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ABSTRACT

The neutron flux across the nuclear reactor core is of interest to reactor designers and
others. The diffusion equation, an integro-differential equation in space and energy, is
commonly used to determine the flux level. However, the solution of a simplified version
of this equation (multigroup form) when automated is very time consuming. Since the flux
level changes with time, in general, this calculation must be made repeatedly. Therefore
solution techniques that speed the calculation while maintaining accuracy are desirable.

One factor that contributes to the solution time is the spatial flux shape approximation used.
It is common practice to use the same order flux shape approximation in each energy group
even though this method may not be the most efficient.

The one-dimensional, two-energy group diffusion equation was solved, for the node
average flux and core k-effective, using two sets of spatial shape approximations for each
of three reactor types. A fourth-order approximation in both energy groups forms the first
set of approximations used. The second set used combincs a second-order approximation
in energy group one (the fast neutron group) with a fourth-order approximation in energy
group two (the slow neutron group).

Comparison of the results from the two approximation sets show that the use of a different
order spatial flux shape approximation results in considerable loss in accuracy for the
pressurized water reactor modeled. However, the loss in accuracy is small for the heavy
water and graphite reactors modeled.

The use of different order approximations in each energy group produces mixed results.
Further investigation into the accuracy and computing time is required before any

quantitative advantage of the use of the second-order approximation in energy group one
and the fourth-order approximation in energy group two can be determined.

Thesis Supervisor: Allan F. Henry

Title: Professor of Nuclear Engineering
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Chapter 1
INTRODUCTION

1.1 Motivation and Introduction

Many characteristics of a nuclear reactor core, criticality and burnup for example, can
only be determined once the neutron population in space and energy across the core is
known. Calculation of the neutron population, however, is both difficult and time
consuming even when automated. Therefore, methods to speed the calculation while
maintaining accuracy are always being investigated.

Knowledge of the neutron population during both transient and steady-state operations
is necessury. The behavior of the population during transient operation is more difficult to
calculate. However, knowledge of this behavior is equally important as the knowledge of
the population during steady-state conditions.

One common method for determining the neutron population for a steady-state reactor is
to use the diffusion equation, an integro-differential equation in space and energy. It is
standard practice when solving this equation to cast this equation into a set of space-
dependent equations by partitioning the energy range into 0 number of "energy groups” and
defining group-averaged parameters within each energy group, The result, called the few-
group diffusion equations, is a set of coupled differential equations,

When solving the few-group diffusion equations, it is common practice to use a finite-
difference method. However, a large number of grid points need to be used when
investigating a commercial reactor core and, consequently, the computation time is
considerable.

A solution technique that is becoming more common is the use of nodal methods, In
this method large homogenized regions replace a number of small regions with varied
compositions. The associated reduction in computation time is substantial, However,

there is still room for improvement.
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In addition to the number of spatial regions used in the solution method, the spatial
shape of the neutron population in each region and energy group is important. The
mathematical order of the assumed spatial shape of the population is directly related to the
solution time and the accuracy of the solution. For each energy group, the same order/form
of the spatial shape of the population is used when solving the few-group diffusion
equations using nodal methods. However, the actual neutron population shape in each
energy group is different. The shape in the high energy groups is much smoother than the
shape in low energy groups.

The use of different order polynomials for the spatial shape of the flux, defined as the
neutron density times the neutron speed, in each energy group is investigated in this thesis.
The results obtained by solving the few-group diffusion equations using nodal methods
with different order and the same order polynomials, by energy group, are compared. A
simplified case involving only two-energy groups and a one-dimensional reactor is

considered.

1.2 Background
1.2.1 Diffusion Theory

The continuous-energy diffusior: equation can be derived using the P-1 approximation
to the Boltzmann transport equation assuming that the source of neutrons is isotropicl 11,

This assumption, however, limits the regions of the reactor in which diffusion theory can

be applied. ‘Two regions in which the theory is not valid are near boundaries and in highly
absorbing materials. By integrating the continuous-energy equation over an energy group
g, the few-group diffusion equations can be formed. The resulting coupled differential
equations, coupled by energy groups, incorporate energy group parameters. It is through
the careful definition of these parameters that the limitations on diffusion theory can be

reduced.
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If the reactor is partitioned into subregions and equivalent group parameters are defined
such that interaction rates within each subregion are reproduced in an integral sensel 2| the
applicability of diffusion theory can be extended. Nodal methods can then be used 1o solve
the few-group diffusion equations if equivalent parameters can be found such that the

reactor is represented by a few large homogenized regions(3|,

1.2.2 Nodul Methods

The quantities determined using nodal equations are the volume-averaged group-fluxes
in each node. These fluxes are related 1o each other mathematically through the use of
"coupling constants"[2i-

An important, and difficult, step in the derivation of the nodal equations is the
determination of these "coupling constants"|*]. The relation between the net current across
the node surface, the node-average flux, and the node-average flux of the neighboring
nodes for each energy group is governed by these constants. One way to determine the
constants is to expand the transverse integrated group-fluxes in each node in polynomials.
The accuracy of the "coupling constants” is then dependent on the order of the

polynomials,

1.3 Objective and Summary

A comparison of the results, flux and multiplication factor, obtained by solving the two-
group diffusion equation using nodal methods for equal and varied polynomial orders of
the spatial shape of the flux in the two energy groups is carried out. Because of the relative
simplicity of the equations to be solved, a one-dimensional reactor is used for the
comparisons, The objective of this work is to determine the error introduced by using

polynomials of different orders in the two energy groups. Three reactor types (pressurized

11




water reactor, heavy water reactor, and graphite reactor) are examined in order to gain
insight into the applicability of this technique to various designs.

There are three parts to the work performed: the derivation of the nodal equations, the
development of the solution technique, and the application of the solution method.
Chapters 2, 3, and 4, respectively, are devoted to the discussion of each of these
components. An overall surnmary and recommendations for further research are contained

in Chapter 5.
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Chapter 2
DERIVATION OF NODAL EQUATIONS

2.1 Introduction

The derivation of the nodal equations is presented in this chapter. These equations are
derived for a one-dimensional system with two energy groups. Up-scatter from thermal
energies and fission neutron appearance in group two are assumed to be negligible in the
derivation. All of the equations are derived using a quartic approximation for the spatial
shape of the flux. In this way the equations for the two energy groups can be derived
simultaneously and the quadratic approximation can be obtained by simplifying the
resultant equations. Because a fourth-order approximation is used, five coefficients are
needed for the flux expansion in each node. Two of these coefficients can be eliminated by
imposing flux and current continuity conditions at the node interfaces. Three nodal
equations are needed to determine the remaining three coefficients: the node average-flux,
the third-order coefficient in the flux expansion and the fourth-order coefficient in the flux
expansion,

The derivation of the nodal equations begins with the determination of an equation for
the scalar flux density. This is done by integrating the Boltzmann transport equation over
all directions and then over energy group g and by imposing Fick's Law. The equation
that results is called the multigroup diffusion equation.

In order to form the nodal equations for the node-average flux, the one-dimensional
multigroup diffusion equation is integrated over the width of each node. The expression
that results, called the nodal balance equation, relates the net current density at the node
surfaces to the node average-flux. Fick's Law and the flux expansion are then used to
form a second relation between the current density and the average flux in adjacent nodes.

This second relation closes the system of equations for the flux.

13




The multigroup equation combined with the flux expansion is the starting point in the
derivation of the nodal equations for the expansion coefficients. This equation is integrated
using weighting functions to obtain a relation between the expansion constants, the current
densities at the node surfaces and the node fluxes. The second relation between these
parameters is obtained by combining Fick's Law and the flux expansion. Through the
manipulation of the two relations found, the final form of the nodal equations for the third-

and fourth-order expansion coefficients can be obtained.

2.2 Derivation of Quartic Flux Expansion

The spatial shape of the flux is assumed to be a fourth-order polynomial in the following
general derivation of the nodal equations. It is convenient to assume a general form having

some of the unknowns of the problem as coefficients. Accordingly the form chosen is
_l . . N
Dy(x) = PG()Dy + Poy () + Pt (x)Dy " + P3(x)Ch, + Pa(x)Cly, 2.1

where
Pg(x), Po(x), Po*(x) - second order polynomials in x,
P3(x) - third order polynomial in x,
P4(x) - fourth order polynomial in x,
6:; - average group g flux in node i,
CD;; - group g flux at left edge of node i,
(Di;] - group g flux at right edge of node i,
ng - third-order expansion coefficient for

group g flux in node i,
and

Cag - fourth-order expansion coefficient for
group g flux in node i.

