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ABSTRACT

The neutron flux across the nuclear reactor core is of interest to reactor designers and
others. The diffusion equation, an integro-differential equation in space and energy, is
commonly used to determine the flux level. However, the solution of a simplified version
of this equation (multigroup form) when automated is very time consuming. Since the flux
level changes with time, in general, this calculation must be made repeatedly. Therefore
solution techniques that speed the calculation while maintaining accuracy are desirable.

One factor that contributes to the solution time is the spatial flux shape approximation used.
It is common practice to use the same order flux shape approximation in each energy group
even though this method may not be the most efficient.

The one-dimensional, two-energy group diffusion equation was solved, for the node
average flux and core k-effective, using two sets of spatial shape approximations for each
of three reactor types. A fourth-order approximation in both energy groups forms the first
set of approximations used. The second set used combines a second-order approximation
in energy group one (the fast neutron group) with a fourth-order approximation in energy
group two (the slow neutron group).

Comparison of the results from the two approximation sets show that the use of a different
order spatial flux shape approximation results in considerable loss in accuracy tbr the
pressurized water reactor modeled. However, the loss in accuracy is small for the heavy
water and graphite reactors modeled.

The use of different order approximations in each energy group produces mixed results.
Further investigation into the accuracy and computing time is required before any
quantitative advantage of the use of the second-order approximation in energy group one
and the fourth-order approximation in energy group two can be determined.
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Title: Professor of Nuclear Engineering
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Chapter 1

INTRODUCI'ION

1.1 Motivation and In_odu_tio!l

Many characteristics of a nuclear reactor core, criticality and burnup for example, can

only be determined once the neutron population in space and energy across the core is

known, Calculation of the neutron population, however, is bo_hdifficult and time

consuming even when automated. Therefore, methods to speed the calculation while

maintaining accuracy are always being investigated.

Knowledge of the neutron population during both transient and _;teady-stateoperations

is necessary, The behavior of the population during transient operation is more difficult to

calculate, ltowever, knowledge of this behavior is equally important as the knowledge of

the population during steady-state conditions,

One common method for detemlining the neutron population for a steady-state reactor is

to use the diffusion equation, an integro-differential equation in space and energy. It is

standard practice when solving this equation to cast this equation into a set of space-

dependent equations by partitioning the energy range into a number of "energy groups" and

defining group-averaged parameters within each energy group. The result, called the few-

group diffusion equations, is a set of coupl_ differential equations.

When solving the few-group diffusion equations, it is common practice to use a finite-

difference method, tlowever, a large number of grid points need to be used when

investigating a commercial reactorcore and, consequently, the computation time is

considerable.

A solution technique that is becoming more common is the use of nodal methods. In

this method large homogenized regions replace a number of small regions with w_ried

compositions. The associated r_luction in computation time is substantial. However,

there is still room for improvement.



In addition to the number of spatial regions used in the solution method, the spatial

shape of the neutron population in each region and energy group is important. The

mathematical order of the assumed spatial shape of the population is directly related to the

solution time and the accuracy of the solution. For each energy group, the same order/fom_

of the spatial shape of the population is used when solving the few-group diffilsion

equations using nodal methods. However, the actual neutron population shape in each

energy group is different. The shape in the high energy groups is much smoother than the

shape in low energy groups.

The use of different order polynomials for the s0atial shape of the flux, defined as the

t _ I.neutron density times the neutron speed, in each energy group is investigated in this thesis.

The results obtained by solving the few-group diffusion equations using mg,tal methods

with different order and the same order polynomials, by energy group, are compared. A

simplified case involving only two-energy groups and a one-dimensional reactor is

considered.

1.2 Back_ound

1.2.1 Diffusion Theory

The continuous-energy diffusior_ equation can be derived using the P-1 approximation

to the Boltzmann transport equation assuming that the source of neutrons is isotropic[ 11.

This assumption, however, limits the regions of the reactor in which diffusion theory can

be applied. Two regions in which the theory is not valid are near boundaries and in highly

absorbing materials. By integrating the continuous-energy equation over an energy group

g, the few-group diffusion equations can be formed. The resulting coupled differential

equations, coupled by energy groups, incorporate energy group parameters. It is through

the careful definition of these parameters that the limitations on diffusion theory can be

reduced.

I 0



If the reactor is partitioned into subregions and equivalent group parameters are defined

such that intentction rates within each subregion are reproduced in an integral sen_z121the

applicability of diffusion theory can be extended. Nodal methods can then be used to solve

the few-group diffusion equations if equivalent parameters can be found such that the

reactor is represented by a few large homogenized regions131.

1.2.2

The qu'mtities determined using n(_tal exluations are the volume-averaged group-tluxes

in each node, These fluxes are related to each other mathematically through the use of

"coupling constants"l 2 j.

An important, and difficult, step in the derivation of the nodal equations is the

. "121,determination of these "coupling constants , The relation between the net current across

the node surface, the node-average flux, and the node-average flux of the neighboring

nodes for each energy group is governed by these constants. One way to determine the

constants is to expand the transverse integrated group-fluxes in each node in polynomials.

The accuracy of the "coupling constants" is then dependent on the order of the

polynomials.

1.3 Qb_iectiveand_Summary

A comparison of the results, flux and multiplication fiLctor,obtained by solving the two-

group diffusion equation using nodal meth(xts for equal and varied ix)lynomial orders of

the spatial shape of the flux in the two energy groups is carried out. Because of the relative

simplicity of the equations to be solved, a one-dimensional reactor is used for the

comparisons. The objective of this work is to detenrfine the error introduced by using

polynomials of different orders in the two energy groups. Three reactor types (pressurized

11



water reactor, heavy water reactor, and graphite reactor) are examined in order to gain

insight into the applicability of this technique to various designs.

There are three parts to the work performed: the derivation of the nodal equations, the

development of the solution technique, and the application of the solution method.

Chapters 2, 3, and 4, respectively, are devoted to the discussion of each of these

components. An overall summary and recommendations for further research are contained

in Chapter 5.

12



Chapter 2

DERIVATION OF NODAL EQUATIONS

2.1 Introduction

The derivation of the nodal equations is presented in this chapter. These equations are

derived for a one-dimensional system with two energy groups. Up-scatter from thermal

energies and fission neutron appearance in group two are assumed to be negligible in the

derivation. All of the equations are derived using a quartic approximation for the spatial

shape of the flux. In this way the equations for the two energy groups can be derived

simultaneously and the quadratic approximation can be obtained by simplifying the

resultant equations. Because a fourth-order approximation is used, five coefficients are

needed for the flux expansion in each node. Two of these coefficients can be eliminated by

imposing flux and current continuity conditions at the node interfaces. Three nodal

equations are needed to determine the remaining three coefficients: the node average-flux,

the third-order coefficient in the flux expansion and the fourth-order coefficient in the flux

expansion.

The derivation of the nodal equations begins with the determination of an equation for

the scalar flux density. This is done by integrating the Boltzmann transport equation over

all directions and then over energy group g and by imposing Fick's Law. The equation

that results is called the multigroup diffusion equation.

In order to form the nodal equations for the node-average flux, the one-dimensional

multigroup diffusion equation is integrated over the width of each node. The expression

that results, called the nodal balance equation, relates the net current density at the node

surfaces to the node average-flux. Fick's Law and the flux expansion are then used to

form a second relation between the current density and the average flux in adjacent nodes.

This second relation closes the system of equations for the flux.

13
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The multigroup equation combined with the flux expansion is the starting point in the

derivation of the nodal equations for the expansion coefficients. This equation is integrated

using weighting functions to obtain a relation between the expansion constants, the current

densities at the node surfaces and the node fluxes. The second relation between these

parameters is obtained by combining Fick's Law and the flux expansion. Through the

manipulation of the two relations found, the final form of the nodal equations for the third-

and fourth-order expansion coefficients can be obtained.

2.2 _rivation of Ouartic Flux Expansion

The spatial shape of the flux is assumed to be a fourth-order polynomial in the following

general derivation of the nodal equations. It is convenient to assume a general form having

some of the unknowns of the problem as coefficients. Accordingly the form chosen is

--i P_-(x)_ + i+I P3(x)Cig+ P4(x)C_g 2,1• g(x) = P_(x)_g + P,t,+(x)_g +

where

P_(x), Po(x), Po+(x) - second order polynomials in x,

P3(x) - third order polynomial in x,

P4(x) - fourth order polynomial in x,
--i
tl)g . average group g flux in node i,

i
tl)g . group g flux at left edge of node i,

i+l
Og - group g flux at right edge of node i,

Cig - third-order expansion coefficient for
group g flux in node i,

and

Ci4g - fourth-order expansion coefficient for
group g flux in node i.

14
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Before Eqn, 2. I can be used, the x-dependence of the five polynomials must be

determined. This is done by placing conditions on each of the polynomials.based on the

i d_i+ 1
fact that the flux must equal Og for x on the left edge of node i, equal -,-g for x on the

"-'-,i

fight edge of node i, and equal O'g when integrated over the node width. Table 2.1 gives

the conditions as they apply to each poiynomial[4]. By applying these conditions to the

polynomials of second order the resulting equations[ 4] are

po.(x) = x_:_._l
hi _l'h-_{iXi+l'X)} = v(3v'2)' 2.2b

and

V_x) = _(x-x_ )(x_+_-x)= 6v(1-v)
2.2c

where

Xi+l - right edge of node i,

xi- left edge of node i,

hi = Xi+l - xi, width of node i,
and

v = (x -xi) / hi.

An additional condition placed on the fourth-order polynomial is that the polynomial tnust

be symmetric about the center of the node. Using this condition and those from Table 2.1,

the third- and fourth-order polynomials become

P3(x) = v(1-v)(v-,5) 2.2d

and

15



P4(x) = v(1-v)(v2- v + .2). 2.2e

Table 2.1 Value of polynomials when evaluated
at node edges and when integrated
over the node width. Adapted from
reference number 4.

