)T(c -- s) -- (e -- s)TD(c - s). (2.2.17)

To achieve reduction of the merit function in the linesearch we require

¢'(0) _<-½pTHp (2.2.18)

(see [GMSW86b]). When the nonlinear constraints c(x) are violated, ¢'(0) may not satisfy
(2.2.18) for the current value of the vector p, which then must be modified.

To obtain a sufficient reduction in the merit function when pi = p, it can be simwn by
rearranging terms in (2.2.17) that the minimum value of p that ensures (2.2.18) is given
by

g p+ (2A- - + ½PTHp
p = . (2.2.19)

- .112
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Clearly, other choices of Pi will also ensure condition (2.2.18) is satisfied. Two natural

questions are: What is a "good" choice for Pi that also ensures (2.2.18)? and" What is
an adequate measure of goodness?

As in the code NPSOL [GMSW86a], one possibility is to minimize the two-norm of p.

Define r - (rl,...,rra) where ri = (ci- si) 2 and 0 - gTp+ (2A--#)T(c--s)+ ½pVtlp. The
choice of paralneters under this condition call be exl)ressed as the solution to the following
problem:

1 T
minimize ipp

pE_ m

s.t. rTp > O, (2.2.20)

p>0.

The solution p* of this optimization problem is easily found, as shown by the following
lemma.

Lemma 2.2.1. For 0 > 0 the minimum-euclidean-norm choice of the m-vector of penalty

parameters for the augmented Lagrangian merit function (2.2.16) is given by p* = Ar,
where A = O/rTr.

Proof. Let A and # be Lagrange multilfiiers for the inequality constraints. The KKT
conditions for (2.2.20) are

rTp * _ O,
*

p = At+ #,

- o) = o,
ItiPi = O,

A _> O,

Iri __ O,

p > 0.

Since the objective function is strictly convex, (2.2.20) has a unique solution. It may be

verified that the above equations are satisfied by p* = Ar and # = O, where A = O/rTr. |

In our implementation of the prototype algorithm (Algorithm 2.3.1), we increase pi to

the value p* when (2.2.18) is violated.

2.2.6. Decreasing p

We use the result of Lemma 2.2.1 to increase the value of each Pi when it is smaller than

its optimal value. As mentioned iu Section 1, it is also necessary to ensure that p is not

too large. When Pi is larger than p* it is possible to reduce Pi and still satisfy condition
(2.2.18). In these instances we compute a trial value /ii that is equal to the geometric
mean of the previous p and a daml)ed value of p*. The trial value is

= + p*), (2.2.21)



18 Large-Scale SQP Algorithms

where Ok _> 1 is a. damping parameter, and tile new Pi is defined as

/ii if /_i S ½Pi,
(2.2.22)

Pi = Pi otherwise.

To avoid too many modifications of p, each time any element of p changes, the damping

parameter _k is increased by a factor of two. This ensures that Pi will oscillate only a
finite number of times.

2.2.7. Updates to the QP Hessian

Upon completion of the linesearch procedure it is necessary to set up the next subproblem.
This consists of evaluating the gradient _, the nonlinear constraints 6 and the Jacobian
,] at the new iterate. The new QP subproblem also requires/], an approximation to I/V.

In (lense SQP algorithlns,/t is usually taken as a quasi-Newton approximation to I_. As

mentioned in Section 1, for the large-scale case this can be computationally prohibitive.
Methods for obtaining// in which only an approximation to the reduced Hessian 2Tft2
is maintained are discussed in detail in Section 3.

2.3. The prototype algorithm

Taking into a.ccount the descriptions of Section 2.2 we can embellish the model algorithm

of Section 1. The new algorithm bull(Is on the fi'amework of the model algorithm by
requiring

• use of the augmented Lagrangian merit function (2.2.16);

• estimation of Lagrange multipliers;

• use of the reduced Hessian.

We now present a prototype SQP algorithm for NLP. The main steps are summarized in
Algorithm 2.3.1.

2.3.1. Convergence of the prototype algorithm

The prototype algorithm draws on the work of Prieto [Pri89] and Gurwitz [Gur87]. It

solves a sequence of 1)roblems of the form QP(xk), giving a sequence of solutions {xk}.
We make the following a.ssumptions:

Al. The SQP iterates {xk} ali lie in a closed, bounded region l) C _R'_.

A2. The objective F(x) and the constraints ci(x) and their first and second
derivatives are continuous and uniformly l)ounded in norm on ft.

A3. The Jacobian of active constraints at any limit point of {xk}_°=0 ha.s full row
rank,

A,j. There exists a feasible point for ea.cll QP subproblem.
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Algorithm 2.3.1. (Prototype SQP algorithm)

Start with estimates of the solution Xo, multipliers Ao, and reduced Hessian of
the Lagrangian Ho.

while not converged do

Evaluate the Jacobian J(x) and set up the subplvblem QP(x).

Find a constrained stationary point p of QP(x) with associated multipliers #.

if p = 0 and convergence criteria are satisfied then

converged = true

else

Compute slacks s for the' merit function and search directions for multi.
pliers and slacks: _ = lt - A, and q = Ap + (c - s ).

Update the diagonal penalty matrix D = diag(pi ) if necessary.

Compute the steplength a, satisfying steplength criteria for the merit
function M(x, s, )_,p). The linesearch is performed on the variables x, s,
and _ along corresponding sea lvh directions p, q, and _.

Update 5; ,- x + _p and A -- ,k + (_.

Update the reduced Hessian approximation zTIt Z.

end if

end do

Figure 1. Prototype SQP algorithm

As. Strict COlUplementa,rity holds for each constrained stationa, ry l)oint of NLP
in 12.

A6. The reduced Hessia.n of the Lagrangian is nonsingula.r at a.ll KKT points of
NLP.

2.3.2. Global convergence

Prieto [Pri89] in his doctora.l dissertation analyzed the convergence properties of a. reduced-

Hessian a.lgorithm based on the use of the Lagrangian to define the QP subproblem, lie
proved under a.ssumptions Al-A6 and certain cond:tions on the multiplier estimates that

the algorithm is globally convergent. (These conditions are satisfied by the estimates

in our prototype SQP a.lgorithm.) The main theorem and an importa.nt corollary from

this work are repeated here. Theorem 2.3.1 and Corolla.ry 2.3.1 are proved in [Pri89] as
Corollary 5.2.1 a.nd C,orollary 5.2.2 respectively.
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Theorem 2.3.1. Under assumptions AI-A6 and the additional assumption that

i,_= ,_*+ O(llxk- .z'*ll),
lim Ilxk- x*ll- 0.

k--*_

Corollary 2.3.1. Under assumptions Al-A6 and the additional assumption that

/,t = ,_*+ O(llxk- x*ll),
lira Ilmk- A*II-O,

k--*_

2.3.3. Rate of convergence

In addition to global convergence, we are naturally interested in the rate of convergence.
We have assumed that our approximatio,_ to the Hessian is only accurate on the null
space of the active constraints. A consequence of the use of less precise information is
a degradation in the rate of convergence for the algorithm, relative to one in which the
full Hessian is available or approximated. It is shown in [Pri89] that provided the penalty
parameter is chosen to be sufficiently large and Hz is a sufficiently good approximation
to the reduced Hessian of the Lagrangian, the algorithm converges two-step superlinearly.
That is, the iterative sequence {xk} satisfies

lira Ilxk+2- x*ll_ 0. (2.3.1)k-_, II._k- x*ll

The precise conditions are:

At. When the iterates are close to the solution, the penalty parameter is chosen
to be "large enough".

A8. IIZT(Hk - l'lZk)ZkPzkll = o(llPkll), where l'Vk denotes the Hessian of the La-
grangian at xk.

The theorem giving the required rate of convergence (Theorem 5.3.1 in [Pri89]) is stated
here without proof.

Theorem 2.3.2. There exists a value _, such that if Pa is selected satisfying Pk >_P, and

if assumptions Al-As and the additional assumption that #k = A* + O([Ixk- x*ll ) are
satisfied, then the algorithm converyes two-step superlinearly.

2.4. Solution of the subproblem

The method used to solve the QP subproblems is an active-set method. It is related to

the reduced-gradient method a.s implemented in MINOS [MurS78].

As in MINOS, it is computationally convenient to convert all general constraints to
equalities, with the only inequalities being simple.- bounds on the variables. For notational

convenience, the search direction for the subproblem QP(xk) is augmented to include the

slacks q. Define Ak - ( Jk -I ) and define gk E ._n+m to be the original gradient vector
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augmented by m zeros. Likewise, tile QP ltessian is augmented with zeros so that it has
dimension n + m:

(Hk O) (2.4.1)/t_- 0 0 '

We may write the new QP subproblem in standard form as

minimize Qk(P) = ½pTf]kP + g[P
pE_n+ m

s.t. Akp - -(ck - sk), QPSF(xk)

lk <_p < uk,

with optimal solution p* and optimal Lagrange multipliers It*.
At a local minimizer of QPSF(xk), the point p* satisfies Akp* = --(ck--sk). In addition,

many variables p* (usuaUy) attain the value of one of their bounds. It is of interest to
consider the set of indices corresponding to the bounds on p* that are exactly satisfied

(i.e. p_ = (Ik)j or (uk)i). We call this index set of constraints that are "tight" or "active"
at the solution the active set. The active set for the subproblem can be represented by

the active.set matrix,

jt= (A _r)i ' (2.4.2)

where N consists of the columns of the linearized constraints corresponding to variables
exactly equal to one of their bounds at the optimal solution of the subproblem. The
columns of A corresl)ond to the remaining variables.

If the active set were known a priori, the solution to the subproblem could be solved

in a single iteration. In general we do not know the active set at the start of the solution
process for a subproblem. Active-set methods employ what is called a working set, which

attempts to predict the active set. The working-set matrix/t has the form

I ' (2.4.3)

where N consists of the columns of A corresponding to variables temporarily held at

their current values (tyl)ically on a bound), and B and 5' are the remaining columns of
A partitioned so that B is nonsingular. We refer to the variables corresponding to the

columns in B, 5', and N as basic, superbasic, and non&lsic variables respectively.
Active-set methods employ a procedure to check whether a feasible stationary point is

optimal (i.e. when the working set has i(lentified the active set). Let g*Qt,=- [[kp* + gk and
omit the subscript k. Consider the first-or(ler KKT conditions for (p*,it*) to be a local

minimum of the QP subproblem"

AI* = -(c- s), (2.4.4)

p > l, (2.4.5)

p < u, (2.4.6)

Z ,T .g_e = 0, (2.4.7)

(,tj - l'j*)((g*Qp)j - a;7) t*) -> 0 for j = 1,...,,t, (2.4.8)
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, , ,T ,
(pi - lj)((gQp)j - ai # ) <_ 0 for j = 1,...,n. (2.4.9)

This means that p* must be feasible and tile reduced gradients * ,T(gQp)j- aj lt must be zero
for any variable not on a bound (including for example a free variable that is nonbasic).
Let p be a feasible constrained stationary point for the subproblem. If KKT conditions

(2.4.8)-(2.4.9) hold then the active set has been identified and p is an optimal solution
to the subproblem. Verification of (2.4.8) and (2.4.9) for nonbasic variables is carried out

iii the process of solving the QP subproblem. This procedure is known as pricing and

is used to modify the working set. When a nonbasic variable fails the pricing test, the
QP objective call be reduce by deleting the variable from the working set and moving the

variable off its bound. These ideas give rise to a model algorithm for QP subproblems.

Algorithm 2.4.1. (Model QP algorithm)

Find a feasible point for the QP subproblem. This defines a working set.

while not converged do

IVhile remaining feasible, find a constrained stationary point for the QP
subproblem. This process may increase the size of the working set as one or
more of the basic or superbasic variables encounter a bound.

Price to dete_nine if the working.set size should be reduced.

Modify the working set by allowing one or more non&Lsic variables to move
off a bound.

end do

Figure 2. Model QP algorithm



Chapter 3

Large-scale Quadratic Programs

Iii this chapter, important computational constructs are developed to assist solution of

the large-sca.le QP subproblems arising iii the SQP method.

3.1. The null-space basis Z

Recall from Section 2 that during the solution of a QP subproblem it is necessary to
maintain Z, a null-space basis of the working-set matrix 2_. This is because the optimality

conditions for the QP subproblem depend in part on Z and, as demonstrated in Section 3.2,

the ft)rra of the QP Hessian also depends on the form of Z.

For the dense case of NLP, Gill et al. [GMSW84, GMSSW85] have used an orthonormal
basis Z obtained by updating the rows and columns of the TQ factorization

= ( 0 7' ) O, (3.1.1.)

where Q is an n× n orthogonal matrix, and T is a triangular matrix with varying dimension
t. In this case Q can be partitioned as

n-t t

Q=( z Y ). (3.1.2)

Forming an orthogonal Q in the large-scale case is prohibitively expensive in general. A
practical method when n is large is to represent Z as the )wluced-gradient null-space basis

of the working-set matrix ¢[ (2.4.3). This has been used with success in the mathematical

programming system MINOS [MurS78, MurS87] and has the form

Z = I . (3.1.3)
0

As long as B in (2.4.3) is nonsingular, Z in (3.1.3)is a basis for the null sl)ace of A.
In contrast to the dense case, this matrix Z is not computed or stored explicitly. Instead,

a sparse factorization B = LU is maintained along with an index set for the columns of

B, S, and N. l)l'oducts involving Z aad Z T can the, be performed easily by solving with

23
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B or B T and using tile nonzero elements of tile columns in S. For example, tile reduced
gradient

71=- ZTg = gs -STB-Tg_ (3.1.4)

may be obtained from the ol)erations

solve UTr -- (]0; (3.1.5)

solve LTrr = v; (3.1.6)

form _} = gs- sTr. (3.1.7)

3.2. Solution of subproblems

SQP methods make use of local curvature information to construct QP subproblems.

Recall ft'ore Section 2 that the search direction p for each SQP iterate is constructed from
a constrained stationary l)oint of a large-scale QP subproblem (LSQP) defined at the
current NLP iterate x:

minimize ½pTHp + gtp
pE !_m . ,_

s.t. Ap = -c, LSQP
l<p<u.

This forln of LSQP is slightly different fl'om the subl)roblem QP(xk) defined in Section 2.
litre p E ._t"_+'_is a search direction for the m slack variables s as well as the variables

z. Accordingly, we define A = (J(z) -I ), where d(x) is the Jacobian of c(x). For the

sake of brevity, the right-hand-side vector for LSQP has been redefined to be c = c(x) - s.
C,lea.rly, the ability to solve large-scale QP subproblems efficiently is crucia.l to our SQP

algorithm. Because we have some freedom in determining the form of the QP Hessian H,

we construct H to be positive definite. The minimizer of the subproblem p* is then
unique (i.e. a glo&d minilnizer). In our algorithln, H will not be explicitly available. A

key concept is to work with a nonsingular matrix Q such that Q-1 and QTtlQ have a
reasonably simple form. The forms of Q, Q-1 and QTHQ are discussed in Section 3.5.

At each iteration of most active-set methods (and ali of the methods we consider) a

KKT systeln is solved:

(tl +iT) ( p )a"-lt =_ (9)_ , (3.2.1)

where /i is the working-set matrix and 0 is the QP right-hand-side vector padded with

zeros to make it coml)atible with A. Nea.rly ali active-set methods for solving LSQP
generate the same sequence of iterates (see [CotD79], for example). The methods (lifter
in how the iterates are computed, and their efficiency depends on the problem type. QP

methods may be categorized according to the approa.ch used to solve (3.2.1). If the system

is solved directly we say the QP method is a Lagrangian method. If (3.2.1) is reduced to
solving two smaller systems we refer to the method as a projection method.

Let Z be a basis for the null sl)ace of/i and define Y so that ( Z Y ) and /[Y are
nonsingular. Projection methods come in two different flavors: 1,ange-space methods and

null-slmce methods (see [GMW81], for exa.mple). This terminology arises froln the fact
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that A defines two complenmntary subsl)aces spanned by Z and Y. Tile work required to
solve for the optimality conditions is directly related to the dimension of either the null

space (the dimension of zTtlZ) or the range space (the dimension of yTII-IY). Because
we use a null-space method for solving (3.2.1), the method is most efficient when the
dimension of the null space of A is small. It is this class of problems that we are most
interested in.

Each iteration of an active-set method for solving LSQP is called a minor iteration.

Solving the associated KKT system (3.2.1) is equivalent to solving a single equality-

constrained quadratic program (EQP).

The following is a model active-set algorithm for solving LSQP. It assumes that a
working set of the form (2.4.3) is available and that the associated l)oint p is feasible, i.e.
satisfies the constraints in LSQP.

Algorithm 3.2.1. (Active-set algorithm)

while not converged do
if the minimizer has been found on the current subspace then

[Price nonbasic variables. ]

if no new superbasic candidates exist then
converged = true

else

[Delete a bound f,'om the wo,'L'ing set. I
end if

end if

if not converged then

Iso,,,,_ EQP defined by the working set. I

if a bound was encounte'red in the.,solution of the EQP then

[Add the bound encountered to the working set. I
end if

end if

end do

Figure 1. Active-set algorithln

Our definition of com,evgence in Algorithm 3.2.1 <lel)ell(ls on finding a. rain[ni[zPr of LSQP.

Tile algorithm is easily modified l.o halt Ul)On finding tile first constraine(l stationary
point (see Section 3.2.3). In addition, Algorithm 3.2.1 requires finding a feasiMe point, the

computation of which is itself an optimization problem. The main l)arts of Algorithm 3.2.1
(sigllifie(! by the boxed text) will I)e discussed in the following sections.
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3.2.1. Finding an optimal point

Let /t denote the working set for a feasible point p for LSQP. Since H is chosen to be
positive definite, tile reduce(l Hessian zTIIZ is kuown a priori to be positive definite

for every minor iteration. Define gob -- g + Hp, the QP gradient at the point p, and
Hz =_ ZTHZ, the reduced Hessia.n.

The optimality-phase algorithm starts with a feasible point p, tolerances _rg and 64/,
and a partition of A into ( B S N ). Define ns to be the number of columns in S.

Assume that the QP gradient g_, is available, along with factorizations for the basis
B = LU and the reduced Hessian Hz = RTR.

The first step in finding an optimal point is to determine whether the current point p
is a constrained stationary point, by checking whether the current point is a minimizer on

the current subs!)ace or equivalently, the norm of the reduced gradient is zero (or smaller

than a specified tolerance). If so, it is then necessary to check whether p is the minimizer
of the subpsvblem, by checking the signs of the multipliers (also ca.lled reduced costs)

for the bound constraints. The multipliers are calculated by pricing, as summarized in
Procedure 3.2.1.

Procedure 3.2.1. (Price nonbasic variables)

Form gc_ = g + Hp.

Solve uTLTIt = (gQP)B"

(_.'alc'ulate 71= (gQp )N -- NTt it.

Select 7lt 01,,), the most negative (positive) element of Tl corresponding
to variables at their lower (upper) bounds.

If 7lt > -tSdj and qu < bdj, we conclude that p is a minimizer of the subproblem.

Otherwise, the QP objective may be reduced by deleting a. bound from the working set
a.nd adding a.variable to the SUl)erbasic set. Procedure 3.2.2 summarizes the steps required

to mo(lily the working set when a bound is deleted.

Procedure 3.2.2. (Delete a bound from the working set)

Choose q = .rgm..a:(17/_I,71,,).
Add q to the sitperbasic index set.

Add % as a new element of ZT[I_.

Add a new column to R and increase n s by I.

The search direction for LSQP at p is defined by the Newton equations,

H j,z - (3.2.2)
p = Zpz, (3.2.3)

which solve the EQP defined by the current working set. The next iterate p for the

subproblem is p = p + a,/). Due to the quadratic nature of the objective function along
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i5, when p + p is feasible then a = 1 aad p is a constrained stationary point for LSQP. If
p + p is not feasible then a < 1 is the step to the nearest bound constraint along p. Tile

precise steps for solving the EQP are summarized in Procedure 3.2.3.

Procedure 3.2.3. (Solve an EQP)

Solve RTRps = - Z_Tgq_.

Soh,e LUpB = -Sps.

Calculate ac, the step to the nearest bound along [_, where

f, = ( p,, ps, 0 ).

Compute u = rain (1, o'c).

Update p = p + aft.

When the unit step is not feasible the nearest bound is added to the working set. If

the variable corresponds to a. column in B, a column from S must be chosen to replace

it in B (see Section 3.3, no. 3). The steps required when a. bound is encountered in the
solution of the EQP are summarized in Procedure 3.2.4.

Procedure 3.2.4. (Add a bound to the working set)
if a' = a'c then

Add the new bound to th_:"working s_'t.

Decrease ns by 1.

Upd.te R.

Update the LU factors if necessary.
end if

Two tests for convergence are require(l: one to check for convergence in the current

subspa.ce and one to detect convergence to the QP minimizer. As discussed in Section 2, it
is not always necessary to obtain the minializer of tl,e QP subl)roblem in order to obtMn

a search direction for NLP. The eml)hasis of Section 3.2.3 will be to develop a strategy in
which we terminate the solution of the subl_roblem Ul)On finding a QP stationary point.

The complete set of steps for the ol)tilllality-l)hase algorithm for finding a minimizer of
the QP is given in Algorithm 3.2.2.

3.2.2. Obtaining a feasible point

Algorithm 3.2.2 requires a feasible point for LSQP. At the start of a QP subl)roblem, the
l)asic varial)les p, are defined by

Bpl_ = -c.

If Po is feasible we may commence with the optimality phase. A subl)roblem is infeasible

only if the bounds o, the va rial)les (I, < p, < ',_j)are violale(I, l)uring the feasibility
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Algorithm 3.2.2. (Optimality phase for LSQP)

while not converged do

if IIZTgQpII <_ 6ry then {Price uonb.sic variables}

Form g_ = g + Hp.

Soh,e uTLT# = (go_)o.

C.Iculate q = ([Ioj_)N -- NT#.
Select 71t(q.), the most 7,egative (positive) element of
q col'responding to vat'iables at their lower (upper) bounds.

if til >_-b,lj and 71,,< b,tj then

cow,verged = true

else {Delete . bound ftvm th_..workin9 ,__'et}

CTtoose q = alymax(171t l, q,,).
Add q to the superbasie index ._'et.

Add ilq as a new element of ZTgc_.
Add a new colltmn to R and increase n s oy I.

end if
end if

if not converged then {Solve _m EQP}

Solve RTRps. = -Z'rgc_,.
Soh,e LUpn = -Sps.

Cale.lat_ a,_, the step to the ne_tre.st bound ..long _ = ( PB, Ps, 0 ).
Com,Irate ___'= milt ( 1, _'¢).
Upd.te p = p + c_,p.

if _a= e_,_then {Add. bound to the workin 9 set}

Add the new boul_d to the workin, 9 set altd dee'mase n s by 1.
lfluhtte R and update the LU f.etors if i_ceessary.

end if

Update the tvduced gr_tdient.
end if

end do

Figure 2. Optimality phase for LSQP
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phase of tile subl)roblem , tile objective is tile stim of infeasibilities for tile bounds. This
Phase 1 problem may be written

TI

minimize _'_,((lk)j - p.i) + + (pi - (uk)j) +
PE_n j=l

s.t. Ap = -c,

where ft+ = max(0,/3). This procedure for tinding a feasible point is similar to the Phase 1

method for finding a, feasible point for a linear 1)rogram, extended to work with nonbasic
points (i.e. with superbasic variables). The difference between the feasibility phase and

the optimality phase is that the gradient of the sum of infeasibilities must be formed in

place of gQe, and the steepest descent search direction is used in place of a search direction
defined in terms of the reduced Hessian II z.

lt is not enough just to lind a feasible point. If tlle working set is change(l in the
feasibility phase it is necessa.ry to modify Hz, since this matrix is required for the Ol)timality
l)hase.

When the working set is modified to include additional bounds, the reduced tlessian

is modified withi_ the feasibility phase. Wheil bounds are deleted from the working set
there are two options worth considering.

Because only the steepest descent direction is used during tile feasibility l)hase, one

strategy is to wait until a feasible 1)oi_lt has been found before exl)anding the reduced
Hessian, should that be necessary. When the workiug set has been modified and has fewer

bounds than at the start of the feasibility l)hase, the new reduced Ilessian may be modified

by appending rows and columns of the identity:

ilz=( llz )I " (3.2.4)

Another strategy is to ul)date Hz = R'rl?. to take into account deletions ft'ore the

working set as they occur in the feasibility l)hase. For this strategy, the updates are the
same a.s those for the optimality phase and may require multiplications with the full H

when the working-set size is reduced. The modifications to Hz are discussed in detail in
Sectioll 3.7.

The feasibility-phase algoT'ithm starts with tolerances b_.gand 6_j a.nd a partition of
A into ( B ,S' N ). Define ns to I)e the number of columns in ,S'. Assume that the

basis factorization B = LU is availal)le, set; Ps. = 0 and PN = 0, and solve LUpo = -c to
determine the initial elements of the sear('h direction.

3.2.3. Early termination of subproblems

The prototype SQP algorithm for NLP (Algorithm 2.3.1) allows the use of only stationary
points rather thall nlinimizers to collstruct a, search direction for the NLP merit function.

As mentioned in Section 1, there are two reasons for early terlnination of the active-set

method. First, it is desiral)le to place a limit on the computational effort made. Second,

when ._:_is a. poor a.1)l)roximatioll to x* (all(! this is the circumstance when many minor
iterations ma.y be required), the effort to till(I a QP minimizer seems unwarranted in light
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Algorithm 3.2.3. (Feasibility phase for LSQP)

while not (converged or infeasible) do

Form _, tile gradient of the sum of infeasibilities.

if II,)11- 0 then

com,ergcd = true
else

lr IIzIbll< % then {Price ,,onbasic variables}

Calculate '11= gu- N TIt.
Select 7lt (71,,), the most ncgative (positive) element of 71correspond-
ing to variables at their lower (upper) bounds.

if ql > -bdj and 7/,,< 6,tj then

infeasible = true

else {Delete a bound from the working set}

Choose q = argmax(qTlt], 71,,).
Add q to the superbasic index set.
Add 71,i as a new element of zTij and increase n s by I.

end if

end if

if not (co,ve,'ged or infeasible) then {Soh,e an EQP}

'(_.5 "dw l_ = -Os.
,S'olve LUps = -,S'IL_.
Calculate a._, the step to th.e nearest bound along p = ( Ph, Ps, 0 ).
Update p = p + a_.
Add the new bound to the working set and decrease n s by I.
Update R and the LU f, ctor._if necessary.

end if

end if

end do

Figure 3. Feasil)ility l)hase algorithm
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of the fact that tile subproblem may I)e a. l)oor model (even locally). Thus, ali early-

termination strategy may reduce the total number of QP iterations required to find a
minimizer for NLP.

There may be a further benefit associated with early termination. The pricing step
requires much computational effort (Procedure 3.2.1) and often constitutes a large per-

centage of overall processing time when the subl)roblem is solved to optimality. Pricing

involves solving with B T (to obtain #) and forming NTIL (to obtain reduced costs 71). The
early-termination strategy only requires solves with B (to obtain the search direction) and
a linesearch. If _ unit step is taken we terminate the solution of the subproblem, since

the resulting 1)oint is a constrained sta, tionary point. Otherwise, a bound is encountered
during the linesearch, the reduced gradient is updated cheaply, and the search direction

is calculated anew in the smaller subspace. This approach requires neither Lagrange mul-

tiplier estimates nor reduced costs! Hence, an important a(Ivantage of early termination

of subproblems is the elimination of pricing during subproblem solution (although it is
necessary to price outside the subl)roblem to determine if the working set should be mod-
ified).

Algorithm 3.2.4. (First-stationary-point algorithm for LSQP)

while not cow,verged do

if lZTgQ_,l <_6,.g then

cow,verged = true

else {Solve a_ EQP}

Solve RTRps = - zT[IQI,.
Solve L UpB = -- Sps.
Calculate a_, the step to the oe,aresl bound along p = ( PB, Ps, 0 )T
Compute o. = rain ( 1, C,'c).
Update p = p + ap.

if el, = rye then {Add a bound to the working .set}

Add the new bound lo the working .set, dec re:ase n.s by 1, and update
1_ and the LU factors if necessary.

end if

Update the reduced gradient.
end if

end do

Figure .4. First stationary point algorithm



32 Lalye-Scalc SQP A lgorith ms

With tile ea.rly-terndnation strategy, w_, have two options for modifying Hz (as in tile

feasibility phase). Upon completion of a major iteration we may decide to price inside or
outside the subl)rol)lem. After completion of the linesearch to reduce the merit function,
the next QP is set up, Lagrange multiplier estimates are then calculated and nonbasic

columns are priced. If the current point is not the minimizer, a decision is made to move

off one or more oi the bounds in the working set.

Pricing outside tile subproblem allows tile reduced Hessian to be updated to reflect the

new sut)erbasic components in a coml)utationally convenient way. The new Hz is obtained

by appending a row and cohlmn of the identity for each new superbasic variable as in
(3.2.4). This avoids products of the form Hz, which can be computationally expensive.

Note that a major difference relative to the algorithm of Prieto [Pri89] is that the prototype
algorithnl does not ca.lc,!a.te an auxiliary search direction once a. stationary point has been
identified.

Algorithm 3.2.4 1)resents a stationary-i)oiat algorithn_ for LSQP that terminates upon
fin(ling the first constrained stationary point encountered during subproblem solution.

The First-statio_utry-point algorithm starts with a feasible point p, a tolerance _,'o, and a
partition of A into ( B S N ). Define 'n,s to be the number of columns in S. Assume

that the QP gradient go.P = g + Hp is available and factorizations are available for the
basis B = LU and the reduced Hessian 1tz = RTR.

3.3. Updating Z

When ,4 is updated during the solution of the subproblem it is necessary to update both
Z and Hz . The ul)dates to the working set come in three forms:

1. A bound is deleted and the corresponding column is added to S.

When we decide to drop one or lnore of the bound constraints from the working set
this l_as the effect of adding one or more columns to the matrix S. The addition of

a superbasic also increases tile number oi' columns of Z. and the dimension of H z.

2. A variable corresponding to a column in S hits a bound.
When a variable corresponding to the q-th column in S encounters a bound, the

varial)le is deleted from S and added to N. Both Z and It z must be updated to
reflect the modification to S. The q-th column of Z is implicitly deleted, and R is

lllodified to reflect deletion of the q-th row a.nd column of tl z.

3. A variable corresponding to a col_imn in B hits a bound.

Whel_ a. variable corresponding to a column iii B encounters a bound the updates

to Hz are more complicated. It is necessary to replace the column from B with a
suita.I)le column from S (one that maintains the nonsingularity of B). Updates to

the LU factors of B are carried out using a method standard to the simplex method

for li,ear programming (see [GMSW87]).

The Ul)(lates to Hz ibr each of these cases are discussed in Section 3.7.



3.4 Continuity of Z 33

3.4. Continuity of Z

Ill order to prove that Algorithm 2.3.1 has a SUl)erlinear rate of convergence, it is necessary
to assume that H z is an adequate approximation to zTwz. Ill Section 2 we assumed that

the gradients and Hessians of F(x) and c(x) exist and are continuous and uniformly
bounded ill llorm on ft. The quasi-Newton scheme for approximating ZTWZ is based on

inherited inforlnation. If zTz is not continuously differentiable in the neighborhood of x*

then the assumption that Hz is a good approximation to zTwz is not reasonable.

Discussion of the continuity of Z was initiated by Coleman and Sorensen [Co1S84],
who showed that a standard method for computing an orthogonal factorization of fi_may

not provide a continuously differentiable Z(x), Gill et al. [GMSSW85] showed how to
compute a continuously differentiable Z using regularized ltouseholder transformations,
a.nd they proved the convergence of both Q and Z under appropriate assumptions.

The difficulties associated with the continuity of Z(x) that arise using orthogona.1
transformations do not arise for the reduced-gradient form of Z, as the following lemma
demonstrates.

Lemma 3.4.1. Let the sequence {xk} be defined by the prototype SQP algorithm with
limit point x*. Let I3 be a ball around a poit_t x* and suppose that the correct active set
has been identified and

A( a:k) = ( Bk ,5'_ Nk )

is a continuously differentiable function of xi,. in 13. Further. suppose that BI,. has rank m
for all xk is_ 13 and the indices defining the columns in Bk are identical for all xk in 13.
Then

Bi,. ,5'j,. Nj,,

1 l 1
B* ,5'* N*

and the null-space basis Z(xk) obtained a.+ the reduced gradient matrix from (3.1.3) has
elements that are continuously differentiable for ali a:k in 13.

Proof. Since Bk has the same indices and the active set is fixed inside B, by definition

of the active set the result A(a:k) -- A* = ( B* 5'* N* ) must follow. In addition,

since A(xk) = ( Bk ,5'k Nj, ) is continuously (lifR,rentiable for a:k in/"_ then Bk also has

these properties. Moreover, since Bi,. is continuously differentiable a.nd has full ra.nk, B_"l
exists and is also continuously differential)le. Finally, the continuity of Z(xk) follows from

the fact that since ,5'k has elements that are continuously differentiable for ali a:k in 13, the

linear transformation B_T1,5'khas continuously differentiable elements for all xk in I¢. II
The fact that B[ 1 is not explicitly coml)uted, but operations with the matrix are done
using the LU factors of Bk, does not iml)act the continuity of Z. Note that in general the

LU factors are not continuously differential)le but B_71 is.

3.5. The QP Hessian and the transformation matrix Q

In our prototype algorithm we recur H z , au approximation to the re(luted l[essian of the

Lagrangian. C,olldition +is of Section 2.3.;1 requires that II, the apl)roximation to W, be
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accurate only in tile null sl)ace of tile rows of A. We are free to define H in ally way

provided

zTIt Z = tl z. (3.5.1)

It is important to note that although (3.5.1) must hold, the matrix product is never
actually foLaed.

When only the redt_eed Hessian is recurred it is not obvious how the QP gradient can

be formed without gree.t expense, since the QP gradient del._nds on H. To form the QP
gradient in the dense case (when H is known explicitly) we wouid simply form

g_ = g + Hp. (3.5.2)

In the large-scale case, H is nol stored and so direct multiplication is not possible. Fortu-

nately, we have considerable freedom in the definition of H while still being able to satisfy

(3.5.1). We shall use this freedom to make the computation of go.Peasy.
In the dense SQP method of NPSOL [GMSW86a], an iml)ortant computational device

has been to work with a transformed ]Iessian approximation QT"HQ = RTR, where Q is

the nonsingular matrix that triangula.rizes the working-set matrix. An analogous device is
essential to the success of our large-scale algorithm. We define the transformation matrix
Q to be

Q-_- (Z(x) Y(x) ), (3.5.3)

where Z a ll(i Y satisfy the following requirements:

• Z is a basis for the null Sl)ace of the active constraints at the current point;

i.e..4( x)Z( x ) = 0;

• Q is nonsingular.

We also detine

oo)QrHQ- o 0 ,
0 0 D_

where Do and DN are nonnegative diagonal ma.trices each having zero elements on its
diagonals corresponding to linear or slack va.riables.

Thus, zTIt) " = 0 a.nd YT"ItY = D, and the gradient for the QP is given by

g_, = g + Q-r(QTtlQ)Q-_p. (3.5.4)

Note that the transformed Hessian approxinlation QTHQ is known and is simple, but

oI)erations with Q-1 (rather than Q) are required to compute g_.. We choose the null-
space basis Z to have the reduced-gradient form (3.1.3) but we have some freedom in
choosing Y. In the next section we discuss various choices for Y. Each choice gives rise

to a different Q-l, which in turn affects the effort required to compute the QP gradient.
The merits of the various choices are then coml)ared.
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3.6. The matrix Y

For each QP subproblem the QP ltessian depends only on ,4o, the working-set matrix at
the start of the QP subproblem. Define

(Bo So No),40 - I " (3.6.1)

The null-space basis for ,40 will be denoted by Z0 and Y for fi_owill be denoted by Y0 with
Q0 = ( Yo Zo ). The definition of ,4 (i.e. B, S, and N), Z, and Y may change during
the solution of the QP subproblem, but the matrix H remains constant. It is therefore

necessary to remember the column indices in ,4o.
In this section we define three possible choices for Yo. In addition to requiring Qo to be

nonsingular we would like Q0 to be well-conditioned and operations with Qo 1 to be cheap.
In the following sections the subscripts on the matrices l'b, Zo, etc. will be dropped (e.g.
Q = Q0); when a matrix corresponds to a. QP iteration other than the initial one it will be

denoted by a subscript for the current iteration count (e.g. B - B(po) and Bk - B(pk)).