14




Before Eqn. 2.1 can be used, the x-dependence of the five polynomials must be
determined. This is done by placing conditions on each of the polynomials.based on the

fact that the flux must equal (DL for x on the left edge of node i, equal (Di;l for x on the
right edge of node i, and equal 5; when integrated over the node width. Table 2.1 gives
the conditions as they apply to each polynomial[‘”. By applying these conditions to the

polynomials of second order the resulting equations!4] are

Po(x) = —Lﬂ—*( 1 3{x xi)} = (1-v) (1-3v), 2.2
Pot(x) = "—-hj‘i{ 1-%(xm-x)} = v(3v-2), 2.9b
1
and
Pp(x) = %(x - Xi ) (Xig1 - x) = 6v(1-v) 296
where
Xi+1 - right edge of node i,
xj - left edge of node i,
hj = xj+1 - Xi, width of node i,
and

v = (X -Xi) / hi.

An additional condition placed on the fourth-order polynomial is that the polynomial must
be symmetric about the center of the node. Using this condition and those from Table 2.1,

the third- and fourth-order polynomials become

P3(x) = v(1-v)(v-.5) 2.2d

and

15



P4(x) = v(l-v)(v2 -v+.2). 2.2e

Table 2.1 Value of polynomials when evaluated
at node edges and when integrated
over the node width. Adapted from

reference number 4.

Xi Xi+1 dx
Pa 0 0 |
Py 1 0 0
Por | O | 0
P, 0 0 0
P4 0 0 0

2.3 Derivation of the Nodal Equations for Inner Nodes

In a one-dimensional system, the nodal equations relate the parameter of interest in node
i to the parameter in the nodes on either side, nodes i+1 and i-1. For this reason, the nodal
equations for the outer two nodes, nodes 1 and N, must be derived separately from those
for the inner nodes. Section 2.4 details the derivation for the outer nodes while this section

considers the inner nodes.

2.3.1 Derivation of the Flux Nodal Equation

Integration of the Boltzmann transport equation over all directions and over energy
group g results in the multigroup neutron conservation equation|2], This equation in one-

dimensional form is

16



g
o) + Zg(Pg(x) = 3 LygvEg(x)Dy(x)
dx 8'-"1 }\_

+ % Zop'(X)Dg(x)
BE 8 =
g'ﬂl.g"#g g 1,2,...,0 2~3
where
Jg(x) - net current density in group g,
Zy(x) - total macroscopic removal cross-
section for group g,
Dy(x) - scalar flux density in group g,
3, - multiplication factor, k-effective,
Xg - fraction of fission neutrons emitted
in group g,
vEfg(x) - number of fission neutrons emitted per
fission times the macroscopic fission
cross-section for group g,
Lgy'(x) - macroscopic scattering cross-section
from group g' to group g,
and

G - number of energy groups.

The right-hand side of Eqn. 2.3 is the source of neutrons in group g and will be replaced

Integration of Eqn 2.3 over the width of node i gives the nodal balance equation

. »—-i R
Jg(Xis1) - Jg(x)) + Zghidy = Sf 2.4

where
Jg(xi+1) - net current density at x4 for group g,
Jg(xj) - net current density at x; for group g,

i . :
Z; - total macroscopic removal cross-section
for group g in node i,

17



=i
®; - average group g flux in node i,
and

S§ - source of group g neutrons in node i.

In order to solve this equation (which contains two unknowns, the flux and the current
density) a second relation is needed. This relation is obtained by using Fick's Law. In
one-dimensional, energy group form Fick's Law becomes

Jy(x) = -Dg£(¢a(x)

where

Dy - diffusion cocfficient for group g.
When Eqns. 2.1 and 2.2 are substituted for ®y(x), the previous equation becomes

Jy(x) = —Dq%(l-zv)&;:; . hl-’;(z-:%v)cb‘g " ﬁ~(3v-1)¢i{" : #;(3v2 v+ 5)Ch,

~D‘,;%)(l-2v)(2v2 - 2v + . 2)CY, 2.5

where

i

Dy - diffusion coefficient in node i for group g.

Now that the two relations between the current density and the flux have been
determined, it is @ matter of algebraic manipulation that leads to the nodal equation for the
flux. The manipulation procedure is outlined below.

I. Using Eqn 2.5, the sum of Jy(x) and Jy(xi+1) is determined
for node i.

2. By combining the result of Step 1 with Eqn. 2.4, Jy(xj+1)
can be eliminated and a relation between Jy(xj) and the

18



coefficients in the flux expansion can be determined.

3. After using Eqn. 2.5 to determine Jy(xj), the equation is
used to eliminate tbi;l from the result of Step 2.

4. Repeating Steps 1,2, and 3 for node i-1 results in a

second equation for Jy(x;).

5. Using the result of Step 4 to eliminate d> from the result
of Step 3, an equation relating Jg(x;) to the avemge group
flux and the third- and fourth-order coefficients for
nodes i and i-1 is obtained
6. The final step is to use the result of Step 5 to construct
Jy(xi) and Jy(xj+1) and put these relations into Eqn. 2.4,
After these steps are carried out and the equation simplified, the nodal equation for the

node average group flux in the inner nodes takes the form

i+l

(Kijg + Ki{gl)K%g(bl“ + Z:Lh#};‘g . King (DH K“lK”l(bg

(-1 ,!!L(Ki Wl)]si h,,i;l.w;(il gty Dt K“‘ghol

gt . g8

3 D} m‘g' i
. lli( K‘, KH I) e ]ISK llﬁK (:if'gl
+ %( Ki, - KOO, + %K‘,u(??‘ ;K“‘C‘%" i=2, 3,..N-1 2.6

where
, C R
Ki, ::(h;, + hl‘ll) Kklg ( | hl y! )
Dy Dy 3,

S\ = I(V?-ind’l + Vl‘rzd"z)hi Sh = high )

A

N - number of nodes.
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The source terms reduce to the relations above because of the assumptions of no up-scatter

and that all fission neutrons appear in group 1.

A weighted residual method!21 is used in the derivation of the expansion coefficient
nodal equations. Because there are two unknown constants, two linearly independent
weight functions are used. The weight functions used are (v - .5) and (v2- v+ 5).

The derivation proceeds by substituting Eqns. 2.1 and 2.2 into Eqn. 2.3, with the right-
hand side repluced by Sg(x). This equation is then multiplied by the weight fuiction und
integrated over the node width (x from x; to x4 or v from O to 1). At this point, the
cquations for the two energy groups must be treated separately because of the difference in
the source 12rms. ‘The difference is made apparent by the use of the weight functions. The

resulting equations

=Llp . _L_,LL A _L,._..m. "
("h, D) - 30 hL +20 N hi) Yy 2() . hi Yy

= | hl (VL“ 2. )Unl +J!)+ ] h, VL;; (Jnl +J|)

| 1y | LVEL by s | VER o
(S, 1 b0 2l s M Cntgg Ty M

=1 "1 V?-n it ] h; vL;; il i
1205y il gy R 2.4

21( h.)..u(‘ﬁ(z’! Dh - l( ) Oy

h?

- l 1 Lzl(-l”‘ #J') l l 2-2(.]“‘ +JI)’

24 D 24 2.9

and

bopyb e el eyt e
21y ME2Cut ‘Sh, D251 hida) Ca
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< Lh NN
120 py ICEEY 120 1y By - 2.10

where J} = Jy(x))

relate the current density at the node surfaces to the expansion coefficients. The (v-.5)
weighted equations, Eqns. 2.7 and 2.9, are independent of the fourth-order coefficient and
arc additive in the currents whereas the other equations, Eyns. 2.8 and 2,10, are
independent of the third-order coefficient and are difference equations in the currents. Note
that Eqns. 2.7, 2.8, 2.9, und 2.10 are dependent on node i quantities only and, therefore,
ure valid for all nodes.

