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ABSTRACT

This is final report on the Purchase Order B-192560. It consists of 3 chapters.

Chapter 1 contains stability analysis of axisymmetric plasma configurations in

which there exists a population of “hot” particles whose drift frequency around the
magnetic axis greatly exceeds the frequency of the flute perturbation. It is shown
that fast drifting particles affect not potential energy of MHD perturbations but
their kinetic energy. The possibility of the stabilization of the flute instability due
to the “negative inertia” effect is discussed. Results, obtained in this chapter, are of
considerable importance for the stability of various systems with hot particles.

Chapter 2 is devoted to the theory of non-paraxial MHD stabilizers for axisym-
metric mirror devices for plasma confinement. In this chapter, a method of search
of axisymmetric configurations which provide stability of rigid (m = 1) flute mode is
given and several theorems, elucidating the effects of non-paraxiality on flute modes
stabilization by sloshing ions a.,re proved.

Chapter 8 presents experimental part of the work. Two interrelated sets of ex-
periments were planned for the GDT facility in order to study the problems included
into an experimental part of the work. The first was intended for measurements of
a pressure-weighted curvature observing a plasma equilibrium response to applying
a small test (dipole in a simplest version, or may be of a higher order) perