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IS PROBABILITY OF FREQUENCY TOO NARROW?

Harry F. Martz

Group A-1, MS F600
Loos Alamos National Laboratory
Los Alamos, NM 87545

Modern methods of statistical data analysis, such as empirical and hierarchical
Bayesian methods, should find increasing use in future Probabilistic Risk Assessment
(PRA) applications, In addition, there will be a more formalized use of expert judgment in
future PRAs. These methods require an extension of the probabilistic framework of PRA,
in particular, the popular notion of probability of frequency, to consideration of frequency
of frequency, frequency of probability, and probability of probability. The genesis,
interpretation, and examples of these three extended notions are discussed.

FREQUENTIST AND SUBJECTIVIST PROBABILITY

In PRA theory and practice, there are two basic interpretations of probability:
frequentist (or objectivist) and subjectivist (or Bayesian). The distinguishing notion of the
frequentist interpretation is that probability is defined as the limiting relative frequency of
occurrence of a random event in an infinite sequence of identical trials. On the other hand,
the subjectivist view considers probability to be a subjective statement of an analyst's
personal state-of-knowledge or degree-of-belief regarding the occurrence of an event based
on the available evidence. It is generally believed that both interpretations are appropriate
for use in PRA. Parry (1986) and others argue that it is important to separate the effects of
both classes of uncertainty on results typically of interest in PRA.,



Apostolakis (1990) refers to the model under consideration as the model of the world.
For example, in Level 1 PRA, the model of the world consists of the event trees, fault trees,
etc. used to represent the response of a facility to a particular accident.

For purposes here, consider two basic classes of uncertainties in the model of the
world. The first class are those uncertainties which are virtually impossible (either
technically or economically or both) to either reduce or remove. Collectively denote the set
of such irreducible uncertainties as stochastic or random uncertainties. For example,
variability in the quality of manufactured materials, uncertainties in equipment
performance, and operator errors are typical examples of random uncertainties. Various
well-known probability distributions (the formal name for the simplest type of probability
models of the world), such as the normal, binomial, or Poisson distributions, are commonly
used to model basic random uncertainties. These probability distributions involve various
parameters (such as the failure rate or intensity in the Poisson distribution) which are
usually unknown and must be estimated. The frequentist interpretation of probability is
generally used to express random uncertainties,

The second basic class of uncertainties are state-of-knowledge (also known as
systematic) uncertainties. These uncertainties represent our lack of precise knowledge
about uncertain parameters in our model of the world (or even uncertainty regarding our
overall choice of model of the world). For example, we may not know the precise value of
the failure rate parameter in an exponential distribution used to model the time-to-failure of
an operating pump. Based on the available data and experience with such pumps, we
represent our uncertainty about this failure rate in the form of a probability distribution.
Because this distribution represents our current state-of-knowledge about the unknown
failure rate parameter (without any regard for consideration of repeated trials), it embodies
a subjectivist interpretation of probability.

In contrast to irreducible random uncertainties, it is possible to reduce state-of-
knowledge uncertainties by improving or enhancing our state-of-knowledge. In the limiting
case, we have perfect state-of-knowledge and the corresponding probability distribution
would be a delta function. We can improve (update) our state-of-knowledge by obtaining
additional pertinent data or information. Bayes' theorem is appropriate for updating our
state-of-knowledge distribution given additional data or information, a process known as
Bayesian updating. Because there are often alternative models for certain phenomena of
interest in PRA, the uncertainty inherent in subjectively choosing a model (so-called
modeling uncertainty) is a state-of-knowledge uncertainty.

Subjective probability is also an appropriate way to express uncertainty about events,
the outcome of which cannot easily be interpreted as an imagined series of repetitions. Such
events are often referred to as propositions. For example, we may be interested in the event
"a manned mission to Mars occurs prior to the year 2050." This is certainly an uncertain
event (as of 1993), and a repetitive series of trials of this event is difficult to conceive
because it involves a specific (unique) period of time which will occur only once. Thus, it
is appropriate to interpret our uncertainty about such events using subjective probability.
Notice, however, that determining whether or not a particular event can be imagined as a
repetitive series of trials is also often quite subjective, especially if we permit the use of




"thought" experiments. While one person may be able (and willing) to entertain such an
imagined series of trials, another person may find an imagined series of identical repetitions
to be totally inconceivable. Thus, the most appropriate notion of probability to use to
describe an uncertain event is also sometimes a subjective decision.