Two more equations are needed, in addition 1o Eqgns, 2.7, 2.8, 2.9, and 2,10, that relate
the current densities to the expunsion coefficients for system closure. The first equation is

formed by summing Jg(xj) und Jg(xj4 1), formed from the result of Step § Subsection

2.3.1. The nodal equation for the sum of the edge currents for node i is
‘ R | . . ; l
g(xﬂl) + J“(Xb) = ( K“l ‘|R)K%‘!d"ﬁ + Kl‘BK.‘b}m‘u KH lKH l(b"

hn hl i i oqil, h hl il
( K} ) Sy + B Ky, S il S
", WO TR

+5 (K, + Ki) € +%« K‘,;‘(:g'“u% K},

+oRLCH - LRER =20 N 200

+ - l (KH’ . ilg) (?{13 is s

The second equation, a difference equation in Jy(x,4 1) and Jg(x;), is the nodal balance

equation, Egn, 2.4,
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2.4 Boundary Conditions and Derivation of the Nodal Equations For Quter Nodes
2.4.1 Boundary Conditions

The boundary condition imposed is that the current in the x-direction at the edge of the
reactor equals to u constant, the albedo, times the flux at the edge. In energy group form

and for the right and left edges of the reactor, the boundary conditions take the form

Jﬂ(xk) = ugn¢g‘x“)

and
"g(xl.) = -aﬁl"bﬂ(xl«)
where
@, - albedo for the left edge and group g
and

@ g - ulbedo for the right edge and group g.

With this form, the boundary condition can range from zero net current (alpha equals zero)

to zero flux (alpha is large) at the reactor bounduries.

2.4.2 Derivation of the Flux Nodul Equation for Node N

The steps in the manipulation of the equations in Subsection 2.3.1 that result in the

nodal equation for the flux in the furthest right nade, node N, are as follows:

I Eqgn. 2.5 is used to determine Jg(xR) where i=N, i+1=R,
and vs=1,

2. "The boundary condition is used to eliminate tb: from
the result of Step 1.

3. The sum of Jg(xR) and Jg(xN) are determined using

o
2




Eqn. 2.5.
4. The boundary condition is used to eliminate d)g from
the result of Step 3.
S. Egn. 2.4 written for node N is used to eliminate Jg(xN)
from the result of Step 4.

6. ¢ is eliminated from the previous result using the
rewh of Step 2.

7. Step § from Subsection 2.3.1 is used to determine
Jy(xN}. This relation and that resulting from Step 6
above are substituted into Eqn. 2.4 written for node N.

After rearranging terms, the nodul equation for the node average group flux is
AN Nl
(; 3 Kn‘gmg + KEKN +ZNhd) - KN 'KY D

= (- . KN -1 “bﬂ SN + L hﬂl < N-1
( N 4 3 o LH 3 KNS

8 oM Bl
( l K4g + l15 Klg)cdg + IL K'SC‘?S‘
+ (2h3N K«sg+ LNl +% KN 2.12
where
KN =a ang +0
4y = Ogr(~- DY hN)
2.4.3 Derivation of the Flux Nodul Equation for Node 1

The steps in the manipulution of the equations in Subsection 2.3.1 that result in the

nodal equation for the flux in the furthest left node, node 1, are as follows:
1. Eqn. 2.5 is used to determine Jg(x)) where i=1, i+1=2,
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and v=(),

2. The boundary condition is used to eliminate (D; from
the result of Step 1.

3. The sum of Jg(x) and Jg(x5) are determined using
Eqn. 2.5.

4. The boundary condition is used to eliminate ¢; from
the result of Step 3.

5. Eqn. 2.4 written for node 1 is used to eliminate Jg(x)
from the result of Step 4.

6. ¢ is eliminated from the previous result using the
re«ult of Step 2.

7. Step § from Subsection 2.3.1 is used to determine
Jg(x3). This relation and that resulting from Step 6

above are substituted into Eqn. 2.4 written for node 1.

After rearranging terms, the nodal equation for the node average group flux is

- U K‘{EK?ﬂ +Zéhi)6; . ngK?g'ﬁ
l

=(1- Lk}, - Lhgiys! + Lhakss
Dé B 3 D& 8748 3 Dé B8
5111] Kl +- T L ktycl, + ”ils” Kt,Cl,

+ <§3ﬁ; K, - 5 KfClg - g Kf,Cl,
where

Kl, "agL('* +!1)
Dg

2.13




2.4.4 Derivation of the Expansion Coefficient Nodal Equations in Node N

The nodal equations for the third- and fourth-order expansion coefficients, Eqns. 2.7,
2.8, 2.9, and 2.10, depend only on node i quantities. For this reason, the expansion
coefficient nodal equations for node N do not need to de derived separately.

However, Eqn, 2.11, the sum of the current on each side of the node, depends on the
node of interest and the two neighboring nodes. Equation 2.11 is therefore not valid for
node N. For this reason, a relation valid in node N must be derived. This relation is
formed by summing Jy(xR), formed from the result of Step 6 Subsection 2.4.2, and Jg(xN)
for node N, formed from the result of Step 5 Subsection 2.3.1, The nodal equation for the

sum of the edge currents for node N is
—N N1
Jy(XR) + Jy(xN) = (hﬂ&- K, - KYOKS @, + KNKY o,

J_.N_._.u_ NhNLNN*I~LNlN‘N
([)NK + DS‘K“‘)S ‘“) K S +(2hN K48+2K18)(’38

+1kie '+(L-1< 15K§8)C4Ng+]1§1\";‘8c§§‘ 2.14

The nodal equations for the third- and fourth-order expansion coefficients, Egns. 2.7,
2.8, 2.9, and 2,10, depend only on node i quantities. For this reason, the expansion
coefficient nodal equations for node 1 do not need to de derived separately.

However, Eqn. 2.11, the sum of the current on each side of the node, depends on the
node of interest and the two neighboring nodes. Equation 2.11 is therefore not valid in
node 1. For this reason, a relation valid for node 1 must be derived. The relation is

formed by summing Jy(x), formed from the result of Step 6 Subsection 2.4.3, and Jy(x)

25



for node 1, formed from the result of Step 5 Subsection 2.3.1. The nodal equation for the

sum of the edge currents for node 1 is

—1 -2 h
Jo(x1) + Jg(x2) = (- 531— K}, + Kl K3 @ - K3,K3,®; + (- ]—)17 Kjg + 5'1517 K3, S}
g 4

hy 2 @2 1 Ik2yel o 1g2 (2
30 Kl St + (5% Kig + 1K1y Chy + 1K1,C3,
4

1l 2y 2 2
+(§,L1K4g+—11§K1g)C4g"115—K1gc4g 2.15

2.5 Summary

The derivation of the nodal equations for a one-dimensional, two energy-group system
has been presented in this chapter. These equations provide relations for the calculation of
the node average group flux, the third-order expansion coefficient, and the fourth-order
expansion coefficient in each node.

Chapter 3 describes the method used to solve these nodal equations in order to obtain

the node average group flux for the system of interest.
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Chapter 3
SOLUTION METHOD

3.1 Ingroduction

This chapter covers the second step in the work performed, the determination of the
solution method. Since the nodal equations for the node average group fluxes involve
quantities from the node of interest and neighboring nodes, the solution of these equations
starts by forming matrix relations, Matrix equations are not necessary when solving for the
third- and fourth-order expansion coefficients since the nodal equations only contain
quantities for a single node.

A double iteration scheme is used to obtain the node average fluxes from the six nodal
equations. This scheme is necessary since the flux depend on the expansion coefficients

and the expansion coefficients, through the edge current relations, depend on the fluxes.

3.2 Matrix Relations

In order to solve the nodal equations derived in Chapter 2, the equations for the node-

average group-fluxes are written in matrix form. Equation 2.6 for group g takes the form

[Agl [Dg] = [Bg] [Sg] + [Hgl [C3gl + [Lgl [Cagl 3.1
where
[Agl, [Bgl, [Hgl, and [Lg] - tridiagonal NxN matrices of group g
material constants,
[Dg] - column vector of length N of the node average flux for
group g,
[Sgl - column vector of length N of the neutron source for group g,
[C3g] - column vector of length N of the third-order expansion
coefficient for group g,
and
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[Cagl - column vector of length N of the fourth-order expansion
coefficient for group g.