3.6.1. I" defined using a partition of I

Lemma 3.6.1. lVhen Y is of the form

(,o)Y= 0 0 , (3.6.2)
0 I

the,_ Q is ,,onsi,_guhvr and

(oIO)Q-' = i B-I,S' 0 . (3.6.a)
0 0 I

Proof. Permutation of the first two blocks of columns ft'ore Q gives

I I = I , (3.6.4)
I I [

which shows that Q is nonsingular. The result for Q-1 may be shown by block premulti-

l)lication of (3.6.3) by Q. II

With this choice of Y the QP gradient becomes

9_ = g + STB-T(p_ + B-l Sps) + llzps . (3.6.5)
PN

The work required to compute go_' consists of nlatrix-vector products with S and 5'7;
a matrix-vector product with lt z, and two solves with the basis (one with B and one with



36 Large-Scale SQP Algorithms

BT). Tile QP gradient can be obtained as follows:

form w = Sps; (3.6.6)

solve Bv = w; (3.6.7)

solve BTu = PB + v; (3.6.8)

form w "- ._'Tlt; (3.6.9)

form q = Hzp.¢; (3.6.10)

form gop = gs + q+ w . (3.6.11)
gN PN

We may simplify the COml)utations (3.6.6)-(3.6.10) when the feasibility phase is ter-
minated without changing the working set. When the initial p is feasible with respect to

its bounds, e(lua.tions (3.6.6)-(3.6.7) can be omitted from the computation.

During the solution of a subproblem the factors LaUk of the basis Ba change as the

working set changes (refer to Procedure 3.2.4, for example). When Y is of the form (3.6.2)
we must maintain a factorization of both B and Bk since the use of Q requires the use of

Bo I . To avoid having to store two separate LU factorizations, one for B and one for Ba, we

couhl obtain Bk froln Ba-I using a classical product-form update [0rc68] {or alternatively

a block-LU update as described in Eldersveld and Saunders [EldSg0]). This would allow
us to perforln operations with both B a.nd Bk with no increase in storage over that for just
Bk. However, difficulty arises if the number of updates to B becomes large. Normally, Bk
is refactorized every 50-150 minor iterations. Thus, if the QP solution process caused B

to ulldel'go Ina.ny updates it wouhl stil] be necessary to store two factorizations.

3.6.2. An orthogonal Y

Following the lead established by using the orthogonal TQ factorization for the dense case,

we can choose Y to satisfy ZTY - 0. Unlike the Y obtailmd from the TQ factorization
we shall not require Y:/_ = I. This choice ensures that Q is nonsingular if Y has full

column rank. We would also exl)ect Q to be similarly conditioned to Z provided Y is also
similarly conditioned to Z.

There are many possible choices for an orthogonal Y. An obvious choice is A T but

such a choice does not give a COlnputationa]ly convenient fm'nx for Q-l. A convenient
choice is I)resented in the following lemma.

Lemma 3.6.2. H/hen Y is of the Jbrm

(,o)Y= sTB -r 0 , (3.6.12)
0 I

then Y" is orthogonol to Z and Q is nousinguhw, with

( -STB-TD C' 0 )

Q-_= n B-'SC 0 , (3.6.13)
0 0 I

T," lwhere C = ([ + STB -TB-1S) -l = (Z Z)- and D = (I T B-1SSTB-T) -1 = (y7_,,)-1
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Proof, Tile result that Z_" = O follows easily ft'ore tile definition of Y a.nd Z. Permu-

tation of Q a.s iii (3.6.4) yields

,SlI ,.,¢TB-T I = STB -r I . (3.6.14)
I I I

Performing block elimination on the right-hand side of (3.6.14) reduces the permuted Q
to

SrB-TB-1S , (3.6.15)
I

which is nonsingular since SrB-TB -1S is positive definite, tlence Q is nonsingular. The
result for Q-1 may be shown by block l)remultiplication of (3.6.13) by Q. I

Clearly, using Q-1 directly to obtain the QP gradient does not look promising. Using
(3.6.13) to form matrix-vector products with Q-1 would require separate Cholesky factor-
izations of both zTz and yTy. While we would expect zTz to be small for the problems

addressed in this report, the same cannot be said for Y?_'. Tlm following lemma shows
the precise form of (yTy)-l.

Lemma 3.6.3. When Y is of the fomn (3.6.12), (yTy)-l has the form

(yTy)-I _ (I - B-15'CSTB-T), (3.6.16)

where C --- (I 4- STB-TB-1S)-I - (zTz) -1 .

Proof. The result may be verified by forming yTy from (3.6.12) and multiplying the
result into the right-hand side of (3.6.16). II

Use of (3.6.16) allows us to provide a more convenient form of Q-1 that does not
require a factorization of yTy.

Lemma 3.6.4. When Y is of the form (3.6.12), Q-1 has the fomn

-C,S'TB -T C 0 )

Q-I = I- B -_SCSTB -T B -_SC 0 , (3.6.17)
0 0 I

where C -- (I 4- STB-TB-1S) -1 - (zTz) -1 .

Proof, The result for Q-1 arises by the substitution of (3.6.16)into (3.6.13). II
The result of Lemma 3.6.4 allows us to compute the subl)roblem gradient without

maintaining a Cholesky factorization of yTy. To compute gQv requires four matrix-vector
l)roducts with ,S'or S T, four solves with B or B T, two solves with C -I _--_zTz and one

product with Hz:

solve BTu , = I)B; (3.6.18)

form . = ,S'Tw; (3.6.19)
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solve (zTZ)y = Ps- u; (3.6.20)

form w = Sy; (3.6.21)

solve By = w; (3.6.22)

solve BTw = P,9+ v; (3.6.23)

form u = STw; (3.6.24)

form t = Hzy; (3.6.25)

solve (zTz)r = t + u; (3.6.26)

form w = Sr; (3.6.27)

solve Bq = w. (3.6.28)

The SUbl)roblenl gradient may then be written

(.)(,..,)g_ = gs + 7' . (3.6.29)
gN ])N

As when Y has the form (3.6.2), Q-1 is defined in terms of Bo 1. Hence, this form of Y
requires two separate factorizations of the ha.sis matrices within the subproblem, one for
the initial basis B0 and one for the current basis B_,..

3.6.3. Y defined using B -1

A choice for Y that leads to a very siml)le and computationally efficient form for Q-l is
given in the following lemma.

Lemma 3.6.5. When Y is of the form

(,o)Y = 0 0 , (3.6.30)
0 I

Q is nonsi,).gular, and

(o o)Q-S= B S 0 . (3.6.31)
0 0 I

3)
Proof. I ermutation of Q as in (3.6.4) yields

I I = I , (3.6.32)
I I I

which is nonsingular since B is. Hence Q is nonsingular. The result for Q-I may be shown
by block premultiplication of (3.6.31) by Q. |
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Tile form of Q-l allows us to compute tile QP gradient easily. By definition,

00)= g+Q-r 0 I 0 Q-'v (a.6.33)
0 0 I

Ps

To compute g_ requires three matrix-vector products, one with IIz, one with ( B S ),
and one with its tra.nspose:

,v: ,
u = llzps, (3.6.36)

v = ST w. (3.6.37)

Since Hz is small by compa.rison to ( B S ), the ma.in effort is in computing w and v.
We then have

gQv = gs + Vs + u .
gN P^,

It is importa.nt to note that Q-1 is defined in terms of B0 not Bo 1. Operations with
Q-1 require multiplica.tions with/3'o. This is easily accomplished by keeping track of the
indices of the columns fi'om A tha.t make up B0. ltence, a benefit of this choice of Y is

that opera.tions with Q-1 do not require two sepa.rate factorizations of the basis ma.trices,

in contrast to the previous two choices of Y.

From a. computational standl)oint, if we restrict ourselves to 1)ricing only after the

feasibility pha.se of the QP subproblem, the QP gradiel_t ca.n often be computed with
about half the effort of the above method. This is because the matrix-vector product Iv in

(3.6.35) ca.n be rewritten as w = -(ck - _j,.) when the initial p is feasible with respect to
the bounds (as is usually the ca.se in the la.ter stages as we near optima.lity). In the event

that the initial p is not feasible, w may be calculated as w = -(ck - sk) - NpN. This is

often chea.per tha.ll (3.6.35) because PN is exi)ected to contain few nonzero elements.

3.6.4. A comparison of the three choices of Y

We summa.rize the presenta.tion of the three choices of Y by highlighting the computa-
tiona,l effort required to compute the QP gradient. The first column of Table 1 gives the

specific choice of Y. The remaining columns represent the number of operations (solves

or products) with the matrices B, S, Hz , and ZTZ respectively, lt may I)e seen that the
first a.nd third choices are simila.r in their computationa.l cost. The orthogonal choice of

Y requires a.bout twice the effort a.nd a, second Cholesky factoriza.tion. Its main benefit

is that the resulting Q may be better conditioned than with the other two choices. A
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Form of Y B mult. 13 solve S mu lt. Hz mult. zTz solve

Identity 2 2 1 "
Orthogonal 4 4 1 2
Inverse B 2 2 1

Table 1. Matrix products and solves ,'equired to compute goP for various choices of Y.

vi,'tue of tile last choice of Y is that no additional factorization is required. Moreover,

multiplications with B are likely to require less effort thatn solves with B, since the LU
factors of B contain at least as many nonzero elements as in B itself, lt is this definition

of Y that is used for the computational tests of Section 5.

3.7. Updating the reduced Hessian

Changes in the working set cause cha.nges to Z in the following situations:

1. A bound is deleted from the working set and added to S.

2. A variable corresponding to a column in S hits a bound.

3. A variable corresponding to a column in B hits a bound.

These changes to Z in turn cause cha.nges to the reduced Hessian II z. To ease computation
only the Cholesky factor of the reduced Hessian is recurred (instead of H z). This section

describes how the Cholesky factorization Hz = RTR may be ma.intained. The updates to

R are the same as in MINOS [MurS78] except in the first case, where the new column of
R is not open to choice.

3.7.1. Updates to H z arising from deletion of a bound

When a new variable is added to the superbasic set, the reduced-gradient form of Z is

u,,a.ltered except for gaining a new column: ,_ : ( Z z ). The new ,'educed Hessian is
),

given by

( ZTtlZ ZTHz ) (3.7.1)[Iz = ZTH Z = zTII Z zTH z "

Let /_ denote the new Cholesky factor. It follows from (3.7.1) that

R= (R 6r)" (3.7.2)

||ence,/_ can be obtained by the following operations:

form w = Hz; (3.7.3)

form v = gTw; (3.7.4)

solve RTr = v; (3.7.5)

form 6 = x/CT,,,-II,.ll2. (3.7.6)
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Since [Iz is positive definite,/f is well defined.

3.7.2. Consequences of an early change of subspace

Ill our discussion of Section 3.2 we assumed that the minimizer would be found on the

current subspace before pricing. This is not always practical (for some of the same reasons
that lead us to consider ali early-termination strategy for subproblems). Optimization

algorithms such as MINOS may terminate the minimization on a subspace when the norm

of the reduced gradient is smaller than a dynamic tolerance. As in the case of early
termination, this may help to avoid unnecessary computation when far from the ol)timal

active set. Unfortunately, if Hz is expanded as iu (3.7.1) there is no guarantee that the
search direction resulting ft'ore the solution of the Newton equations will provide a feasible

descent direction for the QP iteration. This assertion is reflected in Lemma 3.7.1.

Lemma 3.7.1. If tt Lagrauge multiplier estimate arisi_g duris_g the QP subproblem is
used to delete a eol_stsnil_t ft'ore the work il_g _et, the seatrh directiort arisiltg front the

solution of the Newto_ equatimzs

[tT[tpz -- -- 2Tgc_ (3.7.7)

may uot be a feasible descent directiou for the QP subproblc'm, un.less zTgQp = 0 beJbre the
coustlnint is deleted.

Proof. The proof is given in [GilM79]. II
Despite this result it may still be worth pricing before finding a minimizer. In the

event that the search direction is not a feasible direction of descent we can simply revert

to minimizing on the current (smaller)sul)sl)ace.

The use of multiple pricing, i.e. choosing lnore than one variable to become superbasic,

causes greater difficulty, since it is a combinatorial problem to identify the subset of
variables that l)revent the search direction from I)eing feasible. This problem does not

arise in MINOS since the expanded Cholesky factor of the reduced Hessian becomes

/ . (3.7.8)

Clearly, the .ew search direction is a,lwas's feasible with respect to the bounds on the

new superbasic variables. A strategy of expa.,diug the reduced llessian using (3.7.8)is

acceptal)le for the ol)timality-l)hase a lgorithlll when the Ul)date is l)erforme(I outside the

subproblem. The strategy is unaccel)table iusi(le the subproblem since the relation

[_TR_ ZTH2 (3.7.9)

would no longer hold. The result of this discrel)aucy is that if a un;t step is taken in the

QP then in general 2Tg_ _ 0 (as woul(I be the case if equation (3.7.9)held). Siuce the
reduced Hessian approximation defines the full QP Ilessian, when (3.7.9)is violated we

are no longer solving the "correct" sui)l)rol)leJu. When this occurs it is necessary to either
modify the definition of the QP tlessiall to satisfy (3.7.9) or introduce new liuesearch

criteria and termina.tiol_ con(litiol_s for IIi(, slll)l)rol)leul to ('llSUl'e that the resulliug search
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direction is a descent direction for tlm merit function. Iii tile computational tests of

Section 5, a conservative strategy was adopted and the subsl)ace was not changed until

the norm of the retluced gradient (for the subproblem) was quite small. To be precise,
minimization on the subspace was continued in the subproblem until

IIzTa,II -<vqlll'll ,

where _ is machine precision.

3.7.3. Updates to Hz arising from changes to S

If tlle q-th superbasic variable hits a bound, the new null-space matrix is obtained by

removing the the q-th column from S. The new C,holesky factor is ul)dated by applying
plane rot a.tiolis to R followed by the removal of its q-th row and column (see [GGMS74]).

3.7.4. Updates to H z arising from changes to B

If a variable corresponding to the p-th column in B hits a bound, the updating is performed

in two stages. First, the basis is updated by replacing the p-th column in B with the q-th
column ft'ore S, where q is chosen to keel) B well-conditioned. (The procedure requires a
solve with BT.) Finally, we delete the chosen column from S a.s described in Section 3.7.3.

Let /) denote the new basis and 2, tile corresl)onding null-sl)ace matrix. We shall show
that 2 has the form

PZ = ZM, (3.7.10)

where P is a permutation matrix and M is a ra.nk-one modification of the identity. This

expression for 2 enables the Cholesky factor of 2rH2 to be, determined easily ft'ore that
of ZTtl Z.

Let a denote the p-th column of B, and suppose it is exchallged with s, the q-th column

of S. Also, let BTr = ep and 0 = rTs. As in [MurS78], q is chosen by first forming y = STr

and to some extent lnaximizing the "l)ivot element" y,j = 0 = rTs. We have a = Bep, and
the up(lated basis/} is given by

= B + (_- a)el"l,'= (I + (s-a)rT)B, (3.7.11)

so that

[_-t = B-1(I _ ¢(_ _ a)rT), (3.7.12)

where 4) = 1/0. The change in S (before deleting the q-th colulnn) is

,_'= S- (s - a)e_'. (3.7.13)

Lemma 3.7.2. H/hen the basis has been updated as in (3.7.11) and (3.7.13), then 2 is
of the form P2 = ZM, where

M = I + eqVT and v = --¢(,5'Tr -I-eq). (3.7.14)
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Proof, Define 2 = ZM. The top m × ns subnmtrix of 2 after swapping the q-th column
of 8 with the p-th column of B is

[1-1_ = B-l(l - dp(s - a)rT)(S- (s - a)e T)

= (B-' - dpB-'(s - a),'T)(S - se_'+ aeVq)

= B-"S - OB-' + - +

( ) =)= B-1S I-_eq(rrS+e_) +d_e_,(rTS+eq

= B -ISM-e_v r.

Clearly, the result is satisfied for all rows except the p-th:

T--1 T_ V T%B ,_ = -%

which should be ev after the update. To make the update complete we swap the p-th row

with the (m + q)-th row (which is eT), using the permutation matrix

Pp,m+q = (el ... ep-1 em+q ep+l ... _m+_l-I ev era+q+1 ... e,n+n_,). (3.7.15)

Premultiplication of 2 by Pp,m+q gives

( )T) (3.7.16)Pp,m+qZ = Pv,m+q = Z I- (/>eq(rTs' + eq .
0

T The lower ns × n s portion of 2 isThe permuted update satisfies efz = %.

[ - eq 0 ' (3.7.17)

which is the identity matrix except that the q-th row which is the p-th row of _/_-1 g,.
Finally, 2 is constructed to have one less column than Z by having its q-th column removed
and its (m + q)-th row zeroed out and l)ermuted to the bottom. 1

3.7.5. Updating the Cholesky factor of Hz

The changes to Z must be reflected in updates to the Cholesky factor of H z. We have

[1z = MTtlzM = (R T+ vuT)(R + uvT), (3.7.18)

where u = Req is the q-th column of R and v = -_h(sTr+ eq). The updated factor R is
obtained by reducing R + uv T to upper triangular form with two partial sweeps of plane
rotations as in [GGMS74, MurS78]. Finally, because a SUl)erbasic column was used to
replace a column from B, the number of superbasic varial)les is reduced, and a row and

column are removed from ii z (and its C.holesky factor) as described in Section 3.7.3.