The bottom-line quantities of wterest in a PRA are usually either uncertain
exceedence probabilities or frequencies of occurrence per year (such as the probability with
which damage level x or greater occurs per year or the frequency of occurrence of severe
core damage per year). Clarotti (1988) and Howard (1988) argue that the frequency of
occurrence of rare events considered in PRA are fictional parameters which should not be
interpreted within the context of a repetitive series of trials. Thus, there is some
disagreement regarding whether the frequency of occurrence of rare events per unit time
should be interpreted using relative frequency or degree-of-belief.

To distinguish between the two notions of probability, I shall denote frequentist
(relative frequency-based) probability as probabilityf (where the subscript "f" stands for
"frequentist’) and subjectivist (degree-of-belief-based) probability as probabilityg (where
the subscript "s" denotes "subjectivist"),

PROBABILITY OF FREQUENCY

Kaplan and Garrick (1981) introduced the notion and use of probability of frequency
in PRA. This approach is further described in Kaplan et al (1981). They consider the
relative frequency of occurrence of an event of interest (that is, the fraction of times that it
occurs) in a series of identical repeated trials in which the event has a constant probability ¢

of occurrence p on each trial. They denote this relative frequency as ¢. Of course, by
definition, ¢ approaches p in the limit as the number of repeated future trials approaches

infinity. Thus, interest in ¢ (over an infinite series of trials) is equivalent to interest in p,

Because of inherent parameter and modeling uncertainties in our model of the world,
we are usually uncertain about the precise value of p (especially so in the case of rare
events). By performing an uncertainty analysis, we can express our state-of-knowledge
about the unknown value of p in the form of a probabilitys distribution (or curve) over pf.
Kaplan and Garrick refer to these as probabilitys of probabilityf (or probabilitys of
frequency) curves. The outer probabilityg is interpreted as Bayesian confidence
(confidenceg or credibility). For example, using the probabilityg of frequency approach, we
can make statements such as "we are 95% confidentg that the annual probabilityf of 10 or
mor7e early fatalities resulting from internally initiated accidents at Plant X is not larger than
10-7",

FREQUENCY OF FREQUENCY




Empirical Bayes (EB) methods are a class of modern statistical inference techniques
which are potentially useful in PRA applications for estimating unknown parameters in the
model of the world. To illustrate the use of EB in PRA, Martz and Abramson (1994) use
EB methods to estimate the average (over time-and-station) probabilityf that emergency
diesel generators (EDGs) at US commercial nuclear power plants successfully load-run on
a given demand (the so-called load-run demand reliability). For simplicity, denote the
time-and-station average of this load-run demand reliability as p. Martz and Abramson are
interested in estimating p using data from a large number of stations. EB methods are
appropriate for use in those situations where a parameter, such as p, is not constant over a
corresponding population of interest (in this case, the population of stations). EB methods
assume that p varies randomly over the population according to some unknown EB prior
distribution g(p) [Maritz and Lwin (1989); Martz and Waller (1991)]. The EB prior g(p)
expresses the probabilityf distribution of p over the EDG population and, for this reason, is
sometimes referred to as a population variability distribution (or curve). In our example,
g(p) expresses the fraction (or relative frequency) of stations whose average EDG load-run
demand reliability falls in each reliability increment.

It is important to note that, in spite of the reference to Bayes in the name "EB", EB
methods make no use of degree-of-belief (that is, probabilityg). The reference to Bayes is
due to two aspects of EB: (1) the notion and use of a "prior distribution” for p, and (2) the
use of Bayes' theorem as an integral part of the EB procedure. The advantage of EB over
Bayesian methods (when both can be used) is that EB methods involve less subjectivity,
and thus are more "data driven", than pure Bayesian methods.

