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1. Background

The ultimate objectives of this research are to further develop the ALFA (AER Local

Forecast and Assimilation) model originally designed at AER for local weather prediction

and apply it to several related purposes in connection with the Atmospheric Radiation

MeastLrement (ARM) program: (a) to provide a testbed that simulates a global climate

model in order to facilitate the development and testing of new cloud parametrizations and

radiation models; (b) to assimilate the ARM data continuously at the scale of a climate

model, using the adjoint method, thus providing the initial conditions and verification data

for testing parametrizations; (c) to study the sensitivity of a radiation scheme to cloud

parameters, again using the adjoint method, thus demonstrating the usefulness of the

testbed model.

The data assimilation uses a variational technique that minimizes the difference between the

model results and the observation during the analysis period. The adjoint model is used to

compute the gradient of a measure of the model errors with respect to nudging terms that

are added to the equations to force the model output closer to the data.

The radiation scheme that has been included in the basic ALFA model makes use of a

generalized two-stream approximation, and is designed for vertically inhomogeneous,

multiple-scattering atmospheres.

This project i_ designed to provide the Science Team members with the appropriate tools

and modeling environment for proper testing and tuning of new radiation models and cloud

paramelrization schemes.

2. Progress During Previous Periods

The plan for the first year of the project was to incorporate the radiation code of Toon, et al.

into the ALFA model, to write its adjoint and to modify the model to be able to use it in data

assimilation. This work has been done. As part of this work, code modularity was

enforced to enable easy addition or replacement of parts of the code.

During the second year of the contract we have spent a fair amount of time checking the

accuracy of the radiation code by trying to simulate the evolution of the atmospheric
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_mperature measured during the Wangara campaign 1, and comparisons with detailed line-

by-line radiation computations. We found a number of problems with the code, which were

eventually traced to an error in the spectral data for the water vapor continuum. After

correcting this error, the code now reproduces well the line-by-line computations and

simulates the Wangara data reasonably well.

We also started writing the adjoint of the Kuo convection scheme and the stratiform

precipitation scheme. Both of these phenomena are characterized by threshold processes,

with different behaviors when some model variables reach some critical values. Stratiform

precipitation starts when the specific humidity reaches saturation, and convection requires

positive moisture convergence and conditional instability. This means that the model

equations are only piecewise continuous, and that their derivatives with respect to the

model variables are not defined at these threshold values. This may create difficulties in the

convergence of the data assimilation procedure.

3. Progress During the Reporting Period

3.1. Model developments

The first task of this period was to complete the adjoint of the moist processes. We chose

two different strategies for stratifonn precipitation and convection. For stratiform

precipitation, it is relatively easy to write the equation as a continuous process, by replacing

the instantaneous adjustment by an algorithm that removes a fraction of the existing

moisture at each time step, the fraction removed being a strong function of relative

humidity. This was described in our last report.

For the convection scheme, which acts on the atmosphere with a time scale comparable to

the model time step, we kept the model as it was, as a discontinuous process when going

from stable to unstable regime. So far it does not seem to have created any problem, but we

have not yet been able to test many cases of convective situations, it is hoped that the

forthcoming June 1993 lOP will provide the necessary data.

1Clarke, R. H., A. J. Dyer, R. R. Brook, D. G. Reid and A. J. Troup, 1971: The Wangara Experiment:

Boundary layer data. Technical Paper No. 19. Division of Meteorological Physics, CSIRO, Australia.



Writing the adjoint of the convection scheme raised a problem that we had not encountered

in the rest of the model, and which has to do with balancing memory usage versus

computation in the adjoint. In general, any step t of the model, for example the convection

computation, can be written symbolically as

Xt+ 1 = I t + f(xt) , (1)

where x is a model prognostic variable (temperature, moisture) andfis a nonlinear function

of x, then the corresponding adjoint equation is

x;--

where x* is the adjoint variable andf the derivative off with respect to x. Note that this

derivative has to be estimated at time t. In practice, the value of xt is stored at each time step

during the model integration, and read at the beginning of the correct adjoint step. Since the

convection scheme is written as an adjustment of the fields _ all the other physical

processes have acted, the value of xt in (2) must actually be that intermediate state. In our

model, we store the value of x at the beginning of each time step, and the tendencies due to

all the physical processes except convection. Then, in the adjoint, the intermediate statecan

be recomputed before the adjoint of the convection is performea:l.

Having to store or reconstruct the intermediate states could become a serious problem if the

model were written as a series of adjustments. In that case all the successive intermediate

states would have to be stored, and read in the reverse order in the adjoint. This could place

considerable stress on the needed memory. To reconstruct them would be expansive and

awkward since the adjoint model performs the operations in reverse order from the forecast

model. Fortunately, the ALFA model was written in such a way that all the physical

schemes, except convection, act on the atmospheric structureat the beginning of the time

step and all the tendencies are added together at the end. The order of computation of the

physics is therefore not important.

We also modified the Toon radiation scheme to introduce the handling of partialcloudiness.