Chapter 4

The Quasi-Newton Update to the
Reduced Hessian

III the prototype algorithm, we assume that tile QP Hessian H approximates W, the
llessian of the Lagrangian. The relationship between W and H and computational details

of updating approximations to the reduced Hessian of the Lagrangian are the concerns of
this section.

4.1. Introduction

Quasi-Newton methods are "Newton-like" algorithms in which the Hessian (or classically,

its inverse) is replaced by an approximation. The approximation is obtained by using the
known curvature along the directions of search. Most quasi-Newton methods are based on

a formula from the one-parameter family of updates introduced by Broyden [Bro67], for
unconstra.ined optimization. Define ¢ E [0, 1], s = ,_- x and y = _-g. The one-parameter
family of Broyden updates is then

Ii = H H ssTH yyT
sTlfs + _-t- Cww T (4.1.1)

where

'to = (s Hs)_ yTs s_'-ffs • (4.1.2)

The choice of the factor ¢ = 1 gives the classical DFP formula, while the choice of ¢ = 0
gives the BFGS formula. At least in one sense, the choice of ¢ is not critical. Dixon

[Dix72a, Dix72b] showed that when the iterates are chosen to satisfy

Hp = -g, (4.1.3)

._ = x + ¢_1_, (4.1.4)

where t_ is the step that minimizes F(a) = F(x + ap), the Broyden updates generate
identical iterates independent of the choice of ¢.

Despite this result, the performance of quasi-Newton methods does depend signifi-

cantly on the choice of ¢ because it is inefficient in practice to perform accurate line-

4,1
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searches. Moreover, even the effort to perform the linesearch depends on ¢. For un-

constrained problems, ¢ = 0 (the BFGS update) has been shown to be a good choice
[GMP72].

Recently there has been considerable interest ill the ra.nk-one update (see [KBS90] and
[CCTgl]). Because our interest is iii exploring the difference_ between our large-scale SQP
approach (using only an reduced Hessian approximation) and NPSOL, we did not wish to

make use of a different update. We have opted to use the BFGS ul)d_te since this is the
one used in NPSOL.

4.1.1. The BFGS update

The pedagogical form of the BFGS update for unconstrained optimization is given by

[I = H I1 ssTtl yyT
sT"Its + y'--_s" (4.1.5)

If H is positive definite, the new al)l)roximation/_ is positive definite if and only if yTs > O.

For unconstrained optimization, we can always ensure yT_ > 0 by choosing appropriate

termination conditions for the linesearch (see [GMSW79]). For nonlinearly constrained
optimization, however, yTs > 0 is no longer assured.

4.2. Quasi-Newton updates for NLP

A number of authors have proposed SQP algorithms for NLP using H as a quasi-Newton

approximation to W. This idea, is credited to Murray who proposed it in [Mur69]. It
has been used with success by others (see [llan76], [Pow83], or [GMSW86b] for example).
Complications arise because of the constraints; for example:

1. The BFGS update as well as many quasi-Newton approximation methods are depen-

dent on the approximation H being positive definite, yet it is not necessary (nor is
it expected) that the exact ]tessian W be positive definite, even at the solution.

2. Both W and H require estimates of the Lagrange multipliers, which themselves are
nonlinear functions of x.

3. We can no longer ensure that yTs > O.

In addition to these difficulties, large-scale SQP methods that approximate the full Hessian

of the Lagrangian may be computationally intractable since the Broyden updates do not

preserve the sparsity of the true l-[essian. While the true tlessian may be quite sparse,
its approximation using (4.1.1) is almost always completely dense. Thus, as problem size
grows, the storage and effort required to perform the update may become enormous.

In the case of unconstrained optimization, atteml)ts have been made to exploit spar-
sity in quasi-Newton methods for problems whose ][essian has a known sparsity pattern.

Unfortunately, results for these methods have not been promising (see [Tha83] and [ShaS0]
for examl)le).

To preserve sparsity a.nd still satisfy the quasi-Newton condition (see Section 4.2.2) a

sigaificant amount of time may be required to perform the liaear algebra defining a suitable
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sparse update. III addition, a positive-definite /1 cannot be guaranteed and superlinear

convergence is not iii general achieved.

To preserve sparsity and still satisfy positive definiteness in/I, it is possible to construct

a.n update iii which the fill-in (according to the sparsity pattern of the true Hessian) is
ignored. Unfortunately, satisfaction of the quasi-Newton condition cannot be guaranteed

and SUl)erlinear convergence is not in gene_ ! achieved.

Recently, Nickle and Tolle [NicT89] have attempted to use sparsity-exploiting quasi-

Newton updates within an SQP method for constrained problems. They use the BFGS up-
date for the approximation to the full Hessian of the Lagrangian and maintain a. Cholesky

factorization of the approximation that ignores the fill-in associated with the standard
update. In their implementation, they do not enforce quasi-Newton condition. The suc-

cess of this api)roach for large-scale NLP ha._ not been verified as the method has only
been tested on small problems (the largest problem in their test set having 60 variables,
40 linear constraints and 10 llonlinear constraints).

4.2.1. An approximation to the reduced Hessian

The poor l)erformance of late of sparsity-exploitillg methods for approximating the fidl
Hessian leads us to explore alternatives for large-scale NLP.

Consider the use of a quasi-Newton al)proximation to the reduced Hessian Z'I'wz.

This al)proach for NLP, proposed by Murray and Wright [MurW78], takes advantage

of the property that z*Tw*z * is positive semidefinite. This result combined with the

computational expense of approximating ali of W makes it unreasonable to use a positive-
definite al)l)roximation to W for large-scale l)roblems.

As discussed in Section 2, to ensure two-step superlinear convergence of the prototype
algorithm we have assumed that our a.pproximation to the Hessian is accurate on the null

space of the active constraints. Specifically, we assume the approximation to the reduced
Hessian satisfies

IIZ[(H - l'Uk)Zk    ll= o(llPkll), (4.2.1)

where l'Vk denotes the Hessian of the Lagrangiall at xk. Although (4.2.1) cannot be verified
computationally, our goal is to appro.,:imate this condition by using a positive-definite

a.pproximation to the reduced Hessian at the initial point, followed by a quasi-Newton
Ul)(iate to the approxilnation at the end of each major iteration. The update must satisfy

the following minimal requirements:

• The new reduced Hessian approximation,/tz = 2Tri2, must be positive definite.

• The "reduced" qua.si-Newton condition must be satisfied (see next section).

In addition, there may be special cases to I)e considered. For example, when ali of the NLP

constraints are linear, Lagrange lnultiplier estimates are not required to update the Hessian
approximation. This is not generally the case for nonlinearly constrained problems but

curiously, one form of the BFGS update for the reduced Hessian does not require Lagrange
multiplier estimates, which clearly circumvents any difficulties arising from such estimates

I)eing poor. The precise form of the Ul)dates are discussed in the following sections.



4.2 Quasi-Newton updates for NLP 47

4.2.2. The quasi-Newton condition

III the unconstrained case, the quasi-Newton condition may be written as

Hs = y, (4.2.2)

where s = .f-x and y = 9-g. Likewise, for the linearly constrained case, the quasi-Newton
condition for the reduced Hessian is

Hzsz = Yz, (4.2.3)

where sz = zT(_- x) aud Yz = zT(ft - g). Note that no additional gradients are necessary
to compute Yz.

It can be shown that the reduced llessian obtained in the linearly constrained case is

identical to the matrix obtained by ul)dating the full matrix and then forming the l'educ-
tion. Unfortunately, this property is no longer true for the case of nonlinear constraints.

The difference is due to the fact that the step s taken is not of the form s = Z_ z. It is no

longer clear what the definition of sz and Yz should be. An approach adopted by Coleman

and Conn [Co1C84] is to solve Hz,sz = -ZTg, eva lua.te g(.z' + Zsz) and then form the
"correct" y corresponding to this intermediate step. This requires an additional gradient

evaluation per iteration. Other candidates for s and y include

s = zT(._'--x), or (4.2.4)

s = 2T(._-- x), or (4.2.5)

8 : zT_ -- zTx, and (4.2.6)

y = Z'Ii})-ATA-g), or (4.2.7)

y = 2T(0 -- :J+ ATA), or (4.2.8)

y = 2"Ii0-ZTg. (4.2.9)

The inotiva,_ionforthesechoicesfor_ arestraightforward.Fory,notethat(4.2.7)-(4.2.8)

are t ransforma.tions of YL = VxL(2, A) - _.L(x, A) under either Z or Z. Equation (4.2.9)

presents a practical choice of y that does not need multiplier estimates. An additional

candidate for s is analogous to the one in MINOS [MurS87], namely

s = o'p._, (4.2.10)

where a is the steplength from the linesearch (which is used each minor iteration to reduce
the augmented La,grangiall objective). For the prototype SQP algorithm, (_ is taken as
the steplength from the merit function linesearch (1)erformed each major iteration). The
motivation for this choice of s arises from the la,ct that when the correct active set has been

identified, each QP sul)problem is solved in a single iteratioll. The superbasic COml)onent

of the search direction is found I)y solving

llzl _. = -ZTg_,, (4.2.11)

where g_ --, 9 a.s p -, 0 near the solution. Prior to tile COml)utational tests described in
Section 5 each of these cases for y an(l _ was tested. A (leci._ion based on the tests was
then made to use (4.2.10) for s and (4.2.9) for y.
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Because NLP is an inequality constrained problem, tile number of superbasic variables
usually changes between major iterations. Thus, Zk and Zk+l (and hence Hz and/lz) may
not be tile same size. It would seem that s and y may not be well defined. Fortunately,
this is not a difficulty. During the solution of the QP subproblem the basis Bk, the reduced

Hessian Hz and the index set of superbasic variables are updated each minor iteration.
As a result the set of superbasics and the size of the reduced Hessian are the same at

the completion of the last major iteration as at the start of the next major iteration.

The quasi-Newton update takes place at the start of the new major iteration and can be
completed without excessive expense. Tile key idea. is to ensure that the reduced gradient
ZTg used in the update co:responds to the Z at the end of the last major iteration.

4.3. Modifications to the BFGS update

At times it may not be possible to use the standard BFGS update for the reduced Hessian

without encountering numerical difficulties. Subsequent sections discuss modifications to
the BFGS update for the following cases:

• When yTs (_ O.

• When Ilsll is "small".

• When yTs > 0 but yTs is "small".

4.3.1. When //Ts _<0

Normally, when yZs < 0 it is necessary to skip the BFGS update to avoid indefiniteness or

singularity in the new approximation. One modification of the BFGS update for the full
Hessian is due to Powell [Pow78a] and attenlpts to perform the update under conditions

when yTs < 0. Let ,1E [0, 1]. The Powell modification defines the new approximation as

H s.sTlI dd T

I71- II .sTHs + :-T-_, (4.3_I)sd

' where d - Oy + (1 - O)Hs and

1 if yTs > rlsTHs, 4.3.28 =_ ( 1 - 71)sTtIs/( ,_TIIs - yTs) otherwise.
( )

This modification ensures that/I is positive definite an_,i the determinant of/t is no less

than _/times the determinant of H. For coml)utational purposes, Powell sets 71= 0.2.
The priorities are different when ul)da.tin_)i an al)proximation to the reduced Hessian.

lt may be that the search direction lies (almo.,.t) entirely in the range space of ft,. In such

circumstances there is no point in updating Hz (since there is no new information). This

idea is reinforced by the results of Coleman and Fenyes ([ColF88], page 11, Corollary 3.6),
who give updates for approximations to zTwz and zTwy and show there instances when

yTs <_ 0 leads to updating oMy the approximation to yTHy (while skipping the update
of zTIIZ). For this reason the Powell update was not adopted and updates were skipped

when yTs (_ O.
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4.3.2. When Ilsll is small

A further problem with the standard BFGS update arises when Ilsll<<Ilyll.If this occurs,

the modification of Powell (4.3.1)-(4.3.2) may not help. To see wily, note that it is possible
to construct examples where 11811<< IlYlland yTs >> srHs. Hence, the update using (4.3.2)

may make tile new//nearly singular.
As discussed in [Gur87], the method of Coleman and Conn [Co1C84] may be interpreted

as a method that prevents these difficulties when Ilsllis small. They define an intermediate
point _, = z + Zpz, obtained by first solving Hzp z = -ZT9 . They use the standard BFGS
update (4.1.5) with an orthogonal Z and with s and y defined as

s = zT(_-- z') (4.3.3)

= --Hz-' ZTg, (4.3.4)

y -- zT(E.L(.i',A) - VxL(x,A)) (4.3.5)

-- zT(li-ziVA)-ZTg, (4.3.6)

whichensuresthatlist]isnot too much smallerthan []Y]I.Using thismethod theywere
ableto provetwo-stepsuperlinearconvergenceof an SQP algorithm.As pointedout in

Section4.2.2,thisapproachrequiresan ad(litionalsetofgradientevaluations.

Nocedaland Overton[NocO85]haveusedan alternativestrategythatdoesnotrequire
extra gradients. Their method is based on skipl)ing the ul)date when Ilsil is small relative

to a range-space projection of (._:- x). They (lefine v = yT($ _ x) and perform the update
(4.1.5) only if

Ilvll< (w/(k + 1)'+")llsll, (4.3.7)

where w and v are positive constants and k corresponds to the current iteration. The

authors show two-step superlinear convergence of an SQP algorithm under various con-
ditions. For their computational tests they used w = 1 and u = 0.01. This strategy was

not adopted for the implementation of the prototype SQP algorithm. Instead, we use a
self-scaled update, as described next.

4.3.3. The self-sealed BFGS update

When yTs is "small" we could skip the update to l)revent the updated a pproxin, atica from

being close to singularity. This is not an ideal strategy since some change in the curvature

of the Lagrangian generally takes l)lace. To avoid skipl)ing the update we may employ the

self.scaled quasi-Newton ulMate [OreTl]. This is exactly the same as the standard BFGS
update except that the current apl)roximatioJl is scaled I)y a dynamic factor 7'

H ssTH yyT
Irl = -lH - 7 sTHs + --_., (4.3.8)ys

As describe(l in Brodlie [Bro77], the self-scaled update exhibits the property of a mono-
tonically decreasing condition number for H provided the scaling fa.ctor 7 is chosen to
satisfy

,_ Y_ yTlI-'y

7 =/,_+(1-/3) y---'_s ' (4.3.9)
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for/J E [0, 1]. If _ = 1 then 7 = yTsl svtls. With this choice of 7, (4.3.8) has the property

of correcting the curvature along s before performing the update as well as after the update:

sT(TH)s = (yTs/sTtls)sTIts = yTs and (4.3.10)
srlls = yTs. (4.3.11)

Other choices for ¢ and 7 have been studied by Brodlie [Bro77] to maintain well-conditioned

approximations to tile Hessian. Oren and Spedicato [OreS76] study different choices for
¢ and 7 and give optimal choices that minimize a sharp bound on the condition number

of tile inverse Hessian approximation at each iteration. For the computational tests de-

scribed in Section 5 we use the standard BFGS method (4.1.5) for the reduced Hessian
when

yTp >_(1- ,])pTtlp, (4.3.12)

where y and s are defined by (4.2.9) and (4.2.I0) respectively, and 7}is a linesearch para.m-
eter (typically 7]= 0.9). When (4.3.12)is not satisfied but yTs is positive, the self-scaled
BFGS update (4.3.8) is performed with 7 = YTs/sTtls.

4.3.4. Updating the Cholesky factors of the reduced Hessian

In classical implementations of quasi-Newton methods, the inverse approximation H -1

was updated at each iteration. Although convenient, this technique may create serious
numerical difficulties. For example, due to rounding error in just one iteration, ali subse-

quent approximations to the inverse Hessian may be indefinite. Unfortunately, it in not

generally possible to determine if the approximation is singular or indefinite by a simple
examination of the matrix itself.

In the prototype algorithm the system of equatiolls Hzp z = -ZTg must be solved to
determine the superbasic search direction. A reliable and convenient approach is based

on using the Cholesky factors of Hz, as developed by Gill and Murray [GilM72] for un-

constrained optimization. The method has the advantage of being able to detect easily a
singular or indefinite approximation to the Hessian. In addition, there is no penalty for

maintaining an approxilnation to the Hessian rather than its inverse. Let H z = RTR. To
obtain the search direction we solve RTw = -ZTg and Rpz = w using forward and back
substitution.

For the computational tests of Section 5 we have implemented the prototype algorithm
using updates to the Cholesky factors of the reduced ltessian. As described in Dennis and

Schnabel [DenS83] for unconstrained Ol)timization , the update to It z (4.1.5) is a rank-two
modificatioli to RTR, reflected in a rank-one update to R itself:

= R + (erRs)(y - e._Hzs)T
yTs , (4.3.1.3)

where

i yTs (4.3.14)a, _-- .sT/Iz.s.

The factor [_ is returned to upper triangular form using plane rotations as described in
[GGMST J].
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4.3.5. The update for self-scaled factors

When the self-scaled BFGS update (4.3.8) is used, the update to the Cholesky factors has
the form

(aRs)(y - _71Hzs) T (4.3.15)
= 7lR+ yTs ,

where 71= _ and _ is given by (4.3.14).



Chapter 5

Computational Results

III this chapter numerical results obtained from a sparsity-exploiting implementation of

the prototype SQP algorithm (Algorithm 2.3.1) are given. The testG consist of solving
two sets of test problems using the new algorithm and comparing the results with those of

MINOS and NPSOL. The first set of problems are froln the literature and are all dense and
relatively small. The second set of prol)lems are sparse optimal control problems. The

purpose of the testing is to demonstrate the large-scale SQP algorithm's strengths and
weaknesses.

5.1. Inlplementation

The implementation, hereafter referred to as LSSQP, has been written as a major modifi-

cation of the mathematical programming system MINOS. For a description of MINOS see

[MurS78, MurS82] and [MurS87].

Many features and modules of the Fortl'ali code in MINOS were used in LSSQP, includ-
ing:

• MPS data handling and hashing routines. These routines are used to read in the

data corresI)onding to constrahit rows and columns, coefficients for linear constraints

(if any), right-hand side values for constraints, and bounds and initial values for the
varialfies.