In a plant-specific PRA, we are not primarily interested in the overall population of
stations; rather, we are interested in the EDG reliability of a particular station. Bayes'
theorem is the tool for "specializing” (by updating) the EB prior on p to the particular value
of p, say pj, for a particular station (the ith here). As in Bayesian estimation, we determine
an EB posterior distribution for p;. Unlike a Bayesian posterior distribution, this station-
specific EB posterior distribution embodies probabilityf (as does the EB prior), and is a
frequency of frequency distribution,

What interpretation do we give to this station-specific EB posterior distribution?
Suppose that, for our particular station, we have observed xj = 2 load-run failures in nj =
117 total station EDG demands. The EB posterior distribution of p given xj = 2 and nj =
149 [that is, g(plxij=2; nj=117)] expresses the fraction (or relative frequency) of stations in
the population for which 2 failures are observed in 117 demands whose load-run demand
reliability falls in each reliability increment. Because we have actually observed 2 fuilures
in 117 demands for our particular station, this is the appropriate station-specific
probabilityf distribution that we use to make inferences (such as point and interval
estimates) about p;.

FREQUENCY OF PROBABILITY



Consider a one-time event which either will or will not occur -- except that we don't
know which -- and for which a repetitive series of trials is inappropriate or impossible to
consider, For example, consider again the event that "a manned mission to Mars occurs
prior to the year 2050." Now, this future event will certainly either occur or it won't occur--
we just don't know which. In PRA parlance, this is known as a zero-one event.

Kaplan et al (1981) liken this situation to that in which either a two-headed or a two-
tailed coin is to be flipped, and we just don't know which coin it is. Anyone can then
express his or her state-of-knowledge (degree-of-belief) regarding the occurrence of the
Mars event as the probabilitys p that the two-faced coin is two-headed. Further, suppose
that we are interested in assessing the variability of p; over some population of interest; for
example, the population of Los Alamos National Laboratory employees. If we now ask
each Los Alamos employee for his or her value of p (and everyone complies), then we can
construct a population variability curve that expresses the fraction (or relative frequency) of
employees at Los Alamos whose value of p falls in each increment, Again, using the
Kaplan and Garrick nomenclature, this population variability curve on p is a frequency of
probabilitys distribution.

Figure 1 shows the frequency distribution for the probabilityg p of the Mars event (in
the form of a relative frequency histogram) based on a sample of size n = 56 Los Alamos
employees. It is interesting that this distribution tends to be trimodal, having a delta
function at 0.5 (which appears in Figure 1 as a rectangle) and a "bump" on either side of
(but distinctly away from) 0.5. The two bumps correspond to strongly optimistic or
pessimistic employees, while those who responded with p = 0.5 are indicating that they no
nothing (and are thus "guessing"), regarding the occurrence of the Mars event. For these
data, we find that the mean is 0.49 and that Probabilityf (0.01 < p < 0.92) = 0.80.

The formal use of expert opinion is an important part of modern PRA theory and
application [Wheeler et al (1989)]. Suppose that we expand our PRA model of the world to
include the representation of the variation in opinions of different experts. Within this
expanded model, the notion of frequency of probabilityg is appropriate. Let me explain. In
PRA analysis, many issues can often best be interpreted as zero-one events in which an
expert is asked to quantify his or her degree-of-belief regarding the occurrence of the event.
The uncertainty is usually elicited in the form of a probabilitys p. For example, in the
reactor context, consider the event "in a proposed advanced reactor design, natural
processes (such as passive heat removal) fail to successfully cool the reactor core." Suppose
that we consider a panel of experts for this event to be a sample from a larger population of
experts. In this case, frequency of probabilitys is an appropriate way to express the
variation in degree-of-belief within the population of experts.
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Figure 1. Frequency of probability distribution for the probabilitys p of a manned mission to Mars priot to
the year 2050,

How would we update a frequency of probabilityg distribution as new information is
obtained? We must be careful here to define what we mean by "new" information. Because
the event of interest is zero-one, a single trial (if such would even be possible) is sufficient
to completely remove all uncertainty about the event. This is not what I mean by new
information. Rather, by "new information" I mean any change that an expert makes in his
or her own subjective probabilitys p as a result of additional information or new
knowledge, For example, in the Mars event, new knowledge might consist of an emelginﬁ
global political und economic climate advocating that such a mission be undertaken. Eac



expert would then be asked to update his or her own value of p in light of this new
information. Given the new value(s) of p, these estimates would similarly be used to
determine a new (updated) frequency of probabilityg distribution in light of the new
information, Note, however, that such updating is pot performed using Bayes' theorem.