At this stage we allow only one cloud layer, but it can be anywhere in the vertical and have

any thickness. The radiationcomputation is done separately in the clear and cloudy parts,

and the fluxes are combined. One exarnple of this computation is shown on Figure 1.

In this case, the model predicts about 50% cloudiness during the first day, dissipating at

night, then reappearing and reaching 100% cover at the end of the second night. Note that
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_igure 1: Example of radiation computation output during*a 36 hour forecast.

this kind of output can be compared to radiometric measurements and can therefore be used

in the computation of the cost function in data assimilation. That is something that no other

data assimilation method can do easily. In fact, the reason why some much effort has been

put into developing temperature retrieval techniques for satellite data is because the

operational data assimilation schemes could not use the radiances as input data.
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3.2. Data assimilation tests

Under another contract (NSF SBIR), we have accumulating one complete year of all the

standard meteorological data, as well as the NMC analyses and forecasts, for North

America. We have started using these data to optimize our model to the Oklahma site, and

to test our data assimilation system. It was our intention to combine them with the CART

data when they became available. Unfortunately, the NWS surface observations for the

center of the US, including Oklahoma, have been missing from this dataset since the

beginning of October.

Comparing the soundings at Oklahoma City with those made at the SGP site, about 120 km

away, illustrates the need for data assimilation to eliminate small scale variations. In most

case the temperatures differ by several degrees, even though both soundings are made

within the CART site, only a few hours apart. This would produce differences of a few

watts/m 2 in flux computations. Figure 2 shows an example, for Jan. 5 1993.
_ ill _ mini __ iii i i illii i i i ii ii i . i _ i

_igure 2: Soundings for Oklahoma City (19:30GMT on 1105193) and the ARM site
(OOGMT on 1/06/93)



We have been experimenting both with optimization of the model physical parameters, and

with the Derber nudging 2 type of data assimilation. In Figure 3 we show the result of

optimizing the ground parameters of the model (albedo, roughness length, heat capacity,

heat and moisture diffusivities, field capacity for moisture).
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Figure 3.. Example of model parameter optimization for OKC station, May 718, 1992

The curves labeled "1 st guess" and "non-optimized" are 24 hour forecasts of the surface

temperature performed with our ALFA model, using parameters that we believed to be

reachable for Oklahoma. The initial conditions are taken from the NMC analysis at 12

GMT. These forecasts are not very good. They have a tendency to drift towards lower

temperatures.

We now use the data during the first 24 hour period to optimized the model ground

parameters, that is to find the set of parameters that will minimize a measure of the forecast

error. We do not use only the hourly surface observations, but also the sounding data at 00

and 12 GMT. The procedure is stopped after 20 iterations, at which point the cost function

no longer decreases. The resulting forecast is the curve labeled "Optimized". Except for a

small overshoot at noon, the forecast temperature curve looks much better, following the

observations quite closely. We now perform a forecast (labeled "ALFA fcst") starting from

2Derber, J. C., 1989: A variational continuous assimilation technique. Mon. Wea. Rev., 117, 2437-

2446.
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the end of the optimized run, using the new parameters. This forecast is much better than

the non-optimizexl one.

Of course we could not claim, with one 24 hour period, to have found the best model

parameters for the Oklahoma City station. In fact, when we repeat this operation for

different dates, we obtain different sets of "optimal" parameters. It may be that some of

these parameters, which we take to be constant, may actually change with time, For

example, the albedo and the roughness length change with vegetation. Nevertheless, it is

clear that when we optimize parameters over a single 24 hour period, the result is

influenced rather too much by errors in the initial state, it is not yet clear how many periods

should be averaged for a more representative solution. Marais and Musson-Genon 3, with a

similar but simpler model, found that averaging over 10 days gave good results.

In Figure 4, we give an example of data assimilation. The figure shows the surface

temperature observations for two days, our ALFA forecasts before optimization, which we

also call first guess, the ALFA analysis for the fast day and the resulting forecast for the
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_igure 4." Example of Derber nudging data cLssimilation. July 21.22, 1992, OKC station.

3Marais,C. and L. Musson-Genon,1992: Forecastingthesurfaceweatherelementswith a local

dynamical-adaptationmethodusinga variationaltechnique. Mon.Wea.Rev., 120. 1035-1049.
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second day. The first guess forecast is performed with what we think may be reasonable

physical parameters for the Oklahoma site, with the Nested Grid Model analysis of the

National Weather Service as initial conditions.

We used the Derber nudging algorithm to assimilate data during the f'a'st day. We have used

constant nudging: at each time step we add constant terms to all the tendency equations.

These terms are different for all the variables and also depend on height. They are our control

variables. They are all zero at the start of the assimilation procedure, resulting in the curve

labeled "1 st guess". The data assimilation procedure is iterative, each step requiting the

integration of the forecast model to compute the cost function, the integration of the adjoint

model to compute its gradient with respect to the control variables, and a modification of the

control variables. All the data available from the NWS are used to define the cost function:

hourly surface observations of temperature, humidity, and winds, and soundings at 00 and

12GMT. The iterative process is stopped when the cost function, i. e. the forecast error

during the first day, is minimum (curve labeled 'Analysis"). A 24-hour forecast is then

performed from the end of the assimilation period ("ALFA fcst" curve), with the final

nudging terms included.

The result of the data assimilation is very good: the analyzed temperature curve follows the

observations very closely, but without the small scale observational noise that we want to

eliminate. The subsequent forecast, in which we continue the nudging, is also quite good.

One advantage of variational data assimilation methods can also be seen: they tend to

eliminate the so-called "spin-up" problem, which is a rapid adjustment of the fields at the

beginning of the forecast because of imbalances in the initial fields analyzed by standard

methods. Such a rapid "adjustment can be seen at the beginning of the "non optimized"

forecast of the second day, which uses the NMC analysis as initial state.

Our tests are not always so good. In some cases we have had problems with the convergence

of the assimilation procedure, Sometimes the convergence is very slow, or the cost function

grows again "afterreaching a minimum. This needs further investigation, and we plan to

experiment with different minimum search techniques to make it more efficient and more

robust. Nevertheless our first results are very encouraging, and we are confident that the

variational data assimilation method, using a single-column model, will prove to be a

powerful tool for data fusion and data assimilation.

A lot of work remains to be done. The Derber nudging method will require considerable

tuning, especially in defining the vertical profiles of the nudging terms. Up to now we have
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let them adjust freely, but that createsa problemwhen observationsare available atonly a

few levels. A smoothness constraintshouldprobablybe enforced.

So far,we have also chosen fairly simplesituations,avoiding convective cases, Itis not
known yet whether the kindof thresholdsinvolvedin the convection will create

convergence problemsin the minimization.Finally we need todevelop what might be

called "observation simulators", i. ¢. algorithmsto create output similar to tl_ observed

quantifies, for as many of the ARMinstrumentsas possible.

3.3. Sensitivity Studies

The adjointmethod is a powerfultool for sensitivitystudies since, with one integrationof

the model and one integrationof the adjoint,one obtains the sensitivity of the objective

functionto all the model inputsand parameters.We have starte£1doing some of this kind of

work, mostly at this stage to examine the details of the data assimilation system.

Figure 5 shows an example of the kind of insight thatcan be obtained. We run theALFA

model for one single time step and define the cost function as the value of the downward
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infrar_ radiativefluxat thesurface.The adjointis thenrun,computingtl_ _rivative of

this flux with respect to all the model variablesandc_nstants.Herewe show the

derivativeswith respecttothe atmospherictemperature.

The ALFA modeldefinestemperatureas the meanover a layer,but the _ation scheme

uses temperaturesdefined at the layerinterfaces,whichare interpolated_m the layermean

temperatures.Figure5 shows that,while the sensitivityof the surfaceflux to theradiation

scheme temperaturehas a smeoth venical distribution,the interpolationresultsin a 2Az

noise in the sensitivityof theflux to the prognosticmodeltemperature1This kindof

analysis is extremelyeasy to performwith the adjoint.It is a powerfultool to discover

model w_nesses thatmay haverepercussionson theconvergence propertiesof thedata

assimilation procedure.We planto make a systematicsensitivitystudyof the variousmodel

outputquantities.

4. Travel

Travel since the 1992progressreport:

- October28 - 29, 1992:Workshopof the DataAssimilation and Single Column
Model science teamsub-groupsin Richland,WA. (J-F.Louis)

- March1-5, 1993:ARMScience Teammeetingin Norman, OK. (J..F.Louisand
Marina_ivkovi_

Forthcomingtravel:

- May 3-7, 1993:Annualmeeting of theEuropeanGeophysicalSociety in

Wiesbaden, Germany. (J-F. Louis)

5. Plans for the Rest of the Period

The remainder of the current contract will be devoted mainly to testing the data assimilation

system. We will do it in a variety of weather situations, both cloudy and clear and, if

possible in some convective cases. We willdetemaine the best minimura search technique

for this purpose. We will also start making tests of continuous data assimilation, in which

the state at the end of one assimilation period becomes the initial state for the first guess of

the next period.
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6. Pubilolltlonll lind Presentations 81noe the _lll Report

A n=viewpaper,entitled"R©viewof theu_ of theadjolnt,va_afon_ m©th_ andK_man

filter inmetmrology°', includinga complete biblio_phy0 by P'niltp_Courtier,John

E_rt_r,Ron _co, Jcan.FrangoisLouisandTornislavaVukt_ev_ waJ ,uhmtt_ to

Tg:Uus,for theirplann_ s_ial issuecoving the w_k_hop thatw©or_i_ in

Monterey,CA in August 1992.

Jcan.FranqoisLouis will prc_nt a p_r ©nttd_l"Variationaldata aMimilati_mat a atngle
site forclimate m_¢l mating"at the I_GSmeeting in Wieabad©n,Gemlany,
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