• Basis-handling routines for factorizing and updating the LU factors of the basis B

(routines fi'om the LUSOL package as described in [GMSW87]).

• The pricing routine used to calculate reduced costs for nonbasic variables.

• The linear search routine used to calculate the step to the nearest bound in the QP

subproblem.

• The nonlinear search routine used to find a steplength _ that sufficiently reduces

the augmented Lagrangian merit function.

• Routines for updating the Cholesky factors of the reduced tiessian following changes

in the working set.

52
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Because LSSQP and MINOS share many of tile same routines, tile differences iii tile com-

putational performance of the two methods are due to the basic ai)preach. Tile main
features of LSSQP and senle of the differences between SQP methods (LSSQP and NPSOL)

and MINOS are discussed iii the following sections.

5.1.1. Form of tile subproblem

For problems with nonlinear constraints, MINOS uses a sequential linearly constrained
(SLC) method and evaluates the functions and gradients during each minor iteration.
NPSOL and LSSQP solve quadratic programming subproblems (which have the same lin-

earized constraints) but evaluate noldinear functions and gradients only after termination
of a subproblem (as part of each major iteration).

SLC and SQP methods deal with the constraint linearizations tile same way. The

subproblelns differ in their objective functions. In general, evaluating a QP objective

should be less expensive than evaluating a general nonlinear objective. This should give
an advantage to an SQP method over a Lagrangian method. However, for some simple

problems this advantage may be negated by the expense of evaluating the QP gradient.
For SQP methods, most of the expense associated with the QP gradient comes from the

matrix-vector multiplication with the QP llessian (i.e. forming Hp). While NPSOL recurs

an approximation to tile full Hessian of the Lagrangian (so the matrix-vector product is
straightforward), LSSQP maintains an approximation on a subspace and therefore requires

a more complex approach to obtain the full QP gradient (see Section 3.5).

Since the subproblem solved in MINOS has a general nonlinear objective, one hypoth-
esis is that the number of iterations required to solve a subl)roblem is likely to be greater
than the number required by NPSOL or LSSQP.

5.1.2. Quasi-Newton updates

In MINOS, the gradient of the objective is evaluated each minor iteration. With this
information available, a quasi-Newton ul)date to the reduced ]tessian is performed each
minor iteration. In SQP methods, the gradient of the objective is evaluated before the
beginning of a major iteration. As a result, a quasi-Newton update to the reduced Hessian
is performed only once per major iteration. With fewer opportunities to update tile
reduced ]lessian, a hypothesis is tha.t LSSQP and NPSOL may require more major iterations

than MINOS. As already noted, we may expect SQP methods to require fewer minor
iterations pev major iteration than methods such a.s MINOS, but it is not clear which

approach is likely to require fewer total minor iterations.

5.1.3. Basis refactorization

Tile initialization of a major iteration consists of setting up the subproblem to be solved.
Part of this process involves linearization of the nonlinear constraints (if any). A basis B
is then formed and factorized. The culnulat.ive effort to factorize tile basis at the start of

each Ina.jor iteration may constitute a. large I)(_rcenlage of the overall exl>enso of solving
NLP. Because of this, metho<ls requiring f(,w lotal tllinor il.(,ratiolls may not i)e efficient if

they require many major iterations.
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SQP ,nethods such as LSSQP should p,'ove to l)e more efficient on large sparse problems

if tile average effort to factorize the basis (for each subproblem) is small compared to the
average effort to eva.luate functions and gradients during solution of the subproblem.

5.1.4. Termination conditions

I,et 8opt be an optimality tolerance and _fea be the feasibility tolerance for nonlinear
constraints (typically, 8opt = 10-6 and 8fea = 10-6) . Let p be the search direction obtained
from the last QP subproblem. In all, five criteria must be satisfied if a point x is to be
considered optimal for NLP:

allpll -<  opt (1 + Ilxll), (5.1.1)

II(c- s)ll <  fea, (5.1.2)
IIZTgll , <  op,.(1+ IFI), (5.1.3)

sign(uj - xj),lj > -6opt (1 + max(Ifl,llgNIl_), j nonbasic, (5.1.4)

sign(xi- lj),lj < +6opt (1 + naax(IFl,llg,,ll ), j nonbasic, (5.1.5)

where 9 is the gradient of F, gu is the subproblem gradient of the nonbasic variables and

7Ii -- (gQp)j -- 7rTaj.
The termination conditions (5.1.1)-(5.1.3} are similar to those in NPSOL [GMSW865].

Conditions (5.1,4}-(5.1.5) are evaluated only at fea.sible points for the subproblem and

corresl)on(l to having no nonbasic variable with a nonoptimal Lagrange multiplier (of a sig-

nificant magnitude). This condition is tested as a by-product of pricing (Procedure 3.2.1).
If a minimizer has been reached on the current subspace and the pricing procedure finds
no nonbasic variable with a suitable reduced cost, the current p is a solution for the sub-

problem. Note that when a subproblem is termina.ted early, these conditions will not be

satisfied. Also, a. dynamic tolerance (which is gradually reduced to (_opt) is optionally
used to check for optimal multipliers. Early subproblems ma.y therefore be solved to only
moderate accuracy. Termination condition {5.1.3) (lifters from (5.1.4)-(5.1.5) in that it

checks whether the norm of the reduced gradient for NLP is small enough.

For the exI)erimental results we defined the optimality tolerance _opt = 10-6 for all
problems unless specified in the "Comment" section of Tables 7 and 8. The termination

conditions for MINOS are described in [MurS87]. In general, ali methods (NPSOL, MINOS,
a.n(! LSSQP) ol)tained solutions to similar accuracy on all test problems solved. On many

problems the convergence is fast, so that small differences in the accuracy of the methods

are not significant.

5.1.5. Testing Environments

Section 5.3 gives numerical results for 92 test l)roblems described in Section 5.2. These

l)roblems are sorted into two test sets. The first set, (of smaller problems) was tested using
Lqull)ment Corl)oration VAXstation II with 9 megabytes of main memory. Thea Digital _" '

ol)erating system was VAX/VMS version 5.0. Ali Fortran files were compiled under VAX
FOI_TRAN version 5.2-015 using the default options, including code optimization.

The second set (of larger problems) was tested using a Digital Equipment Corporation

DECstatmn 3100 with 24 megabytes of main memory. The operating system was Ultrix
version 4.1. Fortran files were coral)ileal under full optimization for these tests.
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5.2. Test problems

The test problems used in this section come ft'ore a variety of applications. There are two
test problem sets described next.

5.2.1. The small test problems

The first set of test problems consists of 80 small l)rol)lems (n _< 100), whose names and

statistics are given iii Tables 7 and 8.
The first three columns give the problem number, I)roblem name and comments such

as the type of application, author, or alternative name of the test problem. (:'.omnmnts

may also allude to a different starting point froln one given in the literature or special
features of the MINOS options file. Columns 4-7 give the number of variables for the

prol)lem, tile number of linear constraints, and tile number of llonlinear constraints. The
final column gives the optimal (published) objective value.

Unless noted in the Comment section, the Jacobian for these problems is treated ill
a dense manner by MINOS and LSSQP. (NPSOL treats all problems as dense.) Likewise,

unless noted, the initial starting points for the l)rol)lems are the ones given in the published
references.

These l)roblems have been used to test the mathematical programming code NPSOL

[GMSW86a] and many are considered to 1)e difficult to solve. Several of the l)roblems do
not satisfy the assumptions in Section 2 that were used in the proof of convergence for

the prototype algorithm. For example, iii some cases the Jacobian at the solution has less
than full row rank. Other problems do not satisfy the strict complementarity conditions

or have infeasible subproblems. The test i)rol)ielns from the small set are taken from the

following sou rces:

• Problem 1 is the saml)le test prol)l(ml distributed with NPSOL. It is described iii

[GMSW86a].

• Problelns 2, 6-9, 39-41 and 45-79 have the prefix HS'. They correspond to the same

miml)ered problems from Hock and Schittkowski [11ocS81]. The upper bound for x3

iii probleln number 52 (HS 70) was changed from 1.0 to 0.9999, a.s otherwise MINOS
would evaluate tile objective a.t a. singularity. The modification does not change tile

optilnal solution.

• Prol)lems 3 and 10 have tile prefix K,_q'.They correspond to the same numbered

problems ft'ore Schittkowski [Sch87].

• Problems 4-5 and 16 are described in [MurS_2]. Problems 4--5 correspond to tile
l)rol)lems Wright No. ,[ and Wright No. 9. The starting points for these two l)roblems
are ft'ore point (d) of tile reference.

• Proi)lems 11-15, 17, 32-38, 42-44 and 80 are from Prieto [Pri89]. Prol)lem 36 is
solved again as l)roblem 37 with an alterna.te starting point of x0 = (0.097, 0.063).

• Problems 18-21 are from Fraley [Fra,_8].

• Prol)lems 22-31 are from Boggs and Tolle [BogT8,t].
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It should be noted that tile functions and gradients for tile small problems are usually

very cheap to evaluate. Many of the problems have been chosen to be test problems

for precisely this reason, but historically it has been assumed that tlm emcielicy of an
algorithm is measured by the number of function and gradient evaluations required to
fi,d a minilnizer. We will be concerned with these measures of efficiency as well as others
such as total CPU time required to solve the test set.

Many of the small test problems have multiple local minilnizers. As shown in Tables 9-

16, different lnethods (NPSOL, MINOS or LSSQP) may converge to different minimizers.
Fourteen of the small test prol)lelns contain only linear constraints: problems 10, 12-

14, 24, 43-44, 47-49, 61, 76-77 and 80. On such problems MINOS requires only a single
major iteration. This is not true for the SQP lnethods. The differences between the

approaches arise from the fact that the reduced Hessian approximation is updated each

minor iteration for MINOS and each major iteration for SQP methods. Thus, MINOS

generally has more opl)ortunities to perform the update. As a result, we would expect the
l)erformance of NPSOL and LSSQP to be similar on these linearly constrained l)roblems
(I)ut to (lifter ft'ore that of MINOS).

5.2.2. Run-time parameters: Small test set

In MINOS, NPSOL and LSSQP the SPECS or ol)tions file sets various run-time l)arameters

that desc,'ibe the nature of the problem to be solved a.nd the quality of the solution to be
obtained. The ol)tions file lnUSt begin with the keyword "SF.QIN".Each subsequent line of

the Ol)tions file contains one or more keywords and an associated va.lue. For example, the
line

Nonlinear Constraints 14

sl)ecifies that the probleln has 14 nonlinear constraints. The last lille of the options file is

signifie(l with the keyword "END".A full descril)tion of the MINOS a.nd NPSOL options can

be found in [MurS87] and [GMSW86a] resl)ectively. The LSSQP solver maJntail_s the use
of all MINOS options as well as a few others, such as whether or not to use self-scaling for
the BFGS update to the reduced liessian. Except where noted in the Commtnt section

of Tables 7--8, a uniform set of options was used for all runs. An example of the MINOS

ol)tions file (for l)roblem nulnber 1) is given in Figure 1.
Problems 1-3 used the "Jacobian Sparse" option. Problems 4-80 used the '_Jacobia.n Dense"

ol)tion, l)roblelns with more than 10 variables used a SPECS file that increased the major
iterations limit to 300 and the total minor iterations lilnit to 1000. All other pa.rameters

were set to their defa.ult ol)tions, l;br the rulls with NPSOL the default options were used

(see [Pri89]).

5.2.3. The large test problems

The large test problems come from a,class of al)plications known as trajectory optimization.

Ali were generated using the system OTIS Ilia.rP87], and their specifications are given in
qh.ble 1. A descril)tion of these sl)arse ol)timal control problems and their mathelnatical

l)rogramming formulation is given in the Apl)endix. It is important to note that the OTIS
function routines ccmpute first (ieriva.tives by finite differences. Advantage is taken of the
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BEGIN Hexagon (Sparse version)

Problem Number I
Nonlinear Constraints 14
Nonlinear Variables 9

Iterations 300

Major Iterations 50
Print Level 0

Jacobian Sparse

END Hexagon

Figure 1. Sample SPECS file for small test I)rol)lems

sparsity pattern of the Jacobian, but this is partly why the function/gradient evaluations
are expensive. Also, the truncation error iii the gradients makes it difficult to confirm

"optimality" unless t_opt as raised to about 10-4.

No. P,'oblem Comme,lt u Lcon. Ncon. F( x* )
1 F4 Min-time climb 6 Nodes 112 8 126 1.0280052864e+00
2 F4 Min-time climb 7 Nodes 130 8 150 1.0030551461e+00
3 F4 Min-time climb 8 Nodes 148 8 174 9.9471482986e-01
4 F4 Min-time climb 9 Nodes 166 8 198 9.9011108551e-01
5 F4 Min-time climb 10 Nodes 184 8 222 9.8758647160e-01
6 F4 Min-time climb 11 Nodes _' ').0. 8 246 9.8531969486e-01
7 F4 Min-time climb 12 Nodes 9,),.0 8 270 9.8519559525e-01
8 F4 Min-time climb 14 Nodes 256 8 318 9.8490191159e-01
9 F4 Min-time climb 15 Nodes 274 8 342 9,8347245192e-01

10 F4 Min-time climb NP 6 Nodes 112 8 104 1.0018209554e+00
11 F4 Min-time climb NP 15 Nodes 274 8 284 9.8165983233e-01

12 VTOL Descent 435 24 483 - 1.6825846298e+00

Table 1. Large problem statistics.

5.2.4. Minimum time-to-climb problems

The first 9 large test problems are for a mi_imum time-to-climb problem [Bry69] for an
F4 Phantom II SUl)ersonic intercel)tor. The aim is to find the pitch fllnction to take the

aircraft ft'ore sea, level and Mach 0.34 to an altitu(le of 20 km (_ 65,617 ft) and Mach 1.0
ill minimum time. The I)roblems differ in the number of distinct time segnlenl, s or nodes

used to (lefine the l)roblem. The number of .odes varies from 6 to 15. In general, as the

number of nodes increases, the model becomes lnore accurate and the ol)timal objective
decreases but the l)roblem becomes more difficult to solve.

Problems 10-11 correspond to the F,I nii.in lure time-to-climb problem in which the

pressure constraint has been omitted from the l)roblem formulation. Although the ,umber
of constraints is fewer, the problem al)l)ears to be more difficult to solve.
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Problem 12 is tile the VTOL Descent problem, which finds the optimal descent trajec-

tory for a vertical take-off and landing aircraft.

5.2.5. Run-time parameters: Large test set

Most of the standard MINOS run-time options were used. Special options for the large
problems were contained iii a single options file used for ali large runs using either MINOS,
NPSOL or LSSQP a.s the solver. The MINOS options file for these runs is given in Figure 2.

BEGIN OTIS (Trajectory Problems)

Major Iterations 500
Minor Iterations 200
Iterations I0000

Linesearch Tolerance 0.5

Row Tolerance I.OE-05
Function Precision I.OE-IO

Optimality Tolerance I.OE-04
Feasibility Tolerance I.OE-05

Verify Level -I
Print Level 0
Hessian Dimension 50

Partial Price 1

Crash Option I

Jacobian Sparse
Solution No

END OTIS

Figure 2. SPECS file for large test problems

When LSSQP was run with early termination of the subl)roblems, the parameters

Optlevel Partial

Multiple Price 5

were added to the MINOS optionsfile.These optionswere not includedin the MINOS
rlllIS

on tilesmalltestsetor usedintheNPSOL runs.The statement"Optlevel Partial" invokes

theearly-terminationstrategyand haltsthesolutionofthesubproblemafterfindingthe

firststationarypoint(i.e.when IIZTgQe[I<_(_opt).Invoking"MultiplePrice5" allowsmore
tha.none nonbasicvariableto be deletedfrom the workingsetduringa singleminor

iteration,ltishoped thatthiswillpreventtheprototypealgorithmfrom expendingtoo
many minoriterationson a nOnol)timalworkingset.
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5.3. Numerical results

III this section we compare the results ft'ore LSSQP with NPSOL [GMSW86a] (version

4.05) and MINOS [MurS87] (version 5.3). The purpose of the tests is to demonstrate
the efficiency of the new algorithm for large sparse nonlinear optimization and show the

following:

• The lnethod is a practical alternative to the (lense SQP method of NPSOL for large

sparse problems.

• The method is a practical alternative to the Lagrangian method of tlm MINOS system
for problems with functioas and gradients that are expensive to compute.

Numerical result for the small test set are summarized in Table 2. Complete results for

all test problems are given in Tables 3-16. The descriptive headings for the columns in the
tables correspond to problem number and name, major iteration count, minor iteration
count, total function evaluations, final objective value, maxilnum constraint violation

(MINOS and LSSQP only), and solution time in C.PU seconds. The final status of the
solver is given in the last column of the tables. The notation is as follows:

Opt: An optimal solution was found (MINOS, NPSOL_ LSSQP).

Fail: The algorithln failed to find an Ol)l_ima,lsolution (NPSOL).

Itr: The solver reached the limit on total major or minor iterations for the problem (MI-

NOS, LSSQP).

Cbi: The final point did not satisfy the termination conditions but couhl not be ilnproved
upon (I_IINOS, LSSQP).

Note that "function eva,luation" means computation of both the objective and constraint

functions and their gradients.

5.3.1. Results for the small test set

Four runs were lnade on the small test set,. One run each was made using MINOS (Tables 9

and 10) and NPSOL (Tables 11 and 12), and two runs were performed using the prototype

algorithm LSSQP. The LSSQP runs differed only in whether the subproblems were solved
to completion (Tables 13 and 14) or the early-termination strategy was used (Tables 15
and 16).

A compa,risoll of the runs using LSSQP, NPSOL and MINOS on the small test set is
summarized in Table 2. The column hea(lings entitled MINOS and NPSOL are self-

explanatory. LSSQP-O gives results for I,SSQP in which QP subproblems were solved
to optimality and LSSQP-E gives results |br LSSQP when subproblems were terminated

early.

Each of the three methods were sinlilarly robust. The first three terminated success-

fully on 76 of the 80 problems. For ali solved 1)roblems, NPSOL required the fewest function
evaluations (1642 and 797 CPU seconds). MINOS required significantly more function eval-

uations (5876) but the least time (560 CP[I seconds). I,SSQP-O required 265_ function



60 Large-Scale SQP tilgorithms

Algorithm MINOS NPSOL LSSQP-O LSSQP-E

Problems attempted 80 80 80 80
No. Ol)timal 76 76 76 67

Total major iterations 646 1142 1493 1339
Total minor iterations 2477 2067 2802 2086
Total function evals. 5876 1642 2658 2489

Total Time 559.96 797.12 753.97 944.42
,,,

Table 2. Sumnlary of small test problem results.

evaluations and 754 CPU seconds, while LSSQP-E (with tile early-termination strategy)
solved only (}7 of the test problems and required 2489 function evaluations and 944 CPU
seconds.

Note that two of our hypotheses of Section 5.1 are borne out by tile results on the
small test problems. MINOS required the fewest major iterations by about 2:1 over NPSOL

and LSSQP. In addition, MINOS required more minor iterations per major iteration, while
the total number of minor iterations was similar for all methods.

While the number of function evaluations is a salient measure of tile efficiency of tile

methods tested, coml)utational efficiency may also be lneasured by total solution time.

NPSOL provided the fastest solution time for 48 out of the 80 problems, while MINOS
proved to be fastest for 21 of the 80. The two LSSQP tests were fastest on only 11

problems. Note that tile overall time for the 80 l)roblems is somewhat misleading since
two of the problems, namely numbers 11 and 80 (OPF 30 BUS and Weapon), required a

disproportionate amount of solution time for ali four methods. Deleting these problems
gives the overall timing results as: NPSOL: 208 seconds, MINOS: 336 seconds, LSSQP-O:

399 seconds. LSSQP-E required 365 seconds to solve 65 of the 80 problems to optimality.

On the 14 l)roblems with only linear constraints, MINOS required 1334 function evalu-
ations and 133 CPU seconds, while NPSOL required 248 filnctions and 171 CPU seconds.

LSSQP-O (LSSQP-E) required 392 (4 l l) functions and 233 (223) seconds. MINOS required
the fewest CPU seconds to find a miuimizer for 8, NPSOL for 4 and LSSQP for 2 of the 14

proi)lems.

As yet, the early-termination Ol)tion is not as robust as solving the sul)problems to

optimality. This could be due to the fact that ouly the stationary point ft'ore the QP
sul)l)roblem is used for the merit function (i.e. the method does not use an auxiliary

search direction as does Prieto [Pri89], who provi(led more encouragillg results using this
strategy in a modification of NI)SOL).

5.3.2. Results for the large test set

The large set (problems 81-92) were solved using MINOS, NZSOL and LSSQP. NZSOL

is a version of NPSOL in which the QP sul)i)rol)lenlS are solved using QPSOL [GMSW83]

instead of I,SSOL [GHMSW86]. Like NPSOL, NZSOI, is a dense SQP method, but has been
modified to maintain a factorizatioli of the reduced Hessian zTttz instead of the full (and

dense) transformation QTtlQ. Hence, NZSOL is expected to outperform NPSOL on large



5.3 Numerical results 61

No. Problem Itns. LC It. Funs. F(x* ) Time Star.
81 F4 6 Node 12 307 540 1.0280054062e+00 644.98 Opt
82 F4 7 Node 17 637 1245 1.0099320805e+00 1769.14 Opt
83 F4 8 Node 21 792 1511 9.9609431692e-01 2490.31 Opt
84 F4 9 Node 20 1200 3046 9.9011118247e-01 5660.29 Opt

Table 3. Large Problem Results: MINOS version 5.3.

No. P,'oblem ltns. QP lt. Funs. F(x*) Tinle Star.
81 F4 6 Node 18 64 31 1.029382e+00 175.11 Opt
82 F4 7 Node 19 58 29 1.003055e+00 263.37 Opt
83 F4 8 Node 21 94 39 9.960943e-01 431.41 Opt
84 F4 9 Node 19 95 32 9.901111e-01 530.23 Opt
85 F4 10 Node 21 127 37 9.875875e-01 844.71 Opt
86 F4 11 Node 27 80 33 9.863111e-01 1264.22 Opt
87 F4 12 Node 28 85 34 9.851976e-01 1748.94 Opt
88 F4 14 Node 25 78 30 9.849011e-01 2383.98 Opt
89 F4 15 Node 26 1(18 31 9.834741e-01 3154.55 Opt
90 F4-NP 6 Node 2'2 40 30 1.001819e+00 18i.'18 Opt
91 F4-NP 15 Node 33 65 38 9.695897e-01 3858.89 Opt
92 VTOL Descent 20 1"59 25 -1.683044e-00 10351.63 i Opt

Table 4. Large Pr()l)lem Results: NZSOL

problelns with few degrees of fi'eedom.

Results for MINOS and NZSOL are given in Tables 3 and 4. Results for LSSQP-O and
LSSQP-E are given in Tables 5 and 6.

The results of the tests on these larger problems show that LSSQP-O is very competi-

tive with MINOS and NZSOL. NZSOL required the fewest function evaluations and major
and minor iterations than either MINOS or LSSQP-O on all the test problems. LSSQP-O
required many fewer function evalua.tions and exhibited faster solution times than MINOS.

In addition, LSSQP-O was very competitive with NZSOL wilh respect to solution time.

One of the major differences between LSSQP-O and NZSOL is in the number of function

evaluations and major and minor iterations required to solve the problems to the specified

accuracy. For example, LSSQP required three to thirty times as many functions as NZSOL.

One reason for this could be the differences in the form of the quasi-Newton update.
Another reason could be the form of the null-sl)ace basis Z.

I_ should be noted that extensive tests using LSSQP on the large test problems indicate
that it does not have the same level of robustness offered by NZSOL. Modification of one
or more of the run-time parameters may lead to significantly slower solution times. One

method for increasing the robustness of !,SSQP would be to lno(lify the linesearch routines

to account for the lack of precision in the gradients of these problems. The tests rel)orted
in this section used a 'function plus gra(lie,t' lillesearch even though the gradients for these

large l)rol)lems are ol)tained by difrerenci,g. Preliminary tests have shown that a 'function
only' linesearch may produce a more roi)ust (and efficient) version of I,SSQP. More tests

are required to determine the exact cause of the large difrer(,l_ces in performance between
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No. Problem Itns. QP It. Funs. F(x* ) Time Stat.
81 F4 6 Node 40 373 82 1.0280052864e+00 104.27 Opt
82 F4 7 Node 42 455 97 1.0030551461e+00 151.83 Opt
83 F4 8 Node 36 382 70 9.9471482986e-01 126.03 Opt
84 F4 9 Node 40 394 91 9.9011108551e-01 160.97 Opt
85 F4 10 Node 76 1139 221 9.8758697042e-01 506.04 Opt
86 F4 11 Node 85 1249 254 9.8531899149e-01 645.75 Opt
87 F4 12 Node 150 2770 532 9.8519559525e-01 1536.22 Opt

88 F4 14 No le 182 2831 794 9.8490191159e-01 2563.11 Opt ....
89 F4 15 Node 246 5067 996 9.8347245192e-01 3901.23 Opt
90 F4-NP 6 Node 63 255 212 1.0018209554e+00 232.15 Opt
91 F4-NP 15 Node 281 4906 1196 9.8165983233e-01 4793.97 Opt

92 VTOL Descent 105 1857 320 - 1.6825846298e-00 2363.40 Opt

Table 5. Large Problem Results: (LSSQP-O) Full completion.

No. Problem ltns. QP lt. Funs. F(r* ) Time Stat.
81 F4 6 Node 64 279 144 1.0280054023e+00 187.85 Opt
82 F4 7 Node 44 204 94 1.0030551798e+00 143.22 Opt
83 F4 8 Node 143 452 143 9.9471483247e-01 544.59 Opt
84 F4 9 Node 85 393 235 9.9011120191e-01 455.78 Opt
85 F4 10 Node 143 888 494 9.8758760121e-01 1063.13 Opt
86 F4 11 Node 102 625 325 9.8531969486e-01 786.71 Opt
87 F4 12 Node ?63 1418 804 9.8519638914e-01 2166.77 Opt

Table 6. Large Problem Results: (LSSQP-E) Early termination.

NZSOL and LSSQP.

For tile largest problem in tile test set, tile VTOL Descent problem, the value of sparse-

matrix operations becomes very clear. Even though NZSOL requires a twelfth of the (very

expensive) function evalutions, the total CPU time is more than four times that of LSSQP.

The results from MINOS show that the method requires many fllnction evaluations,

which results in a substantial increase in the solution times compared to NZSOL and

LSSQP-O. As the I)roblem size increases, the solution times grow rapidly. For this rea-

son MINOS was tested on only the four smallest F4 Minimum time-to-climb problems

(problems 81-84).

The performance of MINOS on these problems is somewhat anomalous. We see that

the hypothesis that MINOS takes fewer major iterations still holds, but the number of

minor iterations per major iteration relative to those required by NZSOL and LSSQP is

significantly more than for the small test problems. The computation of the constraints

and gradients for these problems are very expensive (see the Appendix). Since MINOS

must eva lua.te the constraints and gradients many times to solve each subproblem it can-

not match the SQP methods, which only evaluate functions and gradients after each

subproblem (requiring fewer total filnction evaluations).

As with the small test set, the early-termination strategy did not perform as well as
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the full-optimization strategy. LSSQP-E was tested on tile first 6 problems in tile large test
set and required 60% more CPU than LSSQP-O. It also required more major iterations

and function evahlations but fewer minor iterations than LSSQP-O. LSSQP-E required
more solution time on ali but the 7-node problem over that required by LSSQP-O. It is

important to note that the QP iterations on these optimal control problems are relatively

cheap compared to function and gradient eva lutions. Since the early-termination strategy
is designed to reduce the number of QP iterations required, it is not expected to impact
the solution of problems such as these. Still, it is encouraging that the early-termination

algorithm (even with its acknowledged deficiencies) proved to be robust on the set of

large test problems. Moreover, it did achieve a reduction ill the number of QP iterations
required to find a minimizer. More testing is needed on large-scale problems for which the
QP iterations are similar in cost to flinction evaluations.

5.3.3. A final note on computational results

There are several criteria that should I)e used to measure the efficiency of an algorithm.
Two important measures are speed (measured ill CPU tilne required for solution) a.nd the

storage required by all data structures used by the algorithm. LSSQP is similar to MINOS
in this [ast respect, its data structures being almost identical. Because of their sparse-

matrix technology, both of these metho(is have an adva.ntage over NPSOL (or NZSOL) on
large problems whose Jacobian is sparse.

Sparse-matrix technology does not give an advantage to eithec MINOS or LSSQP over

NPSOL for problems in the small test set. llowever, because the function and gradient
evaluations are relatively cheap for these problems, the CPU time is highly correlated with

the number of basis factorizations required to find a minilnizer (a.t least for the larger of
the small test l)roblems).

For the trajectory optimization l)rol)lems, if sparse-matrix methods are employed the

computational cost of solving the l)rol)lem is (lominated by the cost of function and gradi-
ent evaluations. For these problems the salient measure of efficiency is time. For MINOS

and the two variants of LSSQP, the solution time is highly correlated with the number

of function evalutions required. As the prol)lems grow iii size, the cost of the dense TQ

factorization required within NZSOL increasingly impacts the solution time. As a result,
LSSQP exhil)its a growing advantage in time over NZSOL. This is clearly shown by the

results. The worst relative performance for NZSOL is for the largest prol)lem.

5.4. Conclusions

We have proposed a new algorithm for the solution of large-scale nonlinear l)rogramming

problems. Our api)roach differs sul)stantially from previous methods because the QP
subl)rol)lems are solved using sparse techniques and we al)l)roximate only the reduced

Hessian of tlm Lagrangian. The theoretical convergence properties of the new method are
the same as for dense implementations that al)l)roximate only tile reduced x,_._sian of the

Lagrangian. Based on the preliminary numerical test results for tile algorithm, there is

every reason to expect that the algorithm will prove useful in l)ractice for many large-scale
prol)lems in which the nonlinear functioJl and ('onstraints are computationally exl)ensive
to evaluate.
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5.4.1. Future work

Many modifications could be made to the prototype SQP algorithm. Some possibilities
follow:

1. Use of a "limited size" quasi-Newtm_ approximation to the reduced Hessian. In

this strategy, an approximation to a pseudo reduced Hessian of a fixed size (e.g. of
dimension 200) would be updated at each iteration. This would include the reduced

llessian for the current superbasic variables as well as for other pseudo superbasic
variables. The latter would be a subset of the remaining nonbasic variables and

could be identified as those variables that would be expected to be superbasic or
had "recently" been superbasic (but were not currently). This would allow curvature

information associated with these variables to be maintained throughout the solution
process and may lead to faster convergence. An observed feature of LSSQP and

NZSOL on large problems is that the number of QP iterations does not always
decrease to 1 in a neighborhood of the solution but is usually some small number.

Variables on a bound with small reduced costs may enter and leave the superbasic
set. The proposed modifica,tion would prevent the curvature for these variable from
being lost.

2. Use of second derivatives in the solution of subproblems. In general, we would expect

to obtain faster rates of convergence (i.e. quadratic versus two-step superlinear) at
the expense of a more complicated algorithm. With exact second derivatives it would

be necessary to have a more complex iinesearch as well as a method for maintaining
a positive-definite reduced tlessian and routines for obtaining directions of negative

curvature (see [Pri89] for exami)le).

3. Use of single-phase subproblems. Such a method would incorporate a merit function

within the subproblem itself, and should perform well on large-scale problems that
require a large number of minor iterations in order to obtain a feasible point for the

subproblem. Such a modification would also allow for infeasible subproblems.

4. Use of the present algorithm at a lower level. Part of the large-scale SQP algorithm

in this report is an algorithm to solve a QP based on the provision of a reduced

llessian. Such an algorithm could be used to solve tlle subproblems in MINOS. It
would have three levels of iteration. At the lowest level, function and gradients would

not be required. At the internlediate level, subproblems would be solved with the use
of an augmented Lagrangian objective function (as is done now with MINOS). The

top level corresponds to a major iteration and makes use of a merit function and a

linesearch. We expect that such an algorithm would improve upon tile performance
of MINOS on problems for which the functions were expensive. It may be expected

to do better than the algorithm described here on problems for which the function
eva.luations, although expensive, did not overwhelm the total computa.tiona,1 effort.
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No. Problem Comment n Lcon. Ncon. F( x* )

1 Hexagon Sparse version 9 4 14 -1.349963e+00
2 }IS 108 Sparse version 9 0 13 -8.660254e-01
3 KS 372 Sparse version 9 0 12 1.339009e+04
4 MHW 4 Margaret. Wright 5 0 3 2.787187e+01
5 MHW 9 Margaret, Wright 5 0 3 -4.247468e+01
6 HS 14 2 1 1 1.393465e+00

7 HS 26 _opt = l0 -s 3 0 1 0.O00000e+00
8 HS 43 Rosen-Suzuki 4 0 3 -4.400000e+01
9 HS 65 3 0 1 9.535289e-01

10 KS 231 2 2 0 0.000000e+00
11 OPF 30 BUS 67 0 60 9.720420e-01

12 QP problem 7 7 0 -1.847785e+06
13 LC7 7 7 0 9.295973e+05

14 Norway 7 6 0 -2.402344e+01
15 Singular 2 0 2 0.000000e+00

16 Alan Manne Economic growth 30 10 10 -2.670099e+00
17 Steinke2 6op, = 10 -_ 6 0 4 4.000131e-04
18 Square root 1 9 0 9 2.500000e+03
19 Square root 2 9 0 9 2.999795e+00
20 Square root 3 9 0 9 2.000000e+00
21 Square root 4 4 0 4 2.500000e+01
22 Boggs-Tolle 1 2 0 1 - 1.000000e+00
23 Boggs-Tolle 2 3 0 1 3.256820e-02
24 Boggs-Tolle 3 5 3 0 4.093023e+00
25 Boggs-Tolle 4 3 1 1 -4.551055e-03
26 Boggs-Tolle 5 HS 63 3 1 1 9.577426e+02
27 Boggs-Tolle 6 IlS 77 5 0 2 2.415051e-01
28 Boggs-Tolle 7 5 0 3 3.065000e+02
29 Boggs-Tolle 8 5 0 2 1.000000e+00
30 Boggs-Tolle 9 tlS 39 4 0 2 -1.000000e+00
31 Boggs-Tolle 10 2 0 2 -1.000000e+00
32 Boggs-Tolle 11 HS 79 5 0 3 9.171343e-02
33 Boggs-Tolle 12 5 0 3 6.188119e+00

34 Powell triangles 7 0 5 2.331371e+01
35 Powell badly scaled 2 0 1 3.586574e-03
36 Powell wriggle 2 0 2 -1.911618e-16
37 Powell wriggle x0 = (0.097, 0.11163) 2 0 2 -1.911618e-16
38 Powell-Maratos 2 0 1 -1.000000e+00

39 }IS 72 bop, = 10 -4 4 0 2 7.266794e+02
40 ItS 73 Cattle feed 4 2 1 2.989438e+01

Table 7. Small l)roblem sta,tistics (1-40).
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No. Problem Gomment n Lcon. Ncon. F ( x* )
41 HS 107 9 0 6 5.05501 le+03
42 Mukai-Polak 6 0 2 5.000000e+00

43 Penaltyl a 50 1 0 4.313635e-02
44 Penaltyl c 50 1 0 4.313635e-02
45 HS 32 3 1 1 1.000000e+00
46 HS 46 5 0 2 0.000000e+00
47 HS 51 5 3 0 0.000000e+00
48 HS 52 5 3 0 5.326648e+00
49 HS 53 5 3 0 4.093023e+00
50 HS 13 2 0 1 1.000000e+00
51 HS 64 3 0 1 6.299842e+03
52 HS 70 4 0 1 7.498464e-03

53 HS 71 4 0 2 1.701402e+01
54 HS 74 4 2 3 5.126498e+03
55 HS 75 4 2 3 5.174413e+03
56 HS 78 5 0 3 -2.919700e+00
57 tlS 80 5 0 3 5.394985e-02
58 HS 81 5 0 3 5.394985e-02

59 HS 84 5 0 3 -5.329025e+06

60 HS 85 6opt = 10 -s 5 0 38 -1.905134e+00
61 HS 86 Colville No. 1 5 10 0 -3.234868e+01

62 HS 93 Transformer design 6 0 2 1.350760e+02
63 HS 95 6 0 4 1.561953e-02
64 HS 96 6 0 4 1.561953e-02

65 HS 97 6 0 4 3.135809e+00
66 HS 98 6 0 4 3.135809e+00
67 HS 99 7 0 2 -8.310799e+08
68 HS 100 7 0 4 6.806301e+02

69 HS 104 Reactor design 8 0 5 3.951163e+00
70 HS 109 9 1 8 5.362f169e+03
71 HS 111 10 0 3 -4.776109e+01

72 ItS 112 Chemical equilibriunl 10 3 0 -4.776109e+01
73 HS 113 Wong No. 2 10 3 5 2.430621e+01
74 [IS 114 Alkylation process 10 5 6 -1.768807e+03
75 ilS 117 Colville No. 2, Shell dual 15 0 5 3.234867e+03

76 ItS 118 LC problem 15 17 0 6.648204e+02
77 HS 119 Colville No. 7 16 8 0 2.448997e+02
78 HS 83 Dembo No. 2 5 0 6 1.012243e+0,t
79 HS 106 Dembo No. 5 8 3 3 7.049331e+04

80 Weapon assignment 100 12 0 -1.735019e+03

Table 8. Sma,ll l)rol)lem statistics (41-80).
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No. Problem ltns. LC It. Funs. F(x*) viol. Time Star.
1 Hexagon 9 59 126 -1.349963e+00 1.03e-13 6.87 Opt
2 HS 108 9 50 104 -8.660254e-01 2.94e-14 4,90 Opt
3 KS 372 12 40 84 1.339009e+04 1.73e-10 5.13 Opt
4 MHW 4 6 13 31 2.787187e+01 7.93e-12 1.14 Opt
5 MHW 9 19 37 130 -4.247468e+01 2.47e-13 3.95 Opt
6 HS 14 7 3 17 1.393465e+00 0.00e+00 ,55 Opt
7 HS 26 16 76 194 1.808355e- 12 3,96e-06 4.13 Opt
8 HS 43 15 56 117 -4.4D0000e+01 2.22e-16 3,67 Opt
9 HS 65 7 14 39 9.535289e-01 2.67e-15 .97 Opt

10 KS 231 1 5 13 1.449526e-25 0.00e+00 .27 Opt
11 OPF 30 BUS 8 127 197 9.720420e-01 5.33e-15 185,17 Opt
12 QP problem 1 10 18 - 1.847785e+06 0.00e+00 ,57 Opt
13 LC7 1 9 12 9.295973e+05 0.00e+00 .47 Opt
14 Norway 1 6 8 -4.086420e+00 0.00e+00 .39 Opt 1
15 Singular 18 1 20 0.000000e+00 1.16e-10 1,13 Opt
16 Alan Manne 4 20 36 -2.670099e+00 2.31e-10 4.10 Opt
17 Steinke2 ....... Itr

18 Square root 1 5 '2 9 2.500000e+03 9.71e-16 .75 Opt
19 Square root 2 27 0 29 3.000000e+00 1,42e-14 3.54 Opt
20 Square root 3 5 4 14 2,000000e+00 5.43e-10 .85 Opt
21 Square root 4 21 0 23 2.500000e+03 2.78e-17 1,67 Opt
22 Boggs-Tolle 1 17 21 67 - 1.000000e+00 4.12e-12 1,72 Opt
23 Boggs-Tolle 2 8 20 66 3.256820e-02 4.00e-15 1.19 Opt
24 Boggs-Tolle 3 1 3 10 4,093023e+00 0.00e+00 .24 Opt
25 Boggs-Tolle 4 7 6 18 -7.317428e+01 1.78e-15 .71 Opt
26 Boggs-Tolle 5 ...... Itr
27 Boggs-Tolle 6 15 49 121 2.415051e-01 4.44e-16 3.19 Opt
28 Boggs-Tolle 7 4 3 12 3.603798e+02 2.00e- 12 .43 Opt
29 Boggs-Tolle 8 12 2 16 1.000000e-F00 2.38e-07 .87 Opt
30 Boggs-Tolle 9 11 21 54 - 1.000000e+00 1.39e-13 1.65 Opt
31 Boggs-Tolle 10 8 1 1"2 - 1.U[|0000eq-00 2.78e-17 .59 Opt
32 Boggs-Tolle 11 9 19 52 9.171343e-02 2.03e-11 1.67 Opt
33 BoggvTolle 12 19 75 191 6.188119e+00 1,42e-14 4.92 Opt
34 Powell triangles 11 34 82 2.331371e+01 2.22e-16 3.37 Opt
35 Powell bad scale 6 4 19 1.146177e-12 1,17e- 12 .54 Opt
36 Powell wriggle Sl 5 7 25 1.061979e+00 0.00e+00 .67 Opt
37 Powell wriggle $2 ...... Itr
38 Powell-Maratos 9 10 36 -1.000000e+00 0.00e+00 .96 Opt
39 HS 72 4 I 7 7.266819e+02 1.16e-16 .33 Opt
40 HS 73 5 7 18 2.989438e+01 4.44e-16 .71 Opt

i Converged to a different minimizer.

Table 9. Small problems: MINOS (1-49).
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No. Problem ltns. LC It. Funs. F ( x* ) viol. Time Stat.
41 HS 107 6 12 28 5.055012e+03 4.51e-17 1.53 Opt
42 Mukai-Polak 14 113 238 5.000000e+00 0.00e+00 6.44 Opt

43 Penaltyl a 1 161 384 4.313635e-02 0.00e+00 43.92 Opt
44 Penaltyl c 1 161 384 4.313635e-02 0.00e+00 43.64 Opt
45 HS 32 7 7 19 1.000000e+00 0.00e+00 .69 Opt
46 HS 46 11 52 120 9.862650e-15 7.57e-07 3.11 Opt
47 HS 51 1 3 10 9.629650e-34 0.00e+00 .21 Opt
48 HS 52 1 3 6 6.000000e+00 0.00e+00 .25 Opt l
49 HS 53 1 3 10 4.093023e+00 0.00e+00 .16 Opt
50 HS 13 28 6 42 1.000069e+00 0.00e+00 1.88 Opt
51 HS 64 13 30 106 6.299842e+03 2.54e-08 2.21 Opt
52 HS 70 7 34 92 7.498464e-03 0.00e+00 5.40 Opt
53 HS 71 10 21 51 1.701402e+01 8.88e-16 1.65 Opt
54 HS 74 16 25 55 5.126498e+03 1.42e- 14 2.65 Opt
55 HS 75 13 13 33 5.174413e+03 4.83e-13 1.80 Opt
56 HS 78 7 10 29 -2.919700e+00 2.08e-14 1.07 Opt
57 HS 80 9 18 49 5.394985e-02 2.35e-12 1.66 Opt
58 HS 81 9 18 51 5.394985e-02 3.19e-ll 1.73 Opt

59 HS 84 7 27 78 -5.191258e+06 0.00e+00 2.12 Opt 1
60 HS 85 6 7 32 -1.905155e+00 6.91e-ll 4.85 Opt
bl HS 86 1 11 19 -3.234868e+01 0.00e+00 .74 Opt
62 tIS 93 9 35 76 1.350760e+02 2.07e-14 2.44 Opt
63 HS 95 3 1 5 1.561953e-02 0.00e+00 .32 Opt
64 HS 96 3 1 5 1.561953e-02 0.00e+00 .24 Opt
65 HS 97 4 14 20 4.071246e+00 0.00e+00 .92 Opt 1
66 HS 98 4 5 12 4.071246e+00 0.00e+00 .56 Opt
67 HS 99 11 60 145 -8.310799e+08 1.02e-10 8.78 Opt
68 HS 100 10 56 120 6.839810e+02 1.13e-ll 4.27 Opt
69 HS 104 ....... Itr"

70 HS 109 14 64 109 5.362069e+03 1.39e-13 7.18 Opt.
71 HS 111 19 149 363 -4.776109e+01 9.00e- 14 14.31 Opt
72 HS 112 1 38 ll0 -4.776109e+01 0.00e+00 2.26 Opt
73 HS 113 18 103 212 2.430621e+01 8.88e- 16 10.64 Opt
74 HS 114 18 42 12(I - 1.768807e+03 5.16e-09 6.04 Opt
75 HS 117 8 71 140 3.234868e+01 0.00e+00 7.11 Opt
76 HS 118 1 17 '22 6.648204e+02 0.00e+00 1.20 Opt
77 HS 119 1 22 28 2.448997e+02 0.00e+00 2.46 Opt
78 HS 83 4 4 9 1.012243e+04 6.89e- 13 .67 Opt
79 HS 106 5 42 1(}7 2.100000e+03 0.00e+00 4.58 Opt 1

80 Weapon 1 203 410 -1.735019e+03 0.00e+00 38.33 Opt

Converged to a different minimizer.

Table 10. Sn]ali problems: MINOS (41-80).
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No. Problem Itns. QP lt. Funs. F(x*) Time Star.
1 Hexagon 12 45 16 -.1349963e+01 3.69 Opt
2 HS 108 15 32 21 -.8660254e+00 4.41 Opt

3 KS 372 14 48 23 .1339009e+04 10.36 Opt
4 MHW 4 10 14 18 .2787187e+02 1.31 Opt

5 MHW 9 30 42 56 -.3618808e+02 3.71 Opt 1
6 HS 14 6 1 8 .1393465e+00 .49 Opt
7 HS 26 47 48 64 .1969433e-20 3.39 Opt
8 HS 43 8 9 11 -.4400000e+02 .81 Opt
9 HS 65 8 16 10 .9535289e+00 .70 Opt

10 KS 231 20 25 24 .1339909e-20 1.41 Opt
11 OPF 30 BUS 18 53 19 .9927005e+00 468.12 Opt t
12 QP problem 8 23 9 -.1847785e+07 1.10 Opt
13 LC7 7 13 9 .9295973e+06 .76 Opt

14 Norway 4 34 5 -. 2402344e+02 1.23 Opt
15 Singular 15 4 16 .0000000e+00 1.03 Opt
16 Alan Manne 17 40 18 -.2670099e+01 21.13 Opt
17 Steinke2 ..... Fail

18 Square root 1 ...... Fail

19 Square root 2 23 0 36 .2999795e+01 5.01 Opt
20 Square root 3 6 7 9 .2000000e+01 .95 Opt
21 Square root 4 ..... Fail

22 Boggs-Tolle 1 11 11 19 -.1000000e+01 .81 Opt
23 Boggs-Tolle 2 9 9 14 .3256820e-01 .71 Opt
24 Boggs-Tolle 3 2 2 5 .4093023e+01 .19 Opt
25 Boggs-Tolle 4 12 13 18 -.4551055e-03 .92 Opt
26 Boggs-Tolle 5 6 8 9 .9577426e+03 .58 Opt
27 Boggs-Tolle 6 15 16 21 .2415051e+00 1.52 Opt
28 Boggs-Tolle 7 31 32 56 .3065000e+03 3.36 Opt
29 Boggs-Toile 8 17 17 19 .1000000e+01 1.25 Opt
30 Boggs-Tolle 9 13 14 16 -.1000000e+01 .95 Opt

31 Boggs-Tolle 10 8 0 11 -.1000000e+01 .48 Opt
32 Boggs-Tolle 11 9 10 12 .9171343e-01 1.05 Opt
33 Boggs-Tolle 12 27 28 57 .6188119e+01 3.04 Opt
34 Powell triangles 23 36 37 .2331371e+02 3.27 Opt
35 Powell bad scale 12 13 15 .1305195e-23 .85 Opt
36 Powell wriggle Sl 34 60 69 -.1911618e-15 2.77 Opt
37 Powell wriggle $2 8 11 I1 -.2530612e-10 .81 Opt
38 Powell-Maratos 6 6 7 -.1000000e+01 .44 Opt
39 HS 72 7 8 8 .7266794e+03 .69 Opt
40 HS 73 4 4 5 .2989438e+02 .38 Opt

Converged to a different minimizer.

Table 11. Small problems: NPSOL (1-40).
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No. Problem ltns. QP It. Funs. F(x* ) Time Star.
41 HS 107 11 27 18 .5055012e+04 2.77 Opt
49. Mukai-Po|ak 10 13 16 ,5000000e+01 1.08 Opt

43 Penaityl a 16 77 18 .4313635e-01 20,01 Opt
44 Penaltyl c 29 152 85 ,4313635e-01 24.35 Opt
45 HS 32 2 3 3 .1000000e+01 .25 Opt
46 HS 46 55 56 58 .1936782e-22 5.26 Opt
47 HS 51 2 2 5 ,3851860e-32 .18 Opt
48 HS 52 2 '2 5 .5326648e+01 ,19 Opt
49 HS 53 2 '2 5 .4093023e+01 .19 Opt
50 HS 13 22 13 23 .1002181e+01 1.29 Opt
51 HS 64 29 47 39 .6299842e+04 2,34 Opt
52 HS 70 36 39 39 .7498464e-02 3.33 Opt
53 HS 71 5 9 6 ,1701402e+02 .53 Opt
54 HS 74 10 14 15 .5126498e+04 1.17 Opt
55 HS 75 6 7 10 .5174413e+04 ,72 Opt

56 HS 78 10 11 14 -.2919700e+01 1.15 Opt
57 HS 80 8 8 10 ,5394985e-01 .92 Opt
58 HS 81 14 15 20 .5394985e-01 1,57 Opt
59 HS 84 ..... Fail

60 HS 85 17 33 18 -.1905155e+01 4.00 Opt
61 HS 86 6 11 8 -.3234868e+02 ,62 Opt
62 tlS 93 12 14 15 .1350760e+03 1,36 Opt

63 HS 95 1 1 '2 .1561953e-li .15 Opt
64 HS 96 1 1 2 .1561953e-01 .17 Opt
65 HS 97 3 3 6 .3135809e+01 .40 Opt

66 HS 98 3 8 6 .3135809e+01 .43 Opt
67 HS 99 23 74 44 -,8290102e+09 3.99 Opt

68 HS 100 14 18 29 .6806301e+03 2.07 Opt
69 HS 104 18 23 211 .3951163e+01 3.36 Opt
70 HS 109 11 25 13 .5362069e+04 3.23 Opt
71 HS 111 41 44 64 -.4773239e+02 8,08 Opt
72 HS 112 19 5,t 39 -.4776109e+02 2.78 Opt
73 HS 113 14 38 19 .2430621e+02 3.12 Opt
74 HS 114 18 36 19 -.1768807e+04 3.81 Opt
75 HS 117 17 96 21 .3234868e+02 6.75 Opt
76 HS 118 4 20 6 .6648204e+03 1.35 Opt
77 HS 119 12 41 16 .2448997e+03 4.25 Opt
78 tlS 83 4 4 6 .1012243e+05 .54 Opt
79 HS 106 17 30 21 .7049248e+04 2.90 Opt
80 Weapon 96 244 98 -. 1735019e+04 120.78 Opt

Table 12. Small prol)lems: NPSOL (41-80).
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No. Problem ltns. QP lt, Funs. F(x*) viol. Time Star.
1 Hexagon 23 56 36 -1.349963e+00 5,13e-13 11.53 Opt
2 HS 108 7 7 10 -8.660254e-01 4.85e-14 1.88 Opt
3 KS 372 35 205 87 1.339009e+04 5,93e- 12 26.26 Opt
4 MHW 4 15 19 28 2,787187e+01 2,84e-ll 2,74 Opt
5 MHW 9 14 19 27 -4,247468e+01 5.42e- 12 2.42 Opt
6 HS 14 8 2 14 1.393465e+00 3.21e-12 .81 Opt
7 HS 26 37 36 47 7.028190e- 12 5.55e- 17 4.59 Opt
8 HS 43 13 17 17 -4.400000e+01 7.11le-11 2.16 Opt
9 HS 65 17 25 '22 9,535289e-01 2.06e- 13 2.38 Opt

10 KS 231 15 16 44 6.321700e-21 0.00e+00 1.51 Opt
11 OPF 30 Bus 30 112 40 9.720420e-01 5.61e-15 178.95 Opt
12 QP problem 11 26 16 - 1.847785e+06 0.00e+00 2.51 Opt
13 LC7 10 24 14 9.295973e+05 0,00e+00 2.04 Opt
14 Norway 6 20 9 -2.402344e+01 0,00e+00 1.66 Opt
15 Singular 20 1 23 0.000000e+00 7.28e- 12 1.75 Opt
16 Alan Manne 14 35 '2"2 -2.670099e+00 8,98e-14 9,64 Opt

17 Steinke2 2 14 5 4,142865e-04 1,02e-07 ,77 Opt
18 Square root 1 17 '2 47 2.499997e+03 2.50e-09 4.19 Opt
19 Square root 2 18 0 25 2.999939e+00 6,43e-10 3.49 Opt
20 Square root 3 13 1'2 18 2.000000e+00 2,86e-12 3.37 Opt
21 Square root 4 ...... Itr
22 Boggs-Tolle 1 ll 10 18 -1.000000e+00 0,00e+00 1.26 Opt
23 Boggs-Tolle 2 12 12 20 3,256820e-02 5.80e- 14 1.53 Opt
24 Boggs-Tolle 3 5 7 10 7.957949e-01 0.00e+00 .70 Opt 1
25 Boggs-Tolle 4 8 7 16 -7.317428e+01 1.83e-13 1.05 Opt 1
26 Boggs-Tolle 5 10 10 15 9.617152e+02 1,77e-ll 1,41 Opt 1
27 Boggs-Tolle 6 25 27 34 2.415051e-01 2.23e-14 3.75 Opt
28 Boggs-Tolle 7 ....... Itr

29 Boggs-Tolle 8 2i 3 24 1.000000e+00 9.10e-13 2.41 Opt
30 Boggs-Tolle 9 45 46 87 -1.00o001e+00 2.77e-09 6.84 Opt
31 Boggs-Tolle 10 8 1 10 -1.000000e+00 2.97e-09 .78 Opt
32 Boggs-Tolle 11 14 16 19 9.171343e-02 2.78e-12 2.33 Opt
33 Boggs-Tolle 12 56 62 162 6.188119e+00 7.11e-13 9.69 Opt

34 Powell triangles 15 34 2[) 2.331371e+01 4.56e-11 4.02 Opt
35 Powell bad scale 15 12 5,1 0.000000e+00 0.00e+00 1.85 Opt
36 Powell wriggle Sl 139 178 283 -3.171038e-13 6.78e-08 20.05 Opt
37 Powell wriggle $2 47 14 99 -3.677403e-07 6,44e-10 5.12 Opt

38 Powell-Maratos 7 5 10 - 1.000000e+00 5.55e-17 ,83 Opt
39 HS 72 4 1 7 7.266819e+02 1.18e-16 .48 Opt
40 ItS 73 5 i' 9 2.989438e+01 4.44e- 16 .79 Opt

• _ Converged to a different minimizer.