PROBABILITY OF PROBABILITY

Here we are basically concerned about what is believed about what is believed, and,
at first glance, such a statement appears to be nonsense. If, however, I am basically
concerned about expressing what an analyst believes about what an gxpert (or experts)
believes (regarding the zero-one event), then this statement makes perfectly good sense.
Further discussion regarding this statement is given by Pearl (1988), pp. 358-359.

As in the previous case, we now expand our PRA model of the world to include an
expression of the variety and quality in the opinions of different experts as viewed by an
analyst acting as a "super expert". Thus, within this expanded model, the notion of
probabilitys of probabilitys is defined. There are at least two possible interpretations of
probabilitys of probabilitys.

First, the analyst can represent his/her belief regarding the expert opinions in the form
of a probabilitys distribution over the elicited probabilities. This situation is similar to the
case of frequency of probabilityg, except that now the outer distribution is a probabilitys
distribution that must be subjectively assessed by the analyst. For example, the commonly
used decision to equally weight each expert judgment is one such (outer) probabilitys
distribution.

There is another interpretation which is also appropriate. Suppose that the analyst is
interested in the elicited value from a particular expert, say Jane. Prior to eliciting Jane's
value of p, pJane, the analyst may wish to express his/her personal belief about pjane in the
form of a "prior" probabilitys distribution on pjane. This distribution expresses any
substantive information that the analyst may have regarding Jane's ability in such tasks
(including any known or perceived biases).

How do we update the analyst' prior once Jane has given her value? One possibility is
to consider an appropriate subjective likelihood for Jane, This likelihood is a statistical
model that relates the likelihood that Jane will report a value pjane relative to a true value
of p. What do I mean by a "true value of p"? Subjective opinions being what they are, there
clearly is no true value of p. However, one can define the true vaiue of p to be the average
value of p that would be elicited from a large population of experts. Examples of such
conceptual likelihoods involving expert opinion are considered by Mosleh and Apostolakis
(1984) and Martz and Bryson (1984). An important feature that is captured in such models
is the consideration and inclusion of possible "biases" that are k.aown to accompany expert
opinions. Given the analyst' prior distribution and the assumed conceptual subjective
likelihood model for Jane, Bayes' theorem is then used to obtain the desired updated
posterior distribution for pJane given Jane's estimate.



CONCLUSIONS

Future PRA applications will likely use modern statistical methods, such as empirical
and hierarchical Bayes methods, for estimating uncertain parameters in the PRA model of
the world. In addition, the model of the world will be enlarged to include additional
concerns involving the elicitation and combination of expert opinions. Because neither of
these extensions are adequately considered using probabilitys of frequency, I believe that
this notion must be expanded to permit consideration of frequency of frequency,
probabilitys of frequency, and probabilitys of probabilitys.

Many authors have pointed out the importance of carefully distinguishing between
random and state-of-knowledge uncertainties in PRA [Cornell (1984), Parry (1986),
Apostolakis (1990)], The primary concern in using these extended notions is how to
separate the contributions from random and state-of-knowledge uncertainties in the results.
It is not altogether clear that a clean separation is possible. If this task proves impossible
(and well it might), perhaps the only reasonable alternative is to argue from a pure
Bayesian perspective that all uncertainty, regardless of its origin, is really of the degree-of-
belief type [Lindley (1985)].

Clearly there are other issues involved in using these extended notions which have not
been considered her=, For example, issues involving Monte Carlo simulation using these
new notions are not aiscussed, and Bayesian updating has not been adequately addressed.
However, | hope that this paper will stimulate additional interest in these and related issues.
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