The matrices and column vectors in Eqn. 3.1 are formed by writing each row for a
different node i. Equations 2.13 and 2.12, respectively, are used when relations for nodes

1 and N are required. Equation 2.6 is the relation for nodes 2 through N-1.

3.3 Solution Scheme

The quantity of interest is the node average group flux. However, this flux is dependent
on two unknown variables, the source and the expansion coefficients. Both of these
variables are dependent on the flux and the expansion coefficients are also dependent on the
source. Because of this circular relationship a double iteration solution scheme is

necessary.

3.3.1 Flux [teration

The flux iteration involves the convergence of the flux and k-effective for fixed
expansion coefficients| 3], Equation 3.1 shows that the node average flux depends only on
the source when the expansion coefficients are fixed. The source, however, is dependent
on the flux (see Subsection 2.3.1) so an iteration is necessary. Using iteration notation, the

relations to be solved for group g are of the form

IS1) = [M] @]
and
AI[®") =B [S] + K
where
[EM] - node average flux from flux iteration i+1,
[S] - neutron source from flux iteration i,
and [A], [B], [M] - matrices of material constants
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K - constant.
In order to solve for the fluxes using equations in the form of Eqn. 3.1, a forward-
elimination backward-substitution scheme is used.
The flux iteration continues until either 8 maximum number of iterations is reached or
the flux and the k-effective convergel3], whichever is sooner. The equations for the

convergence criteria are

i+1 i
2&.__.__‘:.&‘ <E
A
i+1 3.2
A
and
m
33
where
i - flux iteration number,
€, - k-effective convergence criteria,
and
€y - node average flux convergence criteria.
3.3.2 Quantic Expansion Coefficient Iteration

The quartic expansion coefficient iteration involves the updating of the expansion
coefficients and the node edge currents. An iteration to determine the expansion
coefficients is not necessary since the fourth-order expansion coefficient nodal equations
are independent of the third-order expansion coefficients and vice versa . Before updating
the expansion coefficients, the sum and difference of the node edge currents must be
updated using Eqns. 2.4, 2.11, 2.14, and 2.15. The flux and source that are used on the
right-hand-side of Eqns, 2.4, 2.11, 2,14, and 2.15 are the converged flux from the flux

iteration and the source that produced that flux,
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Flux and k-effective convergence criterial! are used to determine when the quartic
expansion coefficient iteration is complete. The equations for the two criteria are same as
those for the flux iteration, Eqns. 3.2 and 3.3, with i replaced by i, where iy is the quartic

expansion coefficient iteration number.

3.3 Iteration Summary

Figure 3.1 shows the flow of the solution schematically. This figure shows that the
flux loop is inside of the quartic expansion coefficient loop. Also it shows that there are
two ways that the flux iteration can be stopped, either by reaching a maximum number of
iterations or obtaining convergence. The expansion coefficient iteration is stopped only

after convergence is obtained.

3.4 Summary

The solution method to be used has been presented in this chapter. Because of the form
of the nodal equations as derived in Chapter 2, the method involves a double iteration.
Two convergence criteria are used to determine when the calculation is complete. Both the
k-effective and the node average flux are converged.

Chapter 4 details the final part of the work, the application of the solution method

presented in this chapter.
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Chapter 4
APPLICATION OF SOLUTION METHOD

4.1 ntroduction

The application of the solution method developed in the previous chapter is presented in
this chapter. Because the solution method involves two iteration loops and coupled
equations (coupled by nodes), the solution was automated.

Before the computer programs were applied to any test cases, they were benchmarked.
The benchmark used is the International Atomic Energy Agency (IAEA) Light Water
Reactor (LWR) Benchmark Problem.

Three types of reactors are modeled and used to examine the usefulness of the quadratic
flux shape approximation in energy group one and quartic flux shape approximation in
energy group two. The results of the two computer programs for gruphite reactor,

pressurized water reactor, and heavy water reactor test problems were compared.

4.2 Computer Program

The solution method described in Chapter 3 was carried out through the use of Project
Athena, the M.L'T. computer network. A computer program was written based on the
equations in Chapter 2 written in the form of a matrix equation and a set of nlgebraic
equations, This program was written in FORTRAN 77 using single precision variables.
Figure 4.1 shows the flow of the computer program schematically.

The program as written, using the equations in Chapter 2, is for a fourth-order flux
shape approximation in both energy groups. This program is named Fourfour.f,

In order to obtain a program for a second-order flux shape approximation in energy
group one and a fourth-order flux shape appioximation in energy group two, Fourfour.f

was modified and named Twofour.f.
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Two modifications were made to obtain the second progrum. First, the third- and
fourth-order flux expansion coefficients were set to zero for energy group one in the flux
and sum of current equations, Eqns. 2.6, 2.11, 2,12, 2.13, 2.14, and 2.15. And second,
the expunsion coefficient equations derived using the group one flux expunsion, Eqns, 2.7

und 2.8, were eliminated.

4.3 Benchmark Problem

The benchmurk problem used was the Three-dimensional LWR Problem (3D IAEA
Benchmark Problem). This problem is based on two-group diffusion theory with no net
current at symmetry boundaries and no incoming current ut external boundaries. Because
the computer programs written for this thesis ure for one-dimensional systems, a slice in
the x-direction at y=(0) and z=() was used to test the programs. Node sizes of 20 ¢m, 10 ¢m,
and § ¢m were used in the benchmarking of the progrums,

The results from runs of Fourfour.f at the three node sizes were compared with the
results of the identical problems run by u more general codel3!, Agreement to four places,
varintion of less than one ten-thousandth, was seen in the eigenvalue. The shape of the
flux for each energy group from Fourfour.f was within one percent of the results from the
more general code.

‘The results from runs of Twofour.f at the 20 ¢m node size were compared with the
results of the identical problem run by u more generul codel31. Agreement to four pluces,
variation of less than one ten-thousandth, was seen in the cigenvalue. The shape of the
flux for euch energy group from Twofour.f was within one percent of the results from the

more general code.
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4.4 Test Problems
4.4.1 Qruphite Reuctor

The test problem used to maodel u graphite reactor was a slice of a General Atomics
MHTGR. The one-dimensional slice used contains each of the five reglons that make up
the MHTGR core: four reflector regions and one reglon containing fssile material. Figure
4.2 shows the order of the regions in the slice used. The macroscopic cross sections
corresponding to each region in Fig. 4.2 are given in Tuble 4.1, The boundary conditions
used are zero flux at the center of the core and no incoming current at the external edge of

the core.

el

Figure 4.2 MHTGR model. Reglon 1is 82.6 em
wide, region 2 is 92.1 em wide, region s
33.8 ¢m wide, region 4 is 31.5 em wide, and
region § is 84,9 ¢m wide. Symmetry boundary
conditions on the right.

Tuble 4.2 gives the percent difference in the node-uverage fluxes for the two
approximate models (second-order flux shape approximation in energy group one
combined with a fourth-order approximation in energy group two and u fourth-order
approximation in both energy groups). The nodes are numbered from left to right across
the model shown in Fig. 4.2, Node sizes of 13,73 em in region §, 8.37 emin region 4,
B.45 eminregion 3, 1151 emvin region 2, and 10,33 emin region | were used to obtain
the results given, These node sizes were used because it was determined that Fourfour.f

guve uccurate results for the MHTGR for this node spacing,



Table 4.1 Macroscopic cross sections for graphite reactor.

Region | Group | Dy (em) | vEg emh) | ¥y emh) | o0 (em)

1 | 1.14393 0.0 4.08940x10-3 | 4.081°3x10-3
2 (.863447 0.0 1.55156x104

2 | 1.49780 | 3.46297x104 | 3,32021x10-3 | 2.37932x10-}
2 1.1568Y | S.89872x10-} | 3.37634x10-3

3 | 1.79242 0.0 2.61068x10-3 | 2.605884x10-}
2 1.31833 0.0 1L 10Y76x 104

4 I 1.1w33 0.0 4.21826x 10-3 | 4.20098x10-
2 0818916 0.0 1.79312x 104

5 ! 1.05650 0.0 4.42917x10°V | 1.42048x 10
2 (.777063 0.0 1.HR278x 1004

Tuble 4.2 shows that the eigenvalue from the unmixed approximation is 0.13% smaller

than the cigenvalue from the mixed approximation (second-order flux shupe approximution

in energy group one and a fourth-order approximation in energy group two), This fact

suggests that the use of the mixed approximation for this prohlem is advantageous (results

in little accuracy loss).

The difference in the node-uverage fluxes from the two approximate models ranges from
0.6% 1o 12.1% inenergy group one and -0.3% 1o 1.8% in energy group two. The energy

group two values again suggest that the use of the mixed approximation for this problem is

advantageous, For energy group one, Table 4.2 shows that the difference in the fluxes in

the fuel region, nodes 13 through 20, are all less than 1% in absolute value. Also, the large

values (greater than §%) of the differences in energy group one oceur in the outermost
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reflector and the center of the innermost reflector. These two facts, for energy group one,
combined suggest that the use of the mixed approximation is advantageous.

Based on the differences in the node-average fluxes from both energy groups and the
eigenvalue difference, the use of the mixed upproximation when applied to the MHTGR iy

advantageous.

Table 4.2 Compurison of the node-average flux value for each
node for the MHTGR. The values from Fourfour.f
are larger by the percentage glven,

Node | CGroup ! | Group2 | Node | Group | | Group2
l 12.1% 1.8% 15 -0.6% -0.2%
9.7% 1.7% 16 -0.3% -0.3%
3 7.1% 1.7% 17 0.5% -0.3%
4 4.1% 1.6% 18 -().4% -(0.2%
h 3% 1.6% 19 -0, 1% 0.02%
6 1% 1.5% 20 ().6% 0.3%
7 2.7% 1.4% 21 1.6% 0.7%
8 2.1% 1.3% 22 2.6% 1.O%
Y 1.9% 1.2% 23 1.6% 1.2%
10 1.9% 1 1% 24 4.5% 1.4%
11 1L.B% 1. 1% 23 5.4% 3%
12 1.7% 0.9% 26 6.0% Lo%
13 0.7% 0.6% 27 6.0% 1.6%
14 0.3% 0.1% 28 6.4% 1.7%
Eigenvulue _ difference -0.13%
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Figure 4.3 shows a plot of the flux as a function of position in each energy group for
the two approximate models. The position increases from left to right ucross the model
shown in Fig, 4.2. The plot for energy group one in Fig. 4.3 shows that the flux from the
two upproximate models are essentially the same. This is also the case for energy group
two. The flux from the two approximate models is essentially the same in Fig. 4.3 for

energy group two.

Figure 4.3

“nergy Group One Flux as a Function
of Position for the MHTGR
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Energy Group Two Flux as a Function
of Position for the MHTGR
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4.4.2 Pressurized Light Water Reqctor

The test problem used to model « PWR was a slice of the Salem - | core. Four one-
dimensional slices were used. Two slices were in the x-direction at z = () and the other two
were in the z-direction at y = (). Figure 4.4 shows the order of the compositions in the four
slices used. The macroscopic cross sections corresponding to the compositions in Fig. 4.4
are given in Table 4.3, The boundary conditions used for the slices in the x-direction are
no net current at the center of the core and no incoming current at the external edge of the
core. The boundary conditions used for the slices in the z-direction are an albedo of

(.24931 for energy group one and an albedo of 0.11119 for energy group two.

[#]
Lo




|11|12' 13'14|15|16I 17 |18|19|20'21l 22|23'24I 25!26'27' 28,
D

Figure 4.4 Salem - 1 models. A and B: all regions are 21.6
cm wide except the first region which is 10.8 cm
wide,symmetry boundary conditions on the left,
regions 7, 8, and 9 are reflectors. C: all regions
are 20 cm wide, symmetry boundary conditions
on the left. D: all regions are 20 cm wide.
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Table 4.3 Macroscopic cross sections for Salem - 1.

Composition | Group | Dg (cm) vEgg (em]) [ Zg em]) | Lgg (cmr))

1 1 1.3648 0.005550 | 0.026132 | 0.017245
2 0.4826 | 0.185823 | 0.130772

?) 1 1.3596 0.006267 | 0.025355 | 0.015398
2 0.4798 0.230258 | 0.181915

3 1 1.3592 0.006269 | 0.025232 | 0.015128
2 0.4810 0.230923 | 0.188426

4 1 1.3594 0.006890 | 0.025895 | 0.016386
2 0.4673 0.264760 | 0.169073

5 1 1.35890 | 0.006890 | 0.025711 [ 0.015981
2 0.46875 | 0.265512 | 0.177654

6 1 1.3572 0.006894 | 0.025151 | 0.014752
2 0.4740 0.268552 | 0.206951

7 1 1.4957 0.0 0.025606 | 0.022923
2 0.3637 0.0 0.051595

] 1 1.3933 0.0 0.021484 { 0.017943
2 0.3659 0.0 0.068149

9 1 1.6701 0.0 0.032628 | 0.031408
2 0.3621 0.0 0.039330

10, 20-28 1 1.321964 | 0.005567 | 0.028660 | 0.015178
2 0.486196 | 0.194976 | 0.211003

11-19 1 1.321964 | 0.005567 | 0.028660 [ 0.015178
2 0.486196 | 0.194976 | 0.101003
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Table 4.4 Comparison of the node-average flux value for each node
of Salem - 1. The value from Fourfour.f is larger by the percentage given.

A

Node Group 1 Group 2 Node Group | Group 2
1 5.3% 5.3% 19 -3.4% -3.6%
2 5.3% 3.3% 20 -7.5% -7.5%
3 5.3% 5.3% 21 -10.5% -10.6%
4 5.3% 5.3% 22 -12.4% -12.4%
5 5.3% 5.3% 23 -13.8% -13.8%
6 5.4% 5.4% 24 -14.6% -14.6%
7 5.4% 5.4% 25 -14.9% -14.9%
8 5.7% 5.8% 20 -15.3% -15.3%
9 6.4% 6.4% 27 -16.0% -16.0%
10 6.6% 6.6% 28 -16.6% -16.5%
11 6.5% 6.5% 29 -16.0% -15.9%
12 6.2% 6.2% 30 -14.5% -14.7%
13 5.3% 5.4% 31 -13.0% -13.4%
14 4.6% 4.6% 32 -11.7% -11.8%
15 4.1% 4.1% 33 -10.1% -10.2%
16 3.4% 3.5% 34 -8.0% -8.6%
17 2.3% 2.3% 35 -6.1% -7.0%
18 0.1% 0.1% 36 -3.8% -5.4%

Eigenvalue difference  0.03%
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Node Group | Group 2 Node Group | Group 2
] 3.5% 3.5% 10 -1.1% -1.0%
2 3.8% 3.9% 11 0.2% 0.1%
3 5.3% 5.3% 12 -1.1% -1.1%
4 5.2% 5.2% 13 -5.9% -5.7%
2.6% 2.7% 14 -9.4% -9.4%
6 2.1% 2.2% 15 -11.7% -11.8%
7 3.9% 3.9% 16 -15.1% -15.0%
8 3.3% 3.4% 17 -12.5% -11.9%
9 0.1% 2.3% 18 2.6% -0.4%
Eigenvalue _difference  (.03%
C
Node Group 1 | Group 2 Node Group | | Group 2
1 -0.013% | -0.012% 6 0.007% | 0.007%
2 -0.012% | -0.012% 7 0.021% | 0.021%
3 -0.010% | -0.010% 8 0.054% | 0.054%
4 -0.006% | -0.006% 9 0.070% | 0.071%
5 -0,001 -0.001%

Eigenvalue _difference  0.001%
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Node Group 1 | Group 2 Node Group 1 Group 2
I 4.7% 4.7% 10 -5.9% -6.0%
2 5.2% 5.1% 11 30.3% 31.2%
3 4.3% 4.3% 12 60.2% 59.3%
4 3.5% 3.5% 13 75.0% 75.4%

2.4% 2.5% 14 85.2% 85.1%

6 0.1% 0.1% 15 90.9% 91.0%

7 -0.1% -0.1% 16 94.6% 94.5%

8 -0.6% -().6% 17 96.7% 96.7%

9 -3.0% -2.9% 18 98.0% 98.0%
Eigenvalue _difference  0.005%

Table 4.4 gives the percent difference in the node-uverage fluxes for the two
approximate models (second-order flux shape approximation in energy group one
combined with a fourth-order approximation in energy group two and a fourth-order
approximation in both energy groups). The nodes are numbered from left to right ucross
the model shown in Fig. 4.4, Node sizes of 2.7 cm in the first four nodes of model A and
5.4 ¢cm in rest of model A (four nodes per region), 5.4 cm in the first two nodes of model
B and 10.8 ¢cm in the rest of model B (two nodes per region), 20 ¢m in model C (one node
per region), and 20 ¢cm in model D (one node per region) were used to obtain the results
given, These node sizes were used because it was determined that Fourfour.f gave
accurate results for Salem - 1 for the respective node spacing in each model.,

Table 4.4 shows that the eigenvalue from the unmixed approximation for model A is

0.03% larger than the eigenvalue from the mixed approximation (second-order flux shape
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approximation in energy group one and a fourth-order approximation in energy group
two). This fact suggests that the use of the mixed approximation for this problem is
advantageous (results in little accuracy loss).

The difference in the node-average fluxes from the two approximate models for model A
ranges from -16.6% to 6.6% in energy group one and -16.5% to 6.6% in energy group
two with most of the values greater than 5% in absolute value. The largest difference, in
absolute value, for both energy groups of model A occurs in node 28, This node
corresponds to the region just before the reflector regions (See Fig. 4.4).  However, this
region is not the only fueled region that has differences of greater thun 10%. These facts
suggest that the use of the mixed approximation for model A with four nodes per region is
not advantageous. Increasing the number of nodes per region may change this result but it
will also increase the computing time (adding a disadvantage to the mixed approximation),

Based on the difierences in the node-average fluxes from both energy groups and the
cigenvalue difference, the use of the mixed approximation when applied to model A of
Salem - 1 with four nodes per region is not advamtageous.

Table 4.5 gives the percent difference in the node-average fluxes from a fourth-order
approximation in both energy groups and a second-order approximation in both energy
groups for model A, A comparison of the values in Table 4.5 (with absolute values
ranging from 0.1% to 19.6% in energy group one and from 0.2% to 17.6% in energy
group two) with those in Table 4.4 (with absolute values ranging from 0.1% 10 16.6% in
energy group one and from 0.1% to 16.5% in energy group two) shows that a second-
order approximation in both energy groups does a better job at simulating the node-average
fluxes than the mixed approximation for model A except in nades 32 through 36 which

correspond to the reflector.
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Table 4.5 Comparison of the node-average flux value from a

fourth-order approximation in both energy groups and a
second-order approximation in both energy groups for each
node of Salem - | model A. The value from the fourth-order
approximation is larger by the percentage given.

Node Group | Group 2 Node Group | Group 2
l -3.3% -3.2% 19 2.2% 2.5%
2 -3.3% -3.2% 20 4.4% 4.5%
3 -3.3% -3.1% 21 3.9% 5. 7%
4 -3.4% -3.0% 22 7.0% 6.9%
h) -3.4% -3.5% 23 1.7% 8.1%
6 -3.4% -3.6% 24 8.2% B.7%
1 -3.5% -2.2% 25 8.7% 8.3%
8 -3.5% -2.3% 26 9.1% 8.8%
9 -3.4% -4.6% 27 9.3% 10. 1%
10 -3.3% -3.8% 28 9.4% 11.0%
11 -3.2% -3.8% 29 10.1% 6.9%
12 -3.2% -4.4% 30 11.3% 7.4%
13 -3.3% -2.2% 3 12.4% 12.1%
14 -3.2% -2.1% 32 13.4% 14.7%
15 -3.1% -3.0% 33 14.6% 12.8%
16 -2.8% -3.9% 34 16.2% 12.3%
17 -1.9% -1.0% 35 17.8% 15.3%
18 -0.1% 0.2% 36 19.6% 17.6%

Eigenvalue difference -0.03%
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Figure 4.5 shows a plot of the flux for madel A as a function of position in each energy
group for the two approximate models. The position increases from left to right across
model A shown in Fig. 4.4. The node bounduries are designated by the vertical lines one
each plot. Figure 4.5 shows that the flux from the two approximate models is substantially
different in nodes 9 through 13 and 19 through 28 for energy group one and nodes 28

through 29 for encrgy group two,

Figure 4.5
Energy Group One Flux as a Function
of Position for Salem - 1 Model A
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‘Tuble 4.4 shows thut the eigenvalue from the unmixed approximation for model B is

0.03% lurger than the eigenvalue from the mixed approximation (second-order flux shape

approximation in energy group one and a fourth-order approximation in energy group

two). This fact suggests that the use of the mixed approximation for this problem is

advantageous (results in little accuracy loss),

The difference in the node-average fluxes from the two approximate maodels for model B

runges from -15.1% 10 5.3% in energy group one and -15.0% to 8.3% in energy group

two. The largest difference, in absolute value, for both energy groups of model B oceurs

in nade 16 which corresponds to the region just before the reflector region, region 5 (See

Fig. 4.4). ‘This region and the reflector region are the only two that huve difference values
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greater than 10% in absolute value. However, there are two additional reglons that have

differences of greater than 5%, in absolute value, for both energy groups. These fucts,

suggest thut the use of the mixed approximation for model B with two nodes per region is

borderline advantageous.

Based on the differences in the node-average fluxes from both energy groups and the

eigenvalue difference, the use of the mixed approximation when applied 10 model B of

Salem - 1 with two nodes per region is borderline advantageous.

Tuble 4.6 Comparison of the node-average flux value from a

fourth-order approximation in both energy groups and a
second-order approximation in both energy groups for each
node of Salem - 1 model B. The value from the fourth-order
approximation is lurger by the percentage given,

Node Group | Group 2 Node Group | Group 2
1 -1.4% -0.6% 10 0.004% 2.2%
2 -1.6% 0.9% 11 0.7% -1 3%
3 -1.3% 2. 7% 12 L 1% -1.0%
4 1. 3% 3. 3% 13 1.5% 3.8%
b -1.4% 0.8% 14 2.4% 3. 7%
6 -1.2% 1.0% 15 3.3% 3.0%
7 -0.9% -2.8% 16 3.0% 6.9%
8 -0.7% -2.6% 17 6.8% -1.5%
9 -().5% 1.7% I8 19.3% L 1%

Eigenvalue _difference -0.08%
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Table 4.6 gives the percent difference in the node-average fluxes from a fourth-order
approximation in both energy groups and a second-order approximation in both energy
groups for model B. A comparison of the values in Table 4.6 (with ubsolute values
ranging from O.04% 10 19.3% in energy group one and from 0.6% to 6.9% in cnergy
group two) with those in Table 4.4 (with absolute values runging from 0.1% to 15.1% in
energy group one and from 0.1% to 15.0% in energy group two) shows that a second-
order approximation in both energy groups does a better job at simulating the node-average

fluxes than the mixed approximation for model B except in node 18 which corresponds to

the reflector.
Figure 4.6
Energy Group One Flux as a Function
of Position for Salem - 1 Model B
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‘nergy Group Two Flux as a Function
of Position for Salem - 1 Model B
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Figure 4,6 shows u plot of the flux for model B as a function of position in cach energy
group for the two approximate models. The position increases from left to right ucross the
model shown in Fig. 4.4, The node boundarles are designated by the vertical lines on euch
plot. Figure 4.6 shows that the flux from the two upproximate models is substantinlly
different in nodes 3, 4, 14, 15, and 16 for energy group onc and 4, 5, 14, 15, 16, and 17
for energy group two, Note that the plot for energy group two has an unrealistic shape.
This shape is probably due to the method used to obtain the flux as a function of position,
However, the shape should be investigated before making uny conclusions for model B,

‘Tuble 4.4 shows that the eigenvalue from the unmixed approximation for model C is
0.001% lurger than the eigenvalue from the mixed approximation (second-order flux shupe

approximation in energy group one and a fourth-order approximation in energy group
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two). This fact suggests that the use of the mixed approximation for this problem Iy
advantageous (results in little accuracy loss).

‘The difference in the node-average fluxes from the two approximate models for model C
ranges from -0.013% to 0.070% in energy group one and -0.012% to 0.071% in energy
group two, The values in both energy groups again suggest that the use of the mixed
approximation for this problem is advantageous.

Based on the differences in the node-uverage fluxes from both energy groups and the
eigenvalue difference, the use of the mixed approximation when applied to model C of

Salem - | is advantageous,

Figure 4.7

Energy Group One Flux as a Function
of Position for Salem - 1 Model C
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Energy Group Two Flux as a Function
of Position for Salem -1 Model C
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Figure 4.7 shows a plot of the flux for model C as a function of position in each energy
group for the two approximate models. The position increases from left to right across
model C shown in Fig. 4.4. The plot for energy group one in Fig. 4.7 shows that the flux
from the two approximate models is essentially the same. This is also the case for energy
group two. The flux from the two approximate models is essentially the same in Fig. 4.7
for encrgy group two.

Table 4.4 shows that the eigenvalue from the unmixed approximation for model D is
0.005% larger than the eigenvalue from the mixed approximation (second-order flux shape

approximation in energy group one and a fourth-order approximation in energy group

53



two). This fact suggests that the use of the mixed approximation for this problem is
advantageous (results in little accuracy loss).

The difference in the node-average fluxes from the two approximate models for model D
ranges from -5.9% to 98.0% in energy group one and -6.0% to 98.0% in energy group
two. The large difference values in both energy groups in nodes 11 through 18 suggest
that the use of the mixed approximation for this problem is not advantageous. However,
increasing the number of nodes per region, model D uses one node per region, may change
this result but it will also increase the computing time (adding a disadvantage to the mixed

approximation).

Figure 4.8

Energy Group One Fiux as a Function
of Position for Salem - 1 Model D
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Energy Group Two Flux as a Function
of Position for Salem -1 Model D
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Based on the differences in the node-average fluxes from both energy groups and the
eigenvalue difference, the use of the mixed approximation when applied to model D of
Salem - 1 with one node per region is not advantageous.

Figure 4.8 shows a plot of the flux for model D as a function of position in each energy
group for the two approximate models. The position increases from left to right across
model D shown in Fig. 4.4, The plot for energy group one in Fig. 4.8 shows that the flux
from the two approximate models is essentially the same. This is also the case for energy
group two. The flux from the two approximate models is essentially the same in Fig. 4.8

for energy group two. Note that the plot has an unrealistic shape for both energy groups.
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The shape is probably due to the method used to obtain the flux as a function of position.

However, the shape should be investigated before making any conclusions for model D.
The second test problem used for LWRs was the 3D IAEA Benchmark Problem (see

Section 4.3). Figure 4.9 shows the order of the compositions in the one-dimensional slice

used. The macroscopic cross sections corresponding to the compositions in Fig. 4.9 are

given in Table 4.7.

R R R

Figure 4.9 IAEA reactor model. All regions are 20 cm

except the first region which is 10 cm wide.

symmetry broundary conditions on the left.
Region 4 is a reflector.

Table 4.7 Macroscopic cross sections for IAEA Benchmark.

Composition | Group | Dy (em) | vEgy (cml) | Zp (eml) | Sgp (em'])
1 1 1.5 0.0 0.03 0.02
2 0.4 0.135 0.08
2 1 1.5 0.0 0.03 0.02
2 0.4 0.135 0.085
3 1 1.5 0.0 0.03 0.02
2 0.4 0.135 0.13
4 1 2.0 0.0 0.04 0.04
2 0.3 0.0 0.01
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Table 4.8 Comparison of the node-average flux value for each node

of the IAEA Benchmark.The value from Fourfour.f is larger by the percentage given.

Node Group 1 Group 2 Node Group 1 Group 2
1 33.0% 33.0% 10 -1.6% -1.7%
2 33.0% 33.0% 11 -5.7% -5.8%
3 33.4% 33.4% 12 -8.2% -8.2%
4 32.9% 32.9% 13 -11.2% -11.2%
5 31.6% | 31.6% 14 -14.6% -14.7%
6 29.7% 29.7% 15 -19.3% -19.2%
7 26.9% 26.8% 16 -20.8% -18.8%
8 21.5% 21.7% 17 -10.8% -9.7%
9 10.3% 10.6% 18 4.8% -2.6%

Eigenvalue difference -0.6%

Table 4.8 gives the percent difference in the node-average fluxes for the two
approximate models (second-order flux shape approximation in energy group one
combined with a fourth-order approximation in energy group two and a fourth-order
approximation in both energy groups). The nodes are numbered from left to r.ght across
the model shown in Fig. 4.9. Node sizes of 5 cm in the first two nodes and 10 ¢cm in rest
of the nodes (two nodes per region) were used to obtain the results given. These node
sizes were used because it was determined that Fourfour.f gave accurate results for the
IAEA Benchmark for this node spacing.

Table 4.8 shows that the eigenvalue from the unmixed approximation is 0.6% smaller
than the eigenvalue from the mixed approximation (second-order flux shape approximation

in energy group one and a fourth-order approximation in energy group two). This fact
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suggests that the use of the mixed approximation for this problem is advantageous (results
in little accuracy loss).

The difference in the node-average fluxes from the two approximate models ranges from
-20.8% t0 33.4% in energy group one and -19.2% to 33.4% in energy group two. The
large values in both energy groups for all nodes except nodes 10, 11, and 18 suggest that
the use of the mixed approximation for this problem is not advantageous. This is reinforced
by the fact that the largest difference values occur in the first nodes, those corresponding to
the center of the core, not in the nodes near or in the reflector. However, increasing the
number of nodes per region, this problem uses two nodes per region, may change this
result but it will also increase the computing time (adding a disadvantage to the mixed
approximation),

Bused on the differences in the node-average fluxes from both energy groups and the
eigenvalue difference, the use of the mixed approximation when applied to the IAEA
Benchmark with two nodes per region is not advantageous.

Table 4.9 gives the percent difference in the node-average fluxes from a fourth-order
approximation in both energy groups and a second-order approximation in both energy
groups. A comparison of the values in Table 4.9 (with absolute values ranging from 1.1%
to 33.6% in energy group one and from 1.0% to 26.9% in energy group two) with those in
Table 4.8 (with absolute values ranging from 1.6% to 33.4% in energy group one and
from 1.7% to 33.4% in energy group two) shows that a second-order approximation in
both energy groups does a better job at simulating the node-average fluxes than the mixed

approximation except in the reflector, nodes 17 and 18,
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Table 4.9 Comparison of the node-average flux value from a
fourth-order approximation in both energy groups and a
second-order agproximation in both energy groups for each
node of the IAEA Benchmark. The value from the fourth-order

approximation is larger by the percentage given.

Node Group | | Group 2 Node Group | | Group 2
1 -26.9% -25.7% 10 -1.1% 1.0%
2 -27.1% -24.9% 11 3.2% 2.1%
3 -26.1% -26.9% 12 5.9% 5.7%
4 -24.8% -25.2% 13 1.9% 8.0%
5 -23.6% -23.6% 14 _9.8% 9.7%
6 -22.0% -21.9% 15 11.8% 13.9%
7 -19.9% -20.1% 16 14.7% 19.4%
8 -16.4% -18.1% 17 22.8% 12.1%
9 -9.1% -7.0% 18 33.6% 10.8%

Eigenvalue difference 0.25%

Figure 4,10 shows a plot of the flux as a function of position in each energy group for
the two approximate models. The position increases from left to right across the model
shown in Fig. 4.9. The node boundaries are designated by the vertical lines on each plot.
Figure 4.10 shows that the flux from the two approximate models is substantially different
in all of the nodes except nodes 10, 11, 12, 17, and 18 for energy group one. The flux
from the models is also substantially different in all of the nodes for energy group two

except nodes 10, 11, and 18,
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Energy Group Two Flux as a Function
of Position for the IAEA Benchmark
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4.4.3 Heavy Water Reactor

The test problem used to model a heavy water reactor was a slice of a D20 production
reactor simulation. The one-dimensional slices used contain each of the four regions:
reflector, target, control, and fuel, that make up the core. Figure 4.11 shows the order of
the four regions in the two slices used. The macroscopic cross sections corresponding to
each region in Fig. 4.11 are given in Table 4.10. The boundary conditions used are zero

returning current at the core external edges and no net current at the center of the core.
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Reﬂector' Reflector | Target | Control l Fuel
A
Reflec| Reflec | Target |Control] Fuel | Target [Control| Fuel | Reflec| Reflec
B

Figure 4.11 Production reactor simulution model. All
regions are 18 cm wide. A has symmetry
boundary conditions on the right,

Table 4.10 Mucroscopic cross section for production reactor.