Xi Xi+l ]Idx
Ill I[I I I

p_ 0 0 1

p_. 1 0 0

.........pc,, '0 1 0

.........P3 0 0 0

P4' 0 0 - 0--
.........

2.3 Derivation of the Nodal Equations for Inner Nodes

In a one-dimensional system, the nodal equationsrelate the parameterof interest in node

i to the parameter in the nodes on either side, nodes i+1 and i- 1. For this reason, the nodal

equations for the outer two nodes, nodes 1 and N, must be derived separately from those

for the inner nodes. Section 2.4 details the derivation for the outer nodes while this section

considers the inner nodes.

2.3.1 Derivation of th_ Flux Nodal Equation

Integrationof the Boltzmanntransport equation over all directions and over energy

group g results in the multigroup neutron conservation equationl21. This equation in one-

dimensional form is

16



+Zg(X)%(x)=g'=l

+ _ _gg,(x)_g,(x) g=l,2,...,G 2,3g'=,l,g'#g

where

Jg(x) - net current density in group g,

_g(X) - total macroscopic removal cross-
section for group g,

q>g(X) - scalar flux density in group g,

_. - multiplication factor, k-effective,

Xg "fraction of fission neutrons emitted
in group g,

v_fg(x) - number of fission neutrons emitted per
fission times the macroscopic fission
cross-section for group g,

_gg,(X) - macroscopic scattering cross-section
from group g' to group g,

and
G - number of energy groups,

The right-hand side of Eqn, 2.3 is the source of neutrons in group g and will be replaced

by Sg(x),

Integration of Eqn 2,3 over the width of node i gives the nodal balance equation

Jg(×i+l)- Jg(xi)+ _hi*lg - S_ 2,4

where

Jg(Xi+l) - net current density at xi+l for group g,

Jg(xi) - net current density at xi for group g,
i

Igg - total macroscopic removal cross-section
for group g in node i,

17
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-i
Og - average group g flux in node i,

and

Si - sourceof group g neutronsin node i.

In order to solve this equation (which contains two unknowns, the flux and the current

density) a second relation is needed. This relation is obtained by using Fick's Law. In

one-dimensional, energy group form Fick's Law becomes

Js(x) = -Dsdx-_s(x)

where

Dg - diffusion coefficient for group g.

When Eqns. 2.1 and 2.2 are substituted forOg(x), the previousequation becomes

_hi hi " hi "

-Dh(_i)(l-2v)(2v 2- 2v + .2)ci4g 2.5

where

Dig- diffusion coefficient in node i for group g,

Now that the two relations between the current density and the flux have been

detemlined, it is a matterof algebraic manipulationthat leads Io the nodal equation tbr the

flux. The manipulation proc_ure is outlined below.

1. Using Eqn 2.5, the sum of Jg(xi) and Jg(xi+l) is determined
for node i.

2. By combining the result of Step 1 with Eqn, 2.4, Jg(xi+l)
can be eliminatedand a relationbetween Jg(xi) and the

18



coefficients in the flux expansion can _ detennined.

3, After using Eqn, 2,5 to determine Jg(xi), the equation is
chi+lused to eliminate -.-g from the result of Step 2.

4, Repenting Steps 1,2, and 3 for node i-I results in a
second equation for Jg(xi).

, , i

.5. Using the result of Step 4 to eliminate @gfrom the result
of Step 3, an equation relating Jg(xi) to thc average group
flux and the third- and fourth-order coefficients for
nobles i and i-1 is obtained

6, The final step is to use the result of Step .5to construct
Jg(xi) and Jg(xi+ I) and put these relations into Eqn, 2,4,

After these steps are carried out and the equation simplified, the n(xlal equation for the

mxle average group flux in the inner nt×!es takes the form

i ......i -,i ....I izi. .l_i, I IZi) I_i_ 1[Li) I

[)!L(K_ + K_*g')]Siu+ ._jL:LKi. '1 hi, L Ki*'Si,I

' 4 i. I '

l( I,..,,,c.!,;," lb3_ 2_1_ .: i=2, 3,.,,,N-I 2,6

where

KI, l[&+!:&"! K',_=2-3,&z,

, ' ....i , _i i(1),=-.l{,,zi.,,', =),,, ,
),.

N - ntim_r ot"ntxles.

19



The sourcetemls reduce to the relations al_)ve because of the assumptions of no up.scatter

and that all fission neutrons appear in group I,

2,3.2 Derivation of Third-and Fourth,Ol_er Expansion Coefficient Nodal Euuations

A weighted residual methodJ2l is used in thederivation of the expansion coefticient

ntdal equations, Because there are lwo unknown constants, two linearly independent

weight functions are used, The weight functions used arc (v. ,5) and (3v2- 3v + ,5),

The derivation pr_eeds by substituting [.tins. 2, I and 2,2 into Eqn, 2,3, with the right-

,ICII()I! andhand sidereplacedbySg(X), This equationisthenmultipliedhy theweight fu' ''

integratedoverthe m_lc width(x fromxi to xi+ I or v from() to I ), At this point,the

equations for !he two energy groups must be treated separately because of the difl'ercnce in

the sourcev_rnbs.Thedifferenceis madeapparenthy the useol"the weight functions. The

_sulting equations

llz

24 I)_ _. I)_ k 2.7

(,! l)i,. l(i hi_i' + | .... hi)(_,, + ....I5hi 21() _ 210 ;_ hiC_42
_i

v_'l_
120 l)il _ _I I)_ _ 2 J2), 2._I

i

hf - '. Z_(J + J2),° ...... +
i

24 1)_ IJJ2 2.')

and

hi 21(,11+(._I " hi 2)21_) i 21() _a

2O
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2,4 UQund.ry Conditions and Derivation of ttle Nod,! _uations For Outer Nodes

2,4, I Bounder Conditions
v

Thetxlundarycondition imposedis thatthecurrentin the x-direction tit theedgeof the

reactorequalsto a ,,:onxt.nt,the albedo,timex the flux at the edge, In energy l_oup form

.nd for the right and left edgesof the reactor, the boundaryconditionstakethe form

JM(XK)= (X_e_M(XR)

.nd

J_(xt.)=-CX_l(bM(xL)

where

OtML.- al_do for theleft edgeand_roupg
.nd

(x_i,t- .ll:,edo for the right edgeemdgroup 4,

With this t'oml,the l_)undaryconditioncanrange frem zeronet current (alphaequals_,_ro)

to zeroflux (alphaIs large) =itthe_u_:torboundaries,

2,4.2 Derivation of th;!:lux Nodal _uation t'or._e N

"111csteps in the manipulati(in of the equations in Subsection 2.3,1 that result in the

nodal equation for the flux in the furthest right nixie, n¢xl¢N, are as follows:

I l,qn. 2.5 is used to determine Jg(xR) where i=_N,i+l=R,
and v= I,

I(
2, The tx_undarycondition is used to ¢linlirlate _ from

the result of Step 1,

3, 'l'h¢ sum of JB(XR)and Jl_(XN)are determined using

22



Eqn, 2.5.

. Iql

4. The boundary condttton is used to eliminate _it from
the result of Step 3,

5. Eqn. 2,4 written for node N ts used to eliminate Jl_(XN)
from the result of Step 4.

6, ¢; is eliminated fromthe previousresultusin$ the
resultof Step 2.

7. Step 5 fromSubsection 2,3.l is used to determine
JtI(XN). This relation and thatresultingfrom Step6
above are substituted Into Eqn, 2.4 wrttten for n_e N,

Afterrearrangtn$temls, the n(_al equation forthenode averagegroup flux is

+X_hN)(b_ -

D;' 3 3D;"
- ,_KI_)C4_+ n,l_4_K4n_+i n n l_l_,.,n_n.i

2 2 _ __ 2,12znN

where

.3_# .t
=,,,.cI,r+

2,4.3 l)._ivatlo_n:ofth¢[qUXN__alEqt!!lttonl'or N_e_l.

The stepsin the manipulationof the equations in Subsection 2.3,1 that result in the

nt_talettutttionfor the flux in the furthest left n(_te, node I, tireas billows:

1. Eqn. 2.5 is used to determine J$(xI) where i=I, t+1_2,

23



J

andv=O.

i
2. Theboundaryconditionis usedtoeliminate_j; from

the resultof Step 1,

3, The sum of Jg(x1)andJg(x2) are determinedusing
Eqn, 2..5,

I
4, The boundaryconditionis usedto eliminate_j from

the resultof Step3,

5, _n, 2.4 writtenfor node 1 is used to eliminateJg(x2)
from the result of Step4.

6, _[ is eliminatedfromthe previous result using the
result of Step 2,

7. Step 5 from Subsection 2,3,1 is used to detemline
Jg(x2), This relationand that resultingfromStep 6
above are substituted intoEqn.2.4 writtenfor node 1.

After rearrangingterms, the nodal_luation forthe node average group flux is

5ht 15 15

2ht

where

.p

+ .fi.)t
K_g '= OtlgL,{ DI hi ,

24



0

2,4.4 Derivationof theExpansionCoefficientl_odaLEquatio_lsin Node N

The nodal equations for the third-and fourth-orderexpansion coefficients, Eqns. 2,7,

2,8, 2.9, and 2,10, dependonly on node i quantities. For this reason, the expansion

coefficient nodal equations for node N do not need to de derivedseparately,

ltowever, Eqn, 2,11, the sum of the current on each side of the node, depends on the

node of interest and the two neighboring nodes. Equation 2,1! is therefore not valid for

node N. For this reason, a relation valid in node N must be derived. This relation is

fomaed by summing Jg(xa), fomled from the result of Step 6 Subsection 2.4.2, and Jg(x N)

for node N, formed from the result of Step 5 Subsection 2.3,1, The nodal equation tbr the

sum of the edge currents for node N is

h__ --N t,,N trN-I_ N'IJt_(xR)+ Js(XN)= ( K_s- K_s)K_tOg + r,,l_n.3t_,vg

4q

I* 3I_ 3D_" 2hN

+2 ''tg_'3g + 5hN 15n.lg'-.4g 2.14

2.4,5 Derivationof theExpansion C_fficient NodalEq_,lationsfprNOde_I.

The nodal equations for the third- and fourth.order expansion c_fficients, Eqns. 2,7,

2,8, 2.9, and 2,10, depend only on node i quantities. For this reason, the expansion

coefficient nodal equations for node 1do not need to de derived separately,

However, Eqn. 2.11, the sum of the current on each side of the node, depends on the

node of interest and the two neighboring nodes, Equation 2.11 is therefore not valid in

node 1. For this reason, a relation valid for node 1 must be derived, The relation is

fomaed by summing Jg(Xl), formed from the result of Step 6 Subsection 2,4.3, and Jg(x 2)
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for node 1, formed from the result of Step 5 Subsection 2.3.1. The nodal equation for the

sum of the edge currents for node 1 is

1 1 --1 t-2 re2 _ I_LK_g+ hi Kl2g)
Jg(Xl) + Jg(x2) = (-h_l Klg + Klg)K3gl:I)g - ,-lgr_3g-_'g + (-D1 3D---_g

Slg

1 2 ltr2 _2
h2 K2g S2 + (._..__.K_g +_Klg) C_g + _,.lg_3g

3I_g 2hl

+<-__l_ +1 25hi 15Klg) " 15**lg'_4g 2.15

2.5 Summory

The derivation of the nodal equations for a one-dimensional, two energy-group system

has been presented in this chapter. These equations provide relations for the calculation of

the node average group flux, the third-order expansion coefficient, and the fourth-order

expansion coefficient in each node.

Chapter 3 describes the method used to solve these nodal equations in order to obtain

the node average group flux for the system of interest.
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Chapter 3

SOLUTION METHOD

3.1 Introduction

This chapter covers the second step in the work performed, the determination of the

solution method. Since the nodal equations for the node average group fluxes involve

quantities from the node of interest and neighboring nodes, the solution of these equations

starts by forming matrix relations. Matrix equations are not necessary when solving for the

third- and fourth-order expansion coefficients since the nodal equations only contain

quantities for a single node.

A double iteration scheme is used to obtain the node average fluxes from the six nodal

equations. This scheme is necessary since the flux depend on the expansion coefficients

and the expansion coefficients, through the edge current relations, depend on the fluxes.

3.2 Matrix R_!ations

In order to solve the nodal equations derived in Chapter 2, the equations for the node-

average group-fluxes are written in matrix form. Equation 2.6 for group g takes the form

[Agl [Og] = [Bg] [Sg] + [Hg] [C3g] + [Lg] [Cng] 3.1

where

[Ag], [Bg], [Hg], and |Lg] - tddiagonal NxN matrices of group g
material constants,

[Og] - column vector of length N of the node average flux for
group g,

[Sg] - column vector of length N of the neutron source for group g,

[C3g] - column vector of length N of the third-order expansion
coefficient for group g,

and
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[C4g]- column vector of length N of the fourth-order expansion
coefficient for groupg.

The matricesand column vectors in Eqn, 3.1 areformed by writing each row for a
i

different node i. F_.quations2.13 and 2.12, respectively, are used when relationsfor nodes

1 and N are required, Equation 2.6 is the relation for nodes 2 through N-1.

3.3 SoltltionScheme

The quantity of interest is the node average group flux. However, this flux is dependent

on two unknown variables, the source and the expansion coefficients. Both of these

variables are dependent on the flux and the expansioncoefficients are also dependent on the

source. Because of this circular relationshipa double iteration solution scheme is

necessary.

3.3.1 Flux Iteration

The flux iteration involves the convergenceof the flux and k-effectivefor fixed

expansion coefficientsl51. Equation 3.i shows that the node average flux depends only on

the source when the expansion coefficients are fixed. The source, however, is dependent

on the flux (see Subsection 2.3.1) so an iteration is necessary. Using iteration notation, the

relations to be solved for group g are of the form

ISil = IMI [_il

and

IA! I_i_ll = IBI ISil + K

where

I_i+11- node average flux from flux iteration i+l,

ISil - neutron source from flux iteration i,

IAI, IBI, IMI- matricesof material constants
and
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K - constant.
I

In order to solve for the fluxes using equations in the form of Eqn. 3.1, a forward-

elimination backward-substitution scheme is used,

The flux iterationcontinues until either a maximum numberof iterations is reached or

the flux and the k-effectivv converge[5 ], whichever is sooner. The equations for the

convergence criteria are

 t+1 Xi" < e_,
_i+l 3.2

and

_-i+l --il

m'__i+i_ [< e't' 3.3

where

i- flux iteration number,

eZ.- k-effective convergence criteria,
and

e_ - node average flux convergence criteria.

3.3.20uartic ExDansion Coefficient Iteration

The quartic expansion coefficient iteration involves the updating of the expansion

coefficients and the node edge currents. An iteration to detemline tile expansion

coefficients is not necessary since the fourth-order expansion coefficient nodal equations

are independent of the third-order expansion coefficients and vice versa. Before updating

the expansion coefficients, the sum and difference of the node edge currents must be

updated using Eqns. 2.4, 2.11, 2.14, and 2.15. The flux and source that are used on the

right-hand-side of Eqns, 2.4, 2.11,2,14, and 2.15 are the converged flux from the flux

iteration and the source that produced that flux.
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Flux and k-effectiveconvergence criterial5]are used to determine when the quartic

expansion coefficient iteration is complete. The equations for the two criteria are same as

those for the flux iteration, Eqns. 3.2 and 3.3, with i replaced by io where io is the quartic

expansion coefficient iteration number.

3.3.3 Iteration Summary

Figure 3.1 shows the flow of the solution schematically. This figure shows that the

flux loop is inside of the quartic expansioncoefficient loop. Also it shows that there are

two ways that the flux iteration can be stopped, either by reaching a maximum number of

iterationsor obtaining convergence. The expansion coefficient iteration is stopped only

after convergence is obtained.

3.4

The solution method to be used has been presented in this chapter. Because of the form

of the nodal equations as derived in Chapter 2, the method involves a double iteration.

Two convergencecriteria are used to determine when the calculation is complete. Both the

k-effective and the node average flux areconverged.

Chapter 4 details the final part of the work, tile application of the solutionmethod

presented in this chapter.
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............... Initialize flux
I Determine new/ _ ............. . ! iteration

[ _, _, andS x t2uartlcexpans_on [ countcoefficient iteration
loop

Increment
t

expansion
Max. iteration count

inner?

Flux Calculate new
iteration Converged? J sums and C's
loop

Conver ,es

"to Stop

I Increment flux
_-iteration count

i i

Figure 3.1 Schematic of iteration loops.
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Chapter 4

APPLICATION OF SOLUTION ME_IOD

The application of the solution method developed in the previous chapter is presented in

this chapter, Because the solution method involves two iteration I_ps and coupled

equations (coupled by nodes), the solution was automated,

Before the computer programs were applied to any test cases, they were _nchmarked,

The benchmark u._d is the International Atomic Energy Agency (IAEA) Light Water

Reactor (LWR) Benchm_k Pmblenl,

Three types of reactors arc modeled and used to examine the useflllness of the quadratic

flux shape approximation in energy group one and quartic flux shape approximation in

energy group two. Th¢_results of the two computer programs fi_rgraphite reactor,

pressuri_d water reactor, and heavy water _actor test problems were compared.

4.2 Comnuter Prmzrams

The solution method described in Chapter 3 was c_u'riedout through the use of Project

Athena, the M.I,T. computer network, A computer program was written based on the

equations in Chapter 2 written in the foml of a matrixequation and a set of algebraic

_O ¢' _ _equations, This program was written in F R I'RAN 77 using single precision vanables,

Figure 4.1 shows the flow of the compuler program schematically.

The program as written, using the equations in Chapter 2, is for a fourth-order flux

shape approximation in both energy groups. This program is named Fourfour.f,

In order to obtain a program for a second-order flux shape approximation in energy

group one and a fourth-order flux shape approximation in energy group two, Fourfour.f

was modified and named Twofour, f,
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Figure 4.i Computer program flowchart.
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Two m_iflcattons weremadeto obtainthes_ond prol_nml.First, lhethird, and

fourth.orderfluxexpansioncoefficientsweresetto zerofor enerl_ygroup¢)nein the flux

and sum of currentequations,i_tns. 2.6, 2.Ii, 2,12, 2. I.!1,2.14, and 2.15. And second,

theexpansionc_[flcient equationsderivedusinlj thegroupone flux expansion,F.qns.2,7

and2.H,were eliminate,

4.3 BenchmarkPl:gblem

The_nchmark problemu,_edwahtheThree-din_n._iomdI,WR Problem(3D IAEA

BenChmarkProblem), This problemis I_tsexlon tWO-l_mupdiffusion theorywith no net

currentat symmetryI'x)und_riesandnoinct)minl_cu_nl at external_)und==ries.Bec==use

thecomputerprol_ram.,iwrittenfor thisthest_arc for one-dimensionedsystcm_,a _licein

lhe x-direr:liona! y=Oandz=Owas u._d Io le,_!the pro_ram._.Node.sizes(_f2() cm, I0 cm,

and5 cm wereusedin the _nchmarkini_of thepr_n=m_.

The resultsfrom runsof Ft)urfour.fat thethreenode_izeswerecomparedwith the

resultsof theidenticalproblemsrunbya moregeneralccxlclSl,Agrccmcntto four places,

variationor le._sthanonetcn-thou.,_andth,wa.__ccnin thecigcnv=duc.The .shapeof the

flux for c=tchenergygronpfrom Fourft_ur.fwa,_withinone percentof theresult_from the

more l_encralcexle.

The resultsfrom pJnsor Tw()l'our,f at the 20 cm n(_<lc,_izewerecompared_ilh the

resultsot"theidentical pn)blemnm bya more I_ener_lc(_del_l.A_reement to t'()urpl_ces,

vari=ltionof lessthanone ten-thousandtll,was ._ecnin theeiBenvalue.The shapeof the

flux for e¢=chenerBy_mup from Twofour.f waswithin onepercentof the resultsfr()n) the

moreBenendcode,
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4.4 _sL Problems

4,4,I UranhltcRe_tor

The testpmbl©m use_tom_©l a8raphit¢reactorwas asliceofaGenendAtomics

MIiTOR, 'I_¢one.dirn©nslonalsllc¢u_d containseachorthefiverel_Ionsthatnmk¢ up

theMI_rI_IRcore:fourreflectorregionsandonereljJoncontainingflssilematerial,l_iljU_

4.2showstheorderoftheresionsinthesliceu._d,The macm_opic cross_ctlons

corrcspondinl_to each region in FiB.4,2 are I_ivenin Table 4.1. The _undary conditions

used are _em flux at the center of the core and no incoming currentat the external edse of

thecore,

I

.s 4 3 2 1 J

IT""Figure 4,2 MI _,m model, Region i is 142,6cm
wide, region2 is 92./cm wide, region3 is
33.Hcm wide, region 4 is .1.t.5cm wide,4ind
r_gion 5 is 54,9 cm wide, Syt|lmetry _)undary

conditlonson theright,

Table 4,2 gives Ihe perccnldifference in Ihe n¢_le-avenlge fluxes for the two

approximate mc_lels (second.order flux shape approximation in energy group one

combined with a fourth.order approximation in energy group two and a fi)unh-order

approximation in hoth energy groups), The n(_les are humored th)m left to right across

the model shown in fig, 4,2, N(_le siT.esof 13,73 cm in region 5, 8,37 cm in region 4,

8.45 cm in region 3, I 1.51 cm in region 2, and 10,33 cm in region I were used to obtain

tlleresultsgiven,'l'i)esenl_lesi_.eswere0sed_mse itw=isdetenninedtl)_llFourfi_ur,f

gaveaccunlteresultsfortheMIITGR fiwthisnodesp41cing,
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it i

Tnhl©4, I M_ro+,+copi¢cm_ _clion.s for _rnphtle_.clor,

_-_: " i'_ ...... L __ ", ........ , ,.....

._Rclto. Or.up+, ih(_m) (cm[,i)

I i ' 1,14J9_ (),(l 4,0X940xI()":_' 4,()Mi *:,3_1()"3

...................... 2 (),g63447 ......,......()_!) ..... , 1,3315fix1():4+,...... °_...............

2 I 1,40750 J,46297xll) "4 j,,_2021xl() "_ 2,37932_,1()'-_

2 1,15689 5.149H72XI(P11 3.37634X I().3
...... -+ _. + i![ir II I I i]mllll i i _ [ iii}l[[ll -- ]L/ [ II]_1111[......

3 i i,79242 0,0 2,61(_Xx 1()"j 2,6()554x10"]

2 1,3114,t_ o,() I, 1(_76x I(P4
][11 ii i I ii iiii Jl ]...... :JL_ :++_ ........................................

4 I I, iilg)!J (i,(l 4,211426_10"Jt 4+2(_)95xIll +:t
i

....................... 2 0,MI5_16 ..... 0,0 i,7_312X;I()°4
........ Ell : I I Jill I

5 I I,l)565l) i),() 4,42917xIll °_ 1,42(_5x iI) "_

2 1),7771)_?+ 1).() i .I,IH27l..i,..I()+-4

'l',hle 4,2 showsihnl Iheeigenv+il.efrom the.nmixed ,pproxim.lion is (1,13r,+retailer

IhanIheeigenv_llueIn)m the mixed,ppmxim_tlio. (_e_:ond.orderfl.x ,sh.l_ .ppn_xim.lion

in energygro.p one .nd. tb.rlh+ordcr.ppmxim, lk). inenergygmtipIWO),This t'm:l

,_.ggeslslh=lltile useo1'themixed,ppmximalion for lhis pro_+lemi_+.dv.nl£tgeo.+,+(results

in little =lCctinit:yloss),

Thedit+l_rencein thent-_e-averttgetluxes from the two tlPtm+ximttlei1_1e1_rtlnge,_l+n)nl

+0,6+,_+to 12.IcJt_inenergygroupone til_l,l.(),3_, to I,_J++in e.ergy gnmp two, 'lt_eenergy

gnmp lWOv.lues .gain+_Uggt,P.Sllh.lthe use o1'themixed.ppn)xim;ilionfor Ihi_ problemis

tldv.nl.geous, F,r energygm.p one,T.hle 4,2 showsih!il thedifi_reni:e in tile t!.xes ill

the fuel region, .(_h.,_1:1lhm.gh 20, [ire till les_ilmn I_+ in tih_oh=levtilue, AI_o, lhe htrge

vlllues(grelilerIh|ln 5q_,)of lh¢dit't'crencesi, energy group(me(_'_'tiri. Iheoulemlosl
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reflect_ andthecenlerof theinnemlo.tinflator, _e_ twofacts,forenergygroupone,

c_bin_ ._ugge_tthattheu_ of themixedappmxtm.tlonts.dvant.geou.,_,

B,,,mdonthedtfrerenc©_in thenc"_.,e.nver.gefluxe.,_frombothenergygroupsandthe

eigenvaluedifference,theu_ of themtx_ .ppmxi_lion whenappliedIn theMtI_R ts

advantageous,

Table4,2 Comp_mn of lhen_e.averageflux valueforeach
n_e fortheMItTOR, ThevaluesfromFourfour,f
arelargerbythe_entage given,

..... i i i ILL I j. ,,, L_I Illl ...... .........

Node GroupI , Group2 N_e 0mup 1 (}n)up2 JIIII tl]ll _ _ _ .... Ill I I1111111 I I II

I 12,1_ 1.8% i_ -11,f_% -11.2_ .._
II ,i I IIIIII [ III J. IIJI

I[lln _ I1[ J[L . II III1!1 I I " I

3 '7,1_ i ."/_ i'7 oO..'t_ .0,_ J
..... I1! III IIH I III H II

4 4,1_, 1,6% 18 .0,4% .,0,2%
,,,lf!!,!, .... IH -- ._L !!!! III Ill Ill!r !l I I ]11 II - --

3,3% 1.6% 19 -11,1% 0,I!2%
1[[11111 ......... J NlllII I II I [ ......

6 3,I_, 1.5_, 211 (I.6gt_ 11,:t_1,
..... ]ZJ. = [ _/I I I[ll! I n lllllll[ " L_ JJ II ___:J II .............

7 2,7% I, i 21 1,6% 11,7_,
J_____,_.L[._ ....... IIIIII[ _._ ]TIIr .. i IIIIIIIII_ I I IIIIIII .........

X 1,1_, 1.3% 2,6% • !,(!'_I,_
|[IJ J LL£J I I I I

9 1,9% 1.2% 23 3,6% 1,2_,
I[ I]1/ IL .._ [ I I IIIlI[IJ i - :! IIIII i IIII I I .::j II I .......

I0 1,9% I 1,1% 24 4,5% 1,4% _
: L.:: : .... 2_ I ............ [I II IIIIlll I I1[ ....

11 I,H% 1 1_, 25 5,4% ' ,5¢,q
III .... I III J__ I I I IIIII _rJJ I

12 !,7% I ( } ' 9 % 2 6 6I (_' ! ' _ ' ! ' --.... L ill IJ: :.,_L ......... IIIII L .... :_J

13 0,7% 0,6% 27 6,11% 1,6%
II [I IIIIII I Ul II L_

........................ [
i

14 .0,3% 11,1% 28 6,4_/, 1,7',_i
I | I -., [ IIII i I hl .......
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Figure 4.3 shows a plot of the flux as a function of position in each energy group for

the two approximate models, The position increases from left to dght across the model

shownin Fig, 4.2. The plot forenergygroupone in Fig, 4,3 showsthattheflux from the

two approximate =_eis are es_ntially the same. This is also the case for energy group

two. The flux from the two appmxlmate models is essentially the same in Fig. 4,3 for

energy group two,

Figm_4,3

EnergyGroup One Fluxasa Functlon
ofPoslllonforlheMHTGR

1o3

..... frfrI
twfrl

100
0 100 200 300

position
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Energy Group Two Flux as a Function
of Position for the MHTGR

103, - _ ,,- _ ...... ,..................................,, ............... _.... /=

1o2

¢

lO1

..... frfr2

...... twfr2

100 ...... _. -_ ____..... ., ........ _........... ;..... ,,
0 100 200 300

position

4.4.2 Pressurized LightWaterReit_tor

1'he testproblemused to modela PWR was a slice of the Salem- 1core. Fourone-

dimensional slices wereused, Two slices were in the x-directionat z = 0 and theothertwo

were in thez-directionat y --(), Figure4,4 shows the orderof the compositions in the four

slices used. The macroscopiccross sections correspondingto the compositions in Fig, 4.4

aregiven in Table4.3, The boundaryconditionsused for theslices in the x-directionare

no netcurrentat the center of the core andno incomingcurrentat the externaledge of the

core, The bound_u'yconditionsusedfor the slices in the z-directionare tinalbedoof

0,2493 ! tbrenergy groupone and an albedoof 0.11119 forenergy group two.
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Jlo 31112 103 4 8 9
A

3 1 311 3 116 5 7

B
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C

11112113114115f16117118d19120121r22123124J251261271281
D

Figure 4.4 Salem - 1 models. A and B: all regions are 21.6
cm wide except the first region which is 10.8 cm
wide,symmetry boundary conditions on the left,
regions 7, 8, and 9 are reflectors. C: all regions
are 20 cm wide, symmetry boundary conditions
on the left. D: all regions are 20 cm wide.
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Table 4.3 Macroscopic cross sections for Salem - 1,

....................

I

Composition Group Dg (cm) v,Y.,fg(cm-l) I;g (cm "1) I;gg, (cm"!)

1 1 1,3648 0,005550 0,026132 0,017245

2 0,4826 0,185823 i,0,130772i[11 iii ii i iiii i ii i ii1[i i IIIILIIIIIII ii] I I III I I _ II I ........

2 1 1,3596 0.006267 0.025355 0.015398

2 0,4798 0,230258 0,181915
I Iiii [ iii II [111 i I I i]

3 1 1.3592 0.006269 0,025232 0,015128

2 0,4810 0,230923 0,188426

4 1 1,3594 0.006890 0,025895 0,016386

2 0,4673 0,264760 0,169073
....................... , ........... ,.,.,.j ..... ,,

5 1 1,35890 0.006890 0,025711 0,015981

2 0.46875 0.265512 0.177654
.,, ...................... _,_ , , .,,., .........

6 1 1.3572 0.006894 0,025151 0.014752

2 i 0,4740 0.268552 0.206951
i i i iii i iii ii i L I I III iiiii I

7 1 1,4957 0,0 0.025606 0.022923

2 0.3637 0,0 0,051595
L III iii I I I II II III I I IIII III I ] I .....

8 1 1,3933 0,0 0,021484 0.017943

2 0.3659 0,0 0,068149
,,,- t , i .,,, , ,,, ,,,, i i, ,, 1

9 1 1,6701 0,0 0.032628 0,031408

2 0,3621 0,0 0.039330
,,,,m,, .,, i ,,., ,,, i,, ii ,, , ,, ,,. ,,., ,, ,i ,,,,

10, 20-28 1 1.321964 0,005567 0,028660 0.015178

2 0,486196 0,194976 0,211003
.... , ,,,,, i I ,,,,. ,,.,,, ,,, i

1 1-19 1 1,321964 0.005567 0.028660 0.015178

2 0,486196 0.194976 0.101003
................
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Table 4.4 Comparison of the node-average flux value for each node
Salem - 1. The value from Fourfour.f is larger by the percentage given.

A

Node Group 1 Group2 Node Group1 _Group2

I 5.3% 5,3% 19 -3,4% -3.6%
iHrll I I I

2 5,3% 5,3% 20 -7.5% -7.5%
mmlmimmi.wmimimmma ,,.,,,,i,f,=,_r,..,,,,,,, ,,.,,

3 5.3% 5.3% 21 -I0,5% -10.6%
,,i i II i i i t ,,,, ] i r IMl

4 5.3% 5.3% 22 -12.4% -12.4%

5 5.3% 5,3% 23 -13.8% -13,8%
_i i H H ill ill] H ill i i i I I i ii tu,,-,,,,i i " ir

6 5.4% 5.4% 24 -14,6% -14.6%
i il i H I ] ...............

7 5.4% 5,4% 25 -14.9% -14.9%
I _ III i i Jl I III II i r IIIllllllll

8 5.7% 5.8% 26 -15,3% -15,3%
i II IIIII IIIIH II I I I ! iii

9 6.4% 6.4% 27 -16,0% -16,0%
iiiiii li iiiiii iH il i i| ii [ il i i .........

10 6.6% 6.6% 28 -16.6% -16,5%
. _ ii ii i i i .j_ ii _ . fl i i] ilrlll[lll i[111111II I I

11 6,5% 6.5% 29 -16.0% -15.9%
II ] II I II II I II I II IIII II I III] _1 11 jill

12 ..... 6.2 % 6.2% 30 -14.5% -14.7%, ,, ,,, .................... I,,,.,._..,.

13 5,3% 5.4% 31 -13,0% -13.4%
i r ii illU iiiii : m : i ..... i ii ii ii ...........

14 4.6% 4,6% 32 -11.7% -11.8%
iii] i i1[i iiii i i iii imlll i i m ilml ii m i ii

15 4,1% 4,1% 33 -10,1% -10.2% _
IIIII ..... i ,it IllIIIlll___. I Ill I

16 3.4% 3.5% 34 -8.0% -8.6%
iiii i i iiiii i I IIII m i i ii i

17 2.3% 2.3% 35 -6.1% -7.0%
i i i iu [i i i ii ] ill . iiiii II I I I IIIlll

18 0.1% 0.1% 36 -3,8% -5.4%
iiilil i r i i II _ I ][I Illlll Ilpl I i m Ill II I II

Eigenvalue difference 0.03%j , ...............
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B
............j ......... ,.,,,

Node GroupI Group2 N0d¢ Group 1 Group 2

1 3.5% 3,5% . 11) ...... -1,1% -1,0%[ ] i ii Jill ,,m,,,rl,,, .......

2 3,8% 3.9% 11 11,2% O.1%

3 5,3% 5,3% 12 -1.1% -1,1%
IF I I II II I ]1 Ili_! I

4 5,2% 5,2% 13 -5.9% -5,7%
iii i i i iii ......

5 2.6% 2,7% 14 -9,4% -9,4%
i[ t t i i

6 2,1% 2.2% 15 -11.7% -11,8%
lilt I

7 3,9% 3.9% 16 -15.1% -15.0%
, mr,],,,., ,,, i ill illILIIII I III 1[11Illl ] ............

8 3,3% 3,4% 17 -12.5% -I1.9%
i ii ] iii i illi].fl,lll,,,1,1.1 ii ]1] i [i 11111 i 111 i

9 0,1% 2,3% 18 2,6% -0,4%
Jl_ ii i H l L ii,

Eigenvalue difference 0,03%

C
................ ! ii,ll,i11......... ,L ,, ',

.....Node.... Gr°up_1 Group 2 N°d,e,,, Group 1 Group 2

1 -0,013% -0,012% 6 0,007% 0.007%
I i = .i i L i i illu. i =,,,,,, i

2 "0,012% "0.012% 7 11.1)21% 11.1)21% _
i ] Jll[llll IIIll I II I[lll]_ : ] _ 1 IIIIlll I

3 -0,010% -0,010% 8 0,054% 0.054%
i i i i!J,,i H ,

4 -1),006% -0.006% 9 0.070% 11.1171%
,, ,i ,,,,., ,i i ,a . . rm i i , :ll, i

5 "0,001 "1).00 1%
....... , ul,!lH . i .... .H, = i,, i

Eigenvalue difference 0,001%, jH ,, i ,,,
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D
..................... - irl,r,u t,u,ir : ,i _ ...........

.. N_e,, Group I Group 2 N.ode., Group I,,, Group 2

I 4.7% 4,7% I0 -5,9% -6,0%
i iri_ , L III NI irllllii , ..........................

2 5.2% 5.1% , I1 30.3% 31.2%
r 11 ii jl h,H _,1 II,,,,,,I

3 4.3% 4.3% 12 60.2% 59.3%
11 L I illlilliiiil_i i i II II [ IIIIL II i I ]/I "

4 3.5% 3.5% 13 75.1)% 75.4%
IT I I I I!1 I } "-_ !11 II11 [11111

5 2,4% 2,5% 14 85.2% 85,1%.... _ - __ , I llllllUlliii L_ . • ......................

6 O.1% O,1% 15 911.9% 91.11%
i i i I i 1 ..... iii III1 t11 i 1[11_1111 i i i ]1 iiitlll i

7 -0.1% -0. IOh, 16 94.6% 94.5%
..... i1

iiiiiiii [ ii iiiiii|

8...... -0.6% -0.6% 17 96,7% 96.7%

9 -3.0% -2.9% 18 98.0% 98.1)%.....
_lJII II ILU I IIIII I Ilrl

...... gigenvalue difference 11,1)_15%.................. ...................

Table 4.4 gives the percentdifference in the node-averagefluxes for the two

approximate models (second-order flux shape approximation in energy group one

combined with a tburth-order approximation in energy group two and a fourth-order

approximation in _th energy groups). The nodes are num_red from left to right across

the model shown in Fig. 4.4. Node sizes of 2.7 cm in the first four nodes of mr,_telA and

5.4 cm in rest of model A (four nt_lesper region), 5.4 cm in the first two nt_lesof model

B and 10.8cm in the rest of model B (two nodes per region), 21)cm in model C (one node

per region), and 21)cm in model D (one n(xteper region) were used to obtain the results

given. These node sizes were used because it wasdetemlined that Fourfour.f gave

accunite results for Salem- 1 for the respective node spacing in each model.

Table 4.4 shows that the eigenwdue front the unmixed approximation for model A is

0.03% hu'gerthan the eigenvalue from the mixed approximation(second-order flux slmpe
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approximation in energy group one ttnd a fourth-order _ipproxim_ltionin energy group

two). This fact suggests that the use of the mixed approximation for this problem is

_ldv_mt_lgeous(results in little a¢cunicy loss),

The difference in the node-average fluxes from the two _tppmximule mc_lels for model A

ranges from -16.6% to 6,6% in energy group one trod -16.5% to 6.6% in energy group

two with most of the values greater thnn 5% in absolute value, The largest difference, in

absolute vttlue, for both energy groups of model A occurs in node 28, This node

corresponds to the region just before the reflector regions (See Fig. 4,4). Iiowever, this

region is not the only fueled region th_lthl|s differences of greater thl|n 10%, These t'_lcts

suggest th_ltthe use of the mixed _lpproxim_lttonfor model A with four nodes per region is

not _ldvantageous, Incre_lsingthe number of nodes per region m_lych_mge this result hut it

will also increase the computing time (adding ttdis_ldvlint_lgeto the mixed approxim_ltion),

B_tsedon the differences in the ncxle-uverttge fluxes from tx_thenergy groups trod the

eigenvalue difference, the use of the mixed _lpprc_xim_ltionwhen _lppiied to m_lel A ot'

S_flem- I with four nt_les per region is not ;idv_mt_lgeous.

Table 4,5 gives the percent difference in the ncxJe-_tver_lgefluxes from a lk_urth-order

approximtttion in both energy groups trod a second-order approximtttion in Ix_thenergy

groups t_r model A, A comparison of the values in 'l'tthle4,5 (with absolute values

trudging l'rom 0.1% to 19,6% in energy group one trod l'rom 0.2% to 17,6% in energy

group two) with those in Table 4,4 (with ttbsolute values rttnging from (}.i % to !6.6% in

energy group one lind from 0,1% to i6.5_ in energy group two) shows that ttsecond-

order apprc_ximation in both energy groups dt_s tt _lter job ,tt simuhtting the node-uventge

fluxes than the mixed approximt_tion for m_vdelA except in n_les 32 through 36 which

correspond to the reflector,
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Table4,5Comparisonofthenode-averagefluxvaluefroma
fourth-orderapproximmioninbothenergygroupsanda
second-orderapproximationinbothenergygroupsforeach
nodeofSalem-ImodelA, ThevMue fromthefounh.order

approximationislargerbythepercentagegiven.

.......N_e Group 1 Group 2 , N_e ,_ Group 1 Group 2

I -3.3% -3,2% 19 2.2% 2,5%
............ ]ifilli H i

2 -3.3% -3.2% 20 4,4% 4,5%
................... 111N_i| ii

3 -3.3% -3,1% 21 5,9% 5,7%
.......iii] ii IHIIIBII_[I I J I

4 -3,4% -3,0% 22 7,0% 6,9%
" liT .JI [_. [ ii

5 -3,4% -3,5% 23 7.7% 8,1%
t ii _ ii _,

6 -3,4% -3.6% 24 8,2% 8,7%
....... m,,m,,,i iiilli ......

7 -3,5% -2,2% 25 8,7% 8,3%
.................. i!lll _ ,,11 . I r iii j • . i ii ii IHI II

8 -3.5% -2.3% 26 9.1% 8,8%
ii i , ....... i,,!!11 ii 1 iiii

9 -3.4% -4.6% 27 9,3% 10,1%
[I[Iellel • - ii iii . _ 11 [llj . ]1 [ IILZ

I0 -3,3% -3.8% 28 9,4% II,0%
i i i ii ] il i II iH,i [ ] IIill i i l

I I -3,2% -3,8% 29 I(),1% 6.9%

12 -3,2% -4.4% 30 11,3% 7.4%
HHI|

13 -3.3% -2,2% 31 12,4% 12,1%

14 -3,2% -2,1% 32 13,4% 14,7%
_l ] i ii i H , i i Hi i ll_,_, !l

15 -3,1% -3,0% 33 14.6% 12,8%
................._ ........ iiiii ii i ii i1 ,k 11 i ii i iii i i iiiiiii iii

16 -2.8% -3.9% 34 16,2% 12,3%
........... L ...... i H ]11 i iii ii IH i i i

17 -1,9% -I.0% 35 17.8% 15,3%

18 -0,1% 0,2% 36 19.6% 17.6%

Eigcny,ulue,difference .d).()3_, .............. . .................
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Figure4,5 showsa plotof the flux fornwxlelA asa functionof positionin eachenergy

groupfor thetwo approximaten_xJels,The_sition increasesfrom left to rightacross

model A shownin FiB, 4,4, The node_undaries aredesignatedby theverticallinesone

eachplot. Figure4,5 showsthattheflux from thetwo approximatenwxJelsissubstantially

different in nodes9 through13and 19through28 for energygrouponeandnodes2._

through29 for energygrouptwo,

Figure4.5
rErieflYGroupOne Fluxasa Funcllon
ofPosltlonforSalem-IModelA

1o

i_ 101"

1

position
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Energy Group Two Flux as a Function
of Position for Salem. I Model A

_°2 ]-................... ........._.... ,...............,,_.......... __ ....
'!

101

t_ 1°0

'l'ahl¢4,4 showslh.t thecigcnvalu¢l'mm the unmixedapproximationfor n_xJel B is

(),()3_,_,largerthantht;cigenvaluefr_)mthemixedapproximation(second-orderIlux shape

appr(_ximationin energygroupone anda fourthoorderapproximationin energygroup

two), This fac'tsuggests that the use of the mixed approximation for this problem is

advantageous (n.'sults in little accuracy loss),

The difference in the n_e-avcrage fluxes t'mn'lthe two approximate mtKIclsh)r m(_tcl B

ranges from- 15.1%to 5,3% in energy group one and. 15.()_ to 5.3_, in energy IFout_

two. The largest difference, in absolute value, !',r Ix_thenergy groups of m{_el B (_'¢urs

in n{_lc 16 which corresponds to the region just _l'ore the reflector region, region 5 {,See

Fig, 4.4), This region and Ihe reflector region are the only two that have difl'crcnce values
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g_aterthanI(}%tn a_olutevalue,ttowever,therearetwoadditionalregionsthathave

diffe_ncesof greaterthan5%,inah_lutevalue,fort-_)thenergygroups,"llte_ t',ct._,

,uggestthattheuseof themixedappzoximationForm_el B withtwoncxtesperregionis

Ix_Jcrlin©advantageous,

Basedon thedifferencesinthen_e-averagefluxesfrombothenergygroup._andthe

eigenvaluedifference,theu_ of themixedapproximationwhenappliedtom_el Bof

Salem- i withtwonode__r regionis_rderline advantageou.,_,

Table4,6 Comp.ri_mof then_e-averuseflux valuefroma
fourth-orderapproximationinbothenergygroupsal_ a
_ond.order approximation!n bothenergygroup,for each
n(_eof $alem. 1n_,iel B, I'hevalueI'mmtheFounh.o_Jer
approximationislargerbythermrcentagegiven,

. _ ,, ,: ,, 11 - i _ i/ _ iiiiiiiiiii

N,_F, Groupi Or0,up2 ,N_e G_?,upI Group2i[ i[i]l i H u n i ...............

I
1 -1.4% -0.6% 111 I).(XM% 2.2%

11 ii!! llflilr i,Hii i i!ll .......... m -- - i

2 -1.6% 1!.9% II 11.7% .1.3%
if ii ii i i]! illif flU _ L _ ]

3 -1,3% -2.7% 12 1.1% -1,11%
"ILl ill ii !l!l[ i i I I I I IlllIII!ll ]1 II

4 -1.3% -3.3% 3.X%
" I I I I i_i i L !!l__JJ._J_ I ii

5 -1.4% 11.8ci, 14 2.4% 3.7%
................... [ i_Jjjl_ _j ]lj i iiW[llll - i ii ii i[i iii i l i[

6 -1.2% 1.11% 15 3.3% 3._11%....
i i L i __ ILl[ II I I 1111 I . L- II1_111111 IL II/]11 II iiili!i iI i i Ill

7 -11.9% -2.8% 16 3.6% 6.9%
........ i1 ..... L_ I _.L !ll....... I[ .... iiiiii _ i ii !11111

8 -11.7% -2.6% 17 6.1_% -1.5'I,
!{i i i!lllliill 1 " iiiiiiii I .........

i I

_ Illl LL I I L. i _ll J . Lllll[lllll I I ......... I __.

" 1101_%Eigenvalued|Iference- .
........ _ _ _-I ..... ii HEll gli ....... ,_, llra r i
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Table4.6_tve_th©pe_entdifferenceinthen_e-averaEefluxe_fromu fnunh-_er

nppmxtmnti_ninbothen©rlWi_roupsandn seco_-orderapproximationin ix_thenergy

Croupsfornl_el B, A compnri_nof'thevaluesin l_ble 4,f_(withuhM_lutevalues

ranl_int_finn1(),(XM_ tit 19.3_ tnenerEyjmup oneandfn_m(L6_ to 6,9_ in cfler_),

Emuptwo)withtho_ inTable4,4 (withah_lute valuesnml_inljfrom(LI_ to 1_,I_, in

enerl_yI_muponeandfn_m0,1% t_ IS.0%in enerlWl_rouptwo) showsthata _cond-

orderappn)xtmationin _th enerttyltmupsdoesa_tter job at_imulazint_then_-averalie

tluxe_thanthemixedapproximationform_el Aexceptinn_xteIXwhichc_s_nds to

therell_t_r,

Ftilure4.6
Enerlly (;roup One Flux a_ a Funetton

of' Po_lllon for _alem - I Model It
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Ener_ Group Two Flux an n Function
of Positionfor Salem- I M_el B

I
100 .................... ,,_-, ,,,,,,, , _,,;- _ .

0 100 ;/00

peQillon

FiB._ 4,6 show_, plotof theflux t'_ m_xtelH us. functionof |x)nttlonin e.¢h ener;y

l;roupfor thetwo .ppmxim.te m(xJeln,"l_e lX'Jnitionir.:re._ fr.m left t_ rijht ._rL_n,the

modelnhownin Fig, 4,4, 111encxtelx_.nd.rie, .re denign.tedby the venie.l linenon en_,'h

plot, Fillure 4,5 nhownth,t ihe flux fromthe two).ppn)xtm.te m(xtelnin _.hnt.nti.lly

dtfferen!in nocte_.t, 4, 14, 15, and 16for energylim.p (_.= ,nd 4, ._,14, 15, 16,.nd 17

for enerl_ygrouptwo, Note th,t the plotfor enertiyBmup(we has_inunreulistic ,h_ll'.e,

'l'ht_nh.peis pmh.hly dueto themethod._d to obtaintheflux .n, f.ncti_)nof _nitic)n,

Ilowever, the sh.i_ ,_hould_ lnvesttt;ated_fore mukinB,ny ¢onclunion_for m(xl_lH,

"i_hle 4.4 nhownthattheeigenv.luet'mnl the unmixeduppmximuttonfor nv.xJelC tn

(),(X)I% I_rgerth.n theeil;©nv.luefrom themixed,ppmximutton(_c¢ond-c)rdcrflux sh,pe

;lppmxim_lionin energy_roupone ,nd, fourlh-_)rder.ppmxim.tion in energygroup



two)._is factsuggeststhattheus©ofthemixedapproximationforthisproblemis

udvantageous(_sultsi.littleaccunlcyloss),

The diffem_e in then_je.ave_ge fluxesfromthetwo approximaten_xlelsfor m_el C

rangesfrom .0,013% to0,070% in energygroupone and.0,012% to 0,071% in energy

grouptwo, The valuesin bothenergygroupsagainStl_geStthattheuseof themixed

approximationfor tht_problemis ,dvantag_us,

Ba_d on thedifferencesin then_e.average fluxesfrom _th energygroupsandthe

eigenvaluedifference,theu_ of the=nixedappmxim,tionwhenappliedto mcxtelC of

Salem- Iisadvantageous,

Figure4,7

EnergyGroup One Fluxasa Function
ofPosltlonforSalem- I Model C
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Energy Group Two Flux as a Function
of Position for Salem -I Model C
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Figure 4.7 shows a plot of the flux for model C as a function of Ix_sition in each energy

group for the two approximate models. The position increases from left to right across

model C shown in Fig. 4.4. The plot for energy group one in Fig. 4.7 shows that the flux

from the two approximate models is essentially the same. This is also the ctL,_efor energy

group two. The flux from the lwo approximate models is essentially lhe same in Fig. 4.7

for energy group two.

Table 4.4 shows that the eigenvalue from the unmixed approximation for model D is

0.005% larger than the eigenvalue from the mixed approximation (second-order flux shape

approximation in energy group one and a fourth-orderapproximation in energy group
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two). This fact suggests that the use of the mixed approximation for this problem is

advantageous (results in little accuracy loss).
i

The difference in the node-average fluxes from the two approximate models for model D

ranges from -5.9% to 98.0% in energy group one and -6.0% to 98.0% in energy group

two. The large difference values in both energy groups in nodes 11 through 18 suggest

that the use of the mixed approximation for this problem is not advantageous. However,

increasing the number of nodes per region, model D uses one node per region, may change

this result but it will also increase the computing time (adding a disadvantage to the mixed

approximation).

Figure 4.8

Energy Group One Flux as a Function
of Position for Salem - 1 Model D
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i

Energy Group Two Flux as a Function
of Position for Salem .1 Model D
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Based on the differences in the node-average fluxes from both energy groups and the

eigenvalue difference, the use of the mixed approximation when applied to model D of

Salem - 1 with one node per region is not advantageous.

Figure 4.8 shows a plot of the flux for model D as a function of position in each energy

group for the two approximate models. The position increases from left to right across

model D shown in Fig. 4.4, The plot for energy group one in Fig. 4.8 shows that the flux

from the two approximate models is essentially the same. This is also the case for energy

group two. The flux from the two approximate models is essentially the same in Fig. 4.8

for energy group two. Note that the plot has an unrealistic shape for both energy groups.

55



i

The shape is probably due to the method used to obtain the flux as a function of position.

However, the shape should be investigated before making any conclusions for model D.

The second test problem used for LWRs was the 3D iAEA Benchmark Problem (see

Section 4.3). Figure 4.9 shows the order of the compositions in the one-dimensional slice

used. The macroscopic cross sections corresponding to the compositions in Fig. 4.9 are

given in Table 4.7.

3 2 2 ] 2 3 2 2 i 4

Figure 4.9 IAEA reactor model. All regions are 20 cm
except the first region which is i0 cm wide.
symmetry broundary conditions on the left.
Region 4 is a reflector.

Table 4.7 Macroscopic cross sections for IAEA Benchmark.
...... ,, , ,,,

Composition Group D_ (cm) vZfg (cm"!) Eg (cm "1) Egg, (cm -1)---.

1 1 1.5 0.0 0.03 0.02

2 0.4 0.135 0.08
, ,,,,,, ,,, ,

2 1 1.5 0.0 0.03 0.02

2 0.4 0.135 0.085
, , ,,,, ,,,,,,, , ,

3 1 1.5 0.0 0.03 0.02

2 0.4 0.135 0.13
ii i i i ii

4 1 2.0 0.0 0.04 0.04

2 0.3 0.0 0.01
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Table 4.8 Comparison of the node-average flux value for eachnodeof the IAEA Benchmark.The value from Fourfour.f is larger by the percentage given.
...... I II]llrll 111IIl[l[Illnll

Node Group 1 Group 2 Node Group 1 Group 2- iiii i ii

1 33.0% 33.0% 10 -1.6% -1.7%
.....

[

2 ...... 33.0% ......L. 33_0%............ 11 -5.7% ,5.8%

3 33.4% 33.4% 12 -8.2% -8.2%
I Illlllill I m I III I II IIII I flll[[lllll[ I LIII I Ill I 1 [Ill: I1 I .........

4 32.9% 32.9% 13 -11.2% -11.2%

5 31.6% 31.6% 14 -14.6% -14.7%
Ill[ II 111 IlL [ --

6 29.7% 29.7% 15 -19.3% -19.2%
" i ii i i iii i i I iiii ii iiii ...... [ :

7 26.9% 26.8% 16 -20.8% -18.8%
- iiii i i i i i i iiiii ii iiii i i i i i _ ii i [

8 21.5% 21.7% 17 -10.8% -9.7%
i i i ii i i ii1[i i i i ii i iiii i i i

9 10.3% 10.6% 18 4.8% -2.6%
" i nlllll • _ i Ill I nll]ll I n r _ III

Eigenvalue .....d!f.ference -0.6% .............

Table 4.8 gives the percent difference in the node-average fluxes for the two

approximate models (second-order flux shape approximation in energy group one

combined with a fourth-order approximation in energy group two and a fourth-order

approximation in both energy groups). The nodes are numbered from left to r,ght across

the model shown in Fig. 4.9. Node sizes of 5 cm in the first two nodes and 10 cm in rest

of the nodes (two nodes per region) were used to obtain the results given. These node

sizes were used because it was determined that Fourfour.f gave accurate results for the

IAEA Benchmark for this node spacing.

Table 4.8 shows that the eigenvalue from the unmixed approximation is 0.6% smaller

than the eigenvalue from the mixed approximation (second-order flux shape approximation

in energy group one and a fourth-order approximation in energy group two). This fact
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suggeststhat theuseof themixed approximationfor thisproblemis advantageous(results

in little accuracy loss).

The difference in the node-average fluxes from the two approximate models ranges from

-20.8% to 33.4% in energy group one and-19.2% to 33.4% in energy group two, The

large values in both energy groups for all nodes except nodes 10, 11, and 18 suggest that

the use of the mixed approximation for this problem is not adwmtageous. This is reinforced

by the fact that the largest difference values occur in the first nodes, those corresponding to

the center of the core, not in the nodes near or in the reflector. However, increasing the

number of nodes per region, this problem uses two nodes per region, may change this

result but it will al._ increa_ the computing time (adding a disadvantage to the mixed

approximation).

Based on the differences in the node-average fluxes from both energy groups and the

eigenvalue difference, the use of the mixed approximation when applied to the IAEA

Benchmark with two nodes per region is not advantageous.

Table 4,9 gives the percent difference in the node-average fluxes from a fourth-order

approximation in both energy groups and a second-order approximation in both energy

groups. A comparison of the values in Table 4.9 (with absolute values ranging from 1. I%

to 33.6% in energy group one and from 1.0% to 26.9% in energy group two) with those in

Table 4.8 (with absolute values ranging from 1.6% to 33.4% in energy group one and

from 1.7% to 33.4% in energy group two) shows that a second-order approximation in

both energy groups does a better job at simulating the node-average fluxes than the mixed

approximation except in the reflector, nodes 17and 18.
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Table.4.9 Comparisonof thenode-averageflux value from a
fourth-orderapproximationin bothenergygroupsanda

' isecond-orderapproximauon n bothenergygroupsfor each
nodeof the IAEA Benchmark, The value from the fourth-order
approximation is larger by the _rcentage given,

..........................,,, ,,,,,., ,j,..... ,, .... •...... i ....... , ,,,

......Node Group 1 Group 2 .........Node Group 1 Group 2

, l . ,26,9% -25,7% .........I¢) ........-I:!.% 1,0% ....

2 -27.1% -24.9% II 3,2% 2.i%.....................l_lllltl

3 -26.1% -26.9% 12 5.9% 5,7%........ , , , ,,,, ......,,,,,,,,,,,,,,,,,,, ,,

4 -24,8% -25.2% 13 7,9% 8.0%
................. ::...... ....,

5 -23.6% -23.6% 14 9,8% 9.7%
IH I I[I I I I III1[I I II ...........

6 -22.0% -21.9% 15 11.8% 13,9%
L I I I lil_l ................

7 -19,9% -20.1% 16 14,7% 19.4%
............................ ,, . .... , , , ,, ,,,,,,,,n,,,,,

8 -16.4% -18.1% 17 22.8% 12.1%

9 -9,1% -7,0% 18 33,6% 10.8%
I ]11 tlltll .......

............... Eigenv.a.!ue.........difference 0..2.5% ...............

Figure 4,10 shows a plot of the flux as a function of position in each energy group for

the two approximate models, The position increases from left to right across the model

shown in Fig. 4.9. The node boundaries are designated by the vertical lines on each plot,

Figure 4.10 shows that the flux from the two approximate models is substantially different

in all of the nodes except nodes 10, 11, 12, 17, and 18 for energy group one. The flux

from the models is also substantially different in all of the nodes for energy group two

except nodes !0, 11, and 18.
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Figure4.I0
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Energy Group Two Flux as a Function
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4.4.3 Heavv Water Reactor

The test problem used to model a heavy waterreactor was a slice of a D20 production

reactor simulation, The one-dimensional slices used contain each of the four regions:

reflector, target, control, and fuel, that make up the core. Figure 4.11 shows the order of

the four regions in the two slices used. The macroscopic cross sections corresponding to

each region in Fig. 4.11 arc given in Table 4.10. The boundm'yconditions used are zero

returning current at the core external edges and no net current at the center of the core,
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Refl_tor I Reflector TartJ©t Con_l Fuel

A

Refl[ Renec[TqetlcontrolI Fuel[TargetlControl Fuel Refl_[ Refl_[

Figure 4,11 _uction reactorsimulation model, All
mgtons arc 18 cm wide, A has symmetry
boundary conditions on the rtjht,

Table 4, I0 Macroscopic cross section for production reactor.

.......Region i Group .........D__(cm) VEf_ (cre'l) El (cm'l) _u' (cm,l)

fuel I 1.3850,1 2.85416xi()-3 8.86506xi0-3 6.44203xi0-3

2 0.898526 3.70310xi0-2 2.18825xi0"2
_ .i ]l!lllllIJ1 IlllJ..... IltllL Ill III [ I II IIIIIJ ---- IHI IIII Ilrl I IIIlll --

target I 1.!7097 1.50390xi0-3 1.29105xi0"2 7.67664xi0-3

2 0.880244 8.81440xi0-3 1.36547x!0"2-

control i 1.31919 0.0 1.20594xI(}"2 1.16912xi0"2
=

2 0.901342 0.0 5.63097xI0"3
|li,llllI III I I .... III IIIIIIII I It I II It It III IJ_t I I II1_ I

reflector I 1.290(X) 0.0 8.02913xi0-3 8.(X)(X)OxI0"3

2 O.8830(X) 0.0 7.96268xI0"3
llllll[ I l III ........ L ] ......... ll_llll llmllllllll l II II l]lllll Ill Illl I III l II l Ill l
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Table4,i i Comparisonof th©node.averaii©fluxvalu©foreachnod©
of theproductionreactorsimulation,Thevaluesfrom
Fouff0ur,f _ larl_erbytheper_entaBeiiiven,

A

N_© ,,- Oroup1 Group2 ....Node Groupi • Group2

1 t 9.2% 6.0% 6 5.3% 3.1%I I IIII f + Iltl[] I ] _ L I I I I - II]]11 Jl IJ ) I I ....... I1[11[111 ..........

2 7.8% 5.5% 7 4.2% 2.4%
III III IIII - Ji111! _ Mill 1 _ ]lllllllll|l - - ....

3 6.5% 4,9% 8 1.!1% 1.2%
III I _ ....... ll ................

4 5. 1% 4.2% 9 .... -11.5% .......11,!% ........
- _L I . I ....

5 4.5% 3.7% I11 -0.8% -0.5%
Ill I Ill I IJ]l_ JLIH] IF Ill IH II .... Ilflll H. ......

B

N_e .... Group I Group 2 Node Group 1 Group 2i,!!!!I[i!!i ._. I1 r [lilt -

I 9.11% 6.2% ii -11.04% 0.6%
II { I!11 Ill I J IIIIII I[ L I II _ II. _ _ I ....

2 7.5% 5.5% 12 2.5% 1.9%
I I II l [ I I III11[1111 I /IT HIIIIII I_J

3 5,8% 4.5% 13 4,2% !_ 2,5%
II IH.... IIHII I I . ]

I

.......4 4.1% 3.8% 14 .j1:7% 1.6%

5 3.7% 3.4% 15 -11,7% 2.7%
I I ! iiifl, III II I I I 1[I I IIii iii

6 4,8% 3,0% - 16 -1,5% -11.7%
......... II I!111 I III IIIIIII I I l J III1!1 I I I I_LIIILIII II

7 4,2% 2.3% 17 -11,!'1% -11,4%
_J_ .......... LII - II I1 I _JUII]I U I1[ L. IlJlll I " I flit I I - n[

8 0,9% 1,1% 18 I).9% 11.4%

.J ...... l ____ JJ J UILLLIJ_ ILLLI __ . I 1 I I IIIl[lll! L ........

9 -11,8% 11,1!2% 19 2.7% 1.4%
J III II III ] I III1 IIIIr I III _1 I ! LLjl

l(I -1,0% ;0.3% 20 4.3% 2, ! %" ..... I1 II1{ ._ I / IIIIII I iii iiiii I1[I : :) I II I I I " ]:

Eitlenvalue difference-11.65%
r , ,,.., ,, ul
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Table 4.I i jives thepe_ent dlf't'¢rencein the node-averagefluxe, for the two

approximatemodels(_¢¢md.o_r tlux shapeapproximationin energygroupone

¢_bined with a fourth-orderappmxi_tion in energygrouptwo anda founh-_r

approximationin I_th energygroups), Thenodes=u'enum_red from left to rightacross

themodel shownin Fig, 4. I I, Node_izesof 9 em were usedtoobtain the resultsgiven,

Thesenodesizeswer_u_d _causc =twasdeterminedthatFourfour,f gavea¢¢uniteresults

for m_el A andmodelB of theproductionreactorsimulationfor thisnodespacing,

Table4, I I show_thattheetgenval_ fr_ the unmlx_ approximationf¢_model A is

0,77% smallerthanthe¢igenvaiuefrom themtxr.dapproximation(second.orderflux shape

approximationin energygrouponeandn fourth.orderapproximationin energy_up

two), This Factsull_eststhattheu,,mof themixed approximationfor this problemis

advanta@ous(_sults in littleaccuracyIo_s),

Thedifferencein thenode-averagefluxes from the two approximatemodel_for n_xlel A

rangesfrom -(),N%to 9,2% inenergygroupone and.0._% to 6,()% in energygroup two,

1"hehtrge_tdifferencevaluesfor Ix_thenergygroups(_cur in the first two nodes,

correspondingto the reflectorregion(SeeFig, 4,1I), 1"nerefore,the values in tx)thenergy

groupsagainsugl_estthattheuseof themixedapproximationfor this problemi,,i

advantageous,

Basedon thedifferencesin the node-averagefluxesfrom !x_thenergygroupsandthe

elgenvaluedifference,theuseof themixed approximationwhenappliedto model A of the

productionreactorsimulationisadvantageous.

Figure4.12 showsa plotof theflux for m_el A asa functionof positionineach

energygroupfor thetwo approximaten_xtels, Thepositionincreasesfrom left to right

acrossmodelA shownin Fig. 4, I I, The plotfor energygrouponeshowsthatthe flux

from the two approximaten_Jels isessentiallythesa_, This is alsothe_:asefor energy

group two, The flux from thetwo approximatemodels isessentiallythe samein Fig, 4,12

for energy group two,
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Energy Group Two Flux as n Function of
Poaltlonfor the Production Reactor

SimulationModel A
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'Fable4,I 1shows thatthe ©igcnvaluefromtheunmixedapproximationformodel B is

0,65%smallerthan the ctgenvaluefromthe mixedapproximation(._cond-orderflux shape

approximationinenergygroupone anda fourth-orderapproximationinenergygroup

two), This fact suggests thatthe useof the mixedapproximationfor this problemis

advantageous(resultsinlittle accuracyloss).

The differencein the node-averagefluxes fromthe two approximatemodels for model B

rangesfrom-1,5% to 9.0% in energygroupone and .0,7% to 6,2% inenergy grouptwo,

The largestdifferencevalues for bothenergygroupsoccurin the first few nodes,

correspondingto the reflectorregion(See Fig,4,11), The differencevalues in the

remainingnodes for bothenergygroupsarc.all less than5%. Therefore,the valuesin both
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energygroupsagainsuggestthattheuseof themixed approximationfor this problemis

advantageous,

Basedon thedifferencesin thenode-averagefluxes from bothenergygroupsand the

¢tgenvaluedifference,theuseof themixedapproximationwhenappliedto modelB of the

p_uction retictorsimulationisadvantageous,

Figure4,13
EnergyGroup One Fluxas a Functionof

PosltlonfortheProductlonReactor
SlmulatlonModelB
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Energy Group Two Flux as a Function of
Position for the Production Reactor

Simulation Model B
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Figure 4,13 shows a plot of the flux for model B as a function of position in each

energy group for the two approximate models. The position increases from left to right

across model B shown in Fig. 4.11. The plot for energy group one shows that the flux

from the two approximate models is essentially the same. This is also the case for energy

group two. The flux from the two approximate models is essentially the same in Fig. 4.13

for energy group two.
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4.5 Summary

The application of the solution method has been presented in this chapter. Three reactor

types were modeled to examine the usefulness of the quadratic flux shape approximation in

energy group one and quartic flux shape in energy group two. Because the solution

method presented in Chapter 3 involves coupled equations and two iteration loops,

computer programs were written to aid the solution, The results from the two computer

programs for graphite reactor, pressurized water reactor, and heavy water reactor test

problems were presented.

Chapter 5 discusses the conclusions that can be drawn from the results presented in this

chapter. Also included in Chapter 5 are some recommendations for further study relating to

the use of mixed flux shape approximations.
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Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

5.1 Conclusions

The use of a second-order flux shape approximation in energy group one and a fourth-

order flux shape approximation in energy group two (the mixed approximation) as

compared to a fourth-order flux shape approximation in both energy groups results in

considerable loss in accuracy. The accuracy loss, in node-average flux, occurs for

pressurized water reactors composed of homogeneous regions of varying compositions.

This accuracy loss is probably due to the inability of the mixed approximation to account

for the changes in the flux shape across the core. Because the accuracy loss is large for the

pressurized water reactor modeled, the mixed approximation should not be used for this

type of reactor composed of homogeneous regions of varying composition.

The mixed approximation does not result in large losses in accuracy for the heavy water

reactor and the graphite reactor modeled. This is the c_se since a quadratic function is

probably sufficient to simulate the flux in energy group one for these two reactor types.

The mixed approximation can be used for heavy water and graphite reactors.

The overall conclusion from the present numerical comparisons is that further

investigation into the accuracy and computing time is necessary before any quantitative

advantage of the use of the mixed approximation can be determined.

5.2 Recommendations

The work performed in this thesis considered slices of reactors composed of

homogeneous regions. One area to investigate is the inclusion of heterogeneities in the

regions. A good way to include these heterogeneities is to use discontinuity factors. If the

discontinuity factors are found for groups of regions using a second-order flux shape
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approximation in energy group one and a fourth-order flux shape approximation in energy

group two then the factors could account for the shape approximation as well as the

heterogeneity. With the discontinuity factors accounting for both items, the results

obtained could be better than the results obtained in this thesis.

Another area to investigate in order to examine the benefits of using a mixed

approximation is the computing time for each approximation. The computer programs

associated with this thesis were written to test accuracy not computational speed.

However, it is a combination of speed and accuracy that is needed when solving for the

neutron flux across the reactor core.
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