Table 13. Small problems: (LSSQP-O) Full completion (1-40).
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No. Problem Itns. QP lt. Funs. F(x* ) viol. Time Star.
41 HS 107 ...... Itr

42 MukaJ-Polak 39 51 99 5.000000e+O0 2.32e-13 6.65 Opt
43 Penalty I a 5 I00 14 4.961360e-02 0.00e+00 14.57 Opt 1
44 Penaltyl c 5 100 14 4.961360e-02 0.00e+00 14.20 Opt 1
45 HS 32 4 6 6 1.000000e+00 0.00e+00 .61 Opt
46 HS 46 24 26 30 6.666278e- 13 2.16e-15 3.57 Opt
47 HS 51 5 8 10 6.499273e-02 0.00e+00 .75 Opt
48 HS 52 7 13 14 1.372951e+00 0.00e+00 1.08 Opt 1
49 HS 53 5 7 10 7.957949e-01 0.00e+00 .75 Opt 1
50 HS 13 24 22 30 9.995875e-01 8.78e- 12 2.52 Opt 1
51 HS 64 15 21 21 6.299842e+03 9.43e- 10 2.04 Opt
52 HS 70 36 39 41 7.498464e-03 0.00e+00 6.01 Opt
53 HS 71 9 13 13 1.701402e+01 1.78e-14 1.43 Opt
54 HS 74 12 13 15 5.126498e+03 2.27e-13 2.15 Opt
55 HS 75 8 7 10 5.174413e+03 2.30e-10 1.30 Opt
56 HS 78 10 11 16 -2.919700e+00 3.08e-13 1.67 Opt
57 HS 80 11 11 16 5.394985e-02 0.00e+00 1,78 Opt
58 HS 81 12 12 17 5.394985e-02 2.22e-16 2.05 Opt
59 HS 84 4 6 6 -5.329025e+06 0.00e+00 .59 Opt
60 HS 85 17 40 46 -1.905155e+00 3.55e-15 17.33 Opt
61 HS 86 15 38 25 -3.234868e+01 0.00e+00 3.41 Opt
62 HS 93 26 58 35 1.350760e+02 3.40e- 11 5.77 Opt
63 HS 95 3 1 5 1.561953e-02 0.00e+00 .36 Opt
64 HS 96 3 1 5 1.561953e-02 0.00e+00 .38 Opl
65 HS 97 8 23 11 3.135809e+00 0.00e+00 1.66 Opt
66 HS 98 8 20 11 3.135809e+00 0.00e+00 1.55 Opt
67 HS 99 28 49 55 -8.310799e+08 2.1 le-07 7.28 Opt

68 HS 100 20 28 31 6.839810e+02 1.12e-09 4.28 Opt
69 HS 104 22 49 34 3.951163e+00 6.88e- 15 6.53 Opt
70 HS 109 18 56 2,1 5.362069e+03 4.87e- 13 7.13 Opt

71 HS 111 54 65 68 -4.776109e+01 2.78e- 17 11.99 Opt
72 HS 112 19 62 54 -4.776109e+01 0.00e+00 5.13 Opt
73 HS 113 60 148 107 2.430621e+01 1.23e-08 23.85 Opt
74 HS 114 30 63 91 -8.825283e+02 5.68e- 14 11.51 Opt 1
75 HS 117 ...... Itr

76 HS 118 4 30 7 6.648204e+02 0.00e+00 3.42 Opt
77 HS 119 18 95 40 2.4,18997e+02 0.00e+00 11.44 Opt

78 HS 83 4 7 7 1.012243e+04 6.89e-13 1.08 Opt
79 HS 106 5 10 7 2,100000e+03 0.00e+00 1.27 Opt l
80 Weapon 2124 393 165 -1.735019e+03 0.00e+00 176.05 Opt

Converged to a different minimizer.

Ta.ble 14. Small problems: (LSSQP-O) Full completion (41-80).
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No. Problem Itns. QP lt. Funs. F(x* ) viol. Time Star.
1 Hexagon 33 63 43 -1.349963e+00 6.73e-12 14.87 Opt
2 HS 108 15 24 22 -8.660254e-01 2.78e- 17 5.18 Opt

3 KS 372 23 67 38 1.339009e+04 9.98e-09 11.24 Opt
4 MIIW 4 42 18 84 2.787187e+01 1.24e-12 6.00 Opt
5 MHW 9 20 21 37 -4.247468e+01 1.31e-13 3.32 Opt

6 HS 14 7 2 11 1.393465e+00 8.60e-12 .75 Opt
7 HS 26 31 29 39 7.717254e- 10 2.22e- 16 3.49 Opt
8 HS 43 18 21 28 -4.400000e+01 1.23e-10 3.02 Opt
9 HS 65 21 22 33 9.535288e-01 0.00e+00 2.55 Opt

10 KS 231 15 14 44 6.321700e-21 0.00e+00 1.18 Opt
11 OPF 30 BUS 81 144 129 9.720420e-01 1.33e-08 384.83 Opt
12 QP problem 5 9 9 -7.750787e+05 0.00e+00 .91 Opt 1
13 LC7 12 19 15 7.790963e+05 0.00e+00 1.69 Opt a
14 Norway 6 13 8 -4.086420e+00 0.00e+00 1.10 Opt 1
15 Singular 20 1 23 0.000000e+00 7.28e-12 1.75 Opt
16 Alan Manne 24 46 29 -2.670099e+00 5.62e- 14 16.72 Opt
17 Steinke2 7 14 14 4.000131e-04 8.01e-16 1.56 Opt
18 Square root 1 15 2 28 2.500000e+03 4.90e-13 3.38 Opt
19 Square root 2 17 0 29 2.999878e+00 2.27e-10 3.22 Opt
20 Square root 3 3 0 5 2.000000e+00 0.00e+00 .48 Opt
21 Square root 4 ...... 1tr
22 Boggs-Tolle 1 15 8 27 - 1.000000e+00 2.87e+00 1.60 Opt
23 Boggs-Tolle 2 14 12 23 3.256820e-02 1.31e-14 1.63 Opt
24 Boggs-Tolle 3 6 8 10 8.117684e-01 0.00e+00 .63 Opt a
25 Boggs-Tolle 4 9 6 13 -7.317428e+01 1.78e- 15 1.11 Opt 1
26 Boggs-Tolle 5 11 8 16 9.617152e-l-02 0.00e+00 1.44 Opt 1
27 Boggs-Toile 6 29 28 50 2.415051e-01 1.94e-12 4.09 Opt
28 Boggs-Toile 7 ....... lfr
29 Boggs-Tolle 8 21 3 24 1.000000e+00 9.10e- 13 2.30 Opt
30 Boggs-Tolle 9 ....... Itr
31 Boggs-Toile 10 8 1 12 - 1.000000e+00 2.97e-09 .79 Opt
32 Boggs-Toile 11 15 16 2"2 9.171343e-02 l.lle-16 2.34 Opt
33 Boggs-Tolle 12 70 56 275 6.188119e+00 2.64e-11 11.08 Opt
34 Powell triangles ...... Itr
35 Powell bad scale ....... Itr

36 Powell wriggle Sl ....... Itr
37 Powell wriggle $2 ......... Itr
38 Powell-Maratos 7 4 111 - 1.000000e+00 1.57e-14 .74 Opt
39 HS 72 4 l 7 7.266819e+02 1.18e-16 .47 Opt
4(1 HS 73 5 7 8 2.989438e+01 0.00e+00 .75 Opt

' _ Converged to a different minimizer.

Table 15. Small problems: (LSSQP-E) Early termination (1-40).
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No. Problem Itns. QP It, Funs. F(x*) viol. Time Star.
41 HS 107 ....... Itr

42 Mukai- Polak 17 20 49 5.000000eq-00 7.79e-07 2.63 Opt
43 Penaltyl a 4 50 15 4.961363e-02 0.00e+00 4.93 Opt 1
44 Penaltyl c 4 50 15 4.961363e-02 0.00e+00 4.64 Opt 1
45 HS 32 4 6 6 1.000000e+00 0,00e+00 ,66 Opt
46 HS 46 40 41 49 3.370541e- 11 4.72e-14 5.75 Opt
47 HS 51 5 8 10 6.499273e-02 0.00e+00 .72 Opt 1
48 HS 52 14 21 50 7.222497e-01 0.00e+00 1.96 Opt 1
49 HS 53 5 7 10 8.117684e-01 0,00e+00 .67 Opt 1
50 HS 13 24 22 30 9.995875e--01 8,78e-12 2.30 Opt
51 HS 64 18 23 33 6.299842e+03 4,00e-08 2.32 Opt
52 HS 70 37 35 41 7.498464e-03 0,00e+00 5.82 Opt
53 HS 71 15 17 19 1.701402e+01 1,65e-12 2.08 Opt
54 HS 74 12 12 15 5.126498e+03 2.27e-13 1,98 Opt
55 HS 75 8 7 11 5.174413e+03 2.30e- 10 1.28 Opt
56 HS 78 ....... It,.

57 HS 80 12 10 18 5.394985e-02 0.00e+00 1.84 Opt
58 HS 81 11 9 15 5.394985e-02 1.11e-16 1.63 Opt
59 HS 84 6 5 8 -5.329025e+06 1.46e-11 .75 Opt
60 HS 85 ...... Itr

61 HS 86 5 9 9 -3.234868e+01 0.00e+00 .90 Opt
62 HS 93 18 26 25 1.350760e+02 8.67e- 14 3.10 Opt
63 HS 95 5 5 7 !.561953e-02 0.00e+00 .70 Opt
64 HS 96 5 5 7 1.561953e-02 0.00eq-00 .73 Opt
65 HS 97 4 15 7 3.135809e+00 0.00e+00 1.08 Opt
66 HS 98 ...... Itr
67 HS 99 ...... lfr

68 HS 100 23 25 33 6.839810e+02 3.20e-11 4.17 Opt
69 HS 104 26 48 56 3.951163eq-00 1.21e-17 6.92 Opt
70 HS 109 13 44 18 5.362287e+03 7.35e- 13 5.07 Opt
71 HS 111 68 55 88 -4.776109e+01 6,39e-08 12.58 Opt
72 HS 112 24 60 74 -4.776109e+01 0.00e+00 5.06 Opt
73 HS 113 53 64 65 2.430621e-t-01 8.40e-09 14.63 Opt
74 HS 114 ....... Cbi

75 HS 117 31 193 304 1.325514e+03 0.00e+O0 27.38 Opt 1
76 HS 118 10 37 16 6.648204e+02 0.00e+00 4.36 Opt

77 HS 119 13 44 25 2.448997e+02 0.00e+00 5.48 Opt
78 HS 83 9 9 12 1.012243eq-04 3.36e-08 1.95 Opt
79 HS 106 7 7 9 2.100000e-1-03 0.00e+O0 1.32 Opt 1
80 Weapon 129 410 175 -1.735019e+03 0.00e+00 194.84 Opt

Converged to a different minimizer.

Table 16. Small problems" (LSSQP-E) Early termination (41-80).



Appendix A

Nonlinear Programming for
Trajectory Optimization

A.1. Trajectory optimization

Despite the empirical sucess of optimization implementations such as MINOS and NPSOL,
we can identify problems for which improved performance is desirable. A class of problems
that we feel will benefit from large-scale SQP methods is in the area of trajectory optimiza-
tion. Ill general these mathematical programming problems are characterized by matrices
that are large and sparse and have functions that are expensive to evaluate. An example
of a trajectory optimization problem is tile Supersonic Interceptor Minimum-Time Climb
(:_IMTC) problem iBry69]. Tile problem statement is:

Find tile path taking a supersonic interceptor from sea level and Mach 0.34 to
an altitude cf 2Okm and Mach 1.0 in minimum time.

Sample graphs of the optimal altitude and thrust profiles (plotted against elapsed time

of flight) for a Phantom F4 are given in Figure 1. Note the non-intuitive shape of the
optimal trajectory.

A.2. Problem statement

Trajectory optimization leads to problems in optimal control. The goal is to minimize a

specified performance index F. For the SIMTC problem in Section A.1 the performance
index is the time required to reach a specific altitude and speed. Other possibilities for
F are the amount of fuel burned or the time to reach a specific destination. Trajectory
optimization problems are described in terms of a sequence of N time stages with time
points El (called events) delimiting the stages. For the general formulation we write F as

F(x(E), u(E),w, E). (A.2.1)

• The performance index F is a function of

• A vector of states x, governed by first-order differential equations (see below),

• Control functions u(t) (e.g. pitch angle),
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Figure1.Altitudeand thrustprofilesforthePhantom-F4 SIMTC problem

• Vehicledesignparametersw (e.g.rocketnozzlediameter),

• Time pointsEi, i= 1,...,2Xr+ I,delimitingthestages.

The i-thstageisa dynamicalsystem restrictedby differentialconstraints(calledstate
equations)oftheform

, dx

xi = d"t.= fi(x,u,w,t) I E [Ei, Ei+l], (A.2.2)

for i = 1,...,N. These constraints correspond to differential equations of motion. The
variables must also satisfy nonlinear initial and terminal conditions ai at each stage:

l_ <_ai(.z'(Ei),(Ei),w) < u#. (A.2.3)

In addition,pathconstraintshiInaybe imposedon thesystemateach stageEi:

Il' < hi(z',u.o:,t)< u_. (A.2.4)

The functions li, ai and ht, are assumed to be twice continuously differentiable within
each stage. However, the functions are allowed to be discontinuous between events. That
is, at event boundaries, discontinuities of the form

x(Ei+l) = x(Ei) + ai (A.2.5)

are allowed. These allow the modelling of characteristics such as the jettison of a payload
or a modification of velocity. The tri's naa)" be fixed or included in the design parameter
set w.

Hargra.ves and Paris [HarP87] prescnted a direct trajectory optimization method of
the form (A.2.1)-(A.2.5) that represents state and control variables by piecewise polyno-

nfials. This method has been developed into OTIS. a. system for trajectory optimization

[ltarP88]. Specifically, Hargraves and Paris transformed the optimal control problem into

a mathematical programming prol_lem b.v using an implicit integration scheme known
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as collocation (see [Enr91]) to satisfy equations (A.2.2). This method of transforming
the optimal control problem into a mathematical programming problem is called direct
transcription.

A complete description of tile transcription method used to approximate (A.2.2) can

be found in [Enr91] or [HarP871. The method is summarized below:

1. Each stage [Ei, El+li is partitioned into a set of M smaller segments.

2. A cubic spline is fitted for each segment. Tile data for tile fit is taken from the values

of _ at the mesh points of each segment.

3. A numerical integration scheme is used to approximate x(t) at the midpoint of each
segment.

4. Variables $i (called defects) are defined as the difference between the approximation
and the true value at the midpoint.

If the defects can be driven to zero, the cubic spline will provide an accurate a.pproximation

to (A.2.2). As a result of this transcription process, the optimal control constraints (A.2.2)
can be replaced in the formulation by equality constraints of tile form 6j = 0 for i =
1,..., M, for each of the N events for the problem.

A.2.1. Problem formulation

The mathematical programming problem now includes terms for the defects of the in-
terpolation method iii piace of equations (A.2.2). In addition, the boundary conditions

(A.2.3) are enforced and the nonlinear path constraints (A.2.4) are enforced at the grid

points. Tile transcribed trajectory optinfization problem may be written as the following
mathematical program:

minimize F( x, u, E,w )

s.t. di = O, i = 1, . . . , N,

Ia <_ ai(x(El),(El),w) <_ u_, i= 1,...,N,
l_ < hi(x,u,w,t) < un, i = 1,...,N,

x(Ei+l)-x(Ei)-ai = 0, i= 1,...,N,
I B < (x,u,E,w) < uB,

where di is a vector of center defects for stage i (di = [t_il,..., _iM]).
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Abstract

The problem addressed is the general nonlinear programming problem: finding a local

minimizer for a nonlinear function subject to a mixture of nonlinear equality and inequal-

ity constraints. Tile methods studied are in tile class of sequential quadratic programming
(SQP) algorithms, which have previously proved successful for problems of moderate size.
Our goal is to devise an SQP algorithm that is applicable to large-scale optimization prob-
lems, using sparse data structures and storing less curvature information but maintaining
the property of superlinear convergence. The main features are:

1. The use of a quasi-Newton approzimation to the reduced Hessian of the Lagrangian

function. Only an estimate of the reduced Hessian matrix is required by our algo-
rithm. The impact of not having available the full L_ssian approximation is studied
and alternative estimates are constructed.

2. The use of a transformation matriz (2. This allows the QP gradient to be computed
easily when only the reduced Hessian approximation is maintained.

3. The use of a reduced.gradient form of the basis for the null space of the working

set. This choice of basis is more practical than an orthogonal null-space basis for
large-scale problems. The continuity condition for this choice is proven.

4. The use of incomplete solutions of quadratic programming subproblems. Certain
iterates generated by an active-set method for the QP subproblem are used in piace
of the QP minimizer to define the search direction for the nonlinear problem.

An implementation of the new algorithm has been obtained by modifying the code
MINOS. Results and comparisons with MINOS and NPSOL are given for the new algorithm
on a set of 92 test problems.
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