Region | Group | Dy (em) | vE (em') | Xy (em)) | Egg (em')
fuel ! 1.38504 | 2.85416x10-3 | 8.86506x10-3 | 6.44203x10-3
2 0.898526 | 3.70310x10-2 | 2.18825x10-2
target 1 1.17097 | 1.50390x10-3 | 1.29105x10:2 | 7.67664x10-3
2 0.880244 | 8.81440x10-3 | 1.36547x10-2
control 1 1.31919 0.0 1.20594x10°2 | 1.16912x10-2
2 0.901342 0.0 5.63097x10-
reflector] 1 1.29000 0.0 8.02913x10°3 | 8,00000x10-3
2 0.883000 0.0 7.96268x 103
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Tuble 4.11 Comparison of the node-average flux value for each node
of the production reactor simulation, The values from

Fourfour.f are larger by the percentage given.

A

Node | Oroup! | Group2 | Node | CGroup | | Group2
1 9.2% 6.0% 6 5.3% 3.1%
2 7.8% 5.5% 7 4.2% 2.4%
3 6.5% 4.9% 8 1.0% 1.2%
4 5.1% 4.2% 9 -0.5% 0.1%
3 4.5% 3.7% 10 -0.8% -(.5%

Eigenvalue  difference  -0.77%
B

Node | Group ! | Group 2 Node | Group | | Group 2
1 9.0% 6.2% 11 -(0.04% 0).6%
2 7.5% 5.5% 12 2.5% 1.9%
3 5.8% 4.5% 13 4.2% 2.5%
4 4.1% 3.8% 14 1.7% 1.6%
b 3.7% 3.4% 15 -0.7% 2.7%
6 4.8% 3.0% 16 -1.5% -0.7%
7 4.2% 2.3% 17 -0.8% -().4%
8 0.9% 1.1% 18 0.9% 0.4%
9 -0.8% 0.02% 19 2.7% 1.4%
10 -1.0% -0.3% 20 4.3% 2.1%

Eilenvulue difference -0.65%
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Table 4.11 gives the percent difference in the node-average fluxes for the two
approximate models (second-order flux shape approximation in energy group one
combined with a fourth-order approximation in energy group two and a fourth-order
approximation in both energy groups). The nodes are numbered from left to right across
the model shown in Fig. 4.11. Node sizes of 9 ¢m were used to obtain the results given.
These nixde sizes were used becausc it was determined that Fourfour.f gave accurate results
for model A and madel B of the production reactor simulation for this node spacing.

Tuble 4.11 shows that the eigenvalue from the unmixed approximation for model A is
0.77% smaller than the eigenvalue from the mixed approximation (second-order flux shape
approximation in energy group one and a fourth-order approximation in energy group
two). This fuct suggests that the use of the mixed approximation for this problem is
advantageous (results in Hule accuracy loss).

‘The difference in the node-uverage fluxes from the two approximate maodels for model A
runges from -0.8% to 9.2% in energy group one and -0.5% 10 6.0% in energy group two,
The lurgest difference values for both energy groups oceur in the first two nodes,
corresponding to the reflector region (See Fig. 4.11). Therefore, the values in both encrgy
groups again suggest that the use of the mixed approximation for this problem is
advuntageous.

Based on the differences in the node-average fluxes from both energy groups and the
ecigenvalue difference, the use of the mixed approximation when applied to model A of the
production reactor simulation is advantageous.

Figure 4.12 shows a plot of the flux for model A as a function of position in each
energy group for the two approximate mudels. ‘The position increases from left to right
ucross model A shown in Fig. 4.11. The plot for energy group one shows thut the flux
from the two approximate models is essentially the same. This is also the case for energy
group two, The flux from the two approximate models is essentially the same in Fig, 4.12

for energy group two,
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Figure 4.12
Energy Group One Flux as a Function of
Position for the Production Reactor
Simulation Model A
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Energy Group Two Flux as a Function of
Position for the Production Reactor
Simulation Model A
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Table 4,11 shows that the eigenvalue from the unmixed approximation for model B is
(.65% smaller than the eigenvalue from the mixed approximation (second-order flux shupe
approximation in energy group one and a fourth-order approximation in energy group
two). This fact suggests that the use of the mixed approximation for this problem is
advantageous (results in little accuracy loss).

The difference in the node-average fluxes from the two approximate models for model B
ranges from -1.5% to 9.0% in energy group one and -0.7% to 6.2% in energy group two.
The largest difference values for both energy groups occur in the first few nodes,
corresponding to the reflector region (See Fig. 4.11). The difference values in the

remaining nodes for both energy groups are all less than 5%. Therefore, the values in both
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energy groups again suggest that the use of the mixed approximation for this problem is
advantageous,

Based on the differences in the node-average fluxes from both energy groups and the
eigenvalue difference, the use of the mixed approximation when applied to model B of the

production reactor simulation is advantageous.

Figure 4.13
Energy Group One Flux as a Function of
Position for the Production Reactor
Simulation Model B
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Energy Group Two Flux as a Function of
Position for the Production Reactor
Simulation Model B
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Figure 4.13 shows a plot of the flux for model B as a function of position in each
energy group for the two approximate models. The position increases from left to right
across model B shown in Fig, 4.11. The plot for energy group one shows that the flux
from the two approximate models is essentially the same. This is also the case for energy
group two. The flux from the two approximate models is essentially the same in Fig, 4.13

for energy group two.
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4.5 Summary

The application of the solution method has been presented in this chapter. Three reactor
types were modeled to examine the usefulness of the quadratic flux shape approximation in
energy group one and quartic flux shape in energy group two. Because the solution
method presented in Chapter 3 involves coupled equations and two iteration loops,
computer programs were written to aid the solution. The results from the two computer
programs for graphite reactor, pressurized water reactor, and heavy water reactor test
problems were presented.

Chapter 5 discusses the conclusions that can be drawn from the results presented in this
chapter. Also included in Chapter 5 are some recommendations for further study relating to

the use of mixed flux shape approximations.
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Chapter 5
CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The use of a second-order flux shape approximation in energy group one and a fourth-
order flux shape approximation in energy group two (the mixed approximation) as
compared to a fourth-order flux shape approximation in both energy groups results in
considerable loss in accuracy. The accuracy loss, in node-average flux, occurs for
pressurized water reactors composed of homogeneous regions of varying compositions.
This accuracy loss is probably due to the inability of the mixed approximation to account
for the changes in the flux shape across the core. Because the accuracy loss is large for the
pressurized water reactor modeled, the mixed approximation should not be used for this
type of reactor composed of homogeneous regions of varying composition.

The mixed approximation does not result in large losses in accuracy for the heavy water
reactor and the graphite reactor modeled . This is the case since a quadratic function is
probably sufficient to simulate the flux in energy group one for these two reactor types.
The mixed approximation can be used for heavy water and graphite reactors.

The overall conclusion from the present numerical comparisons is that further
investigation into the accuracy and computing time is necessary before any quantitative

advantage of the use of the mixed approximation can be determined.

5.2 Recommendations

The work performed in this thesis considered slices of reactors composed of
homogeneous regions. One area to investigate is the inclusion of heterogeneities in the
regions. A good way to include these heterogeneities is to use discontinuity factors. If the

discontinuity factors are found for groups of regions using a second-order flux shape
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approximation in energy group one and a fourth-order flux shape approximation in energy
group two then the factors could account for the shape approximation as well as the
heterogeneity. With the discontinuity factors accounting for both items, the results
obtained could be better than the results obtained in this thesis.

Another area to investigate in order to examine the benefits of using a mixed
approximation is the computing time for each approximation. The computer programs
associated with this thesis were written to test accuracy not computational speed.
However, it is a combination of speed and accuracy that is needed when solving for the

neutron flux across the reactor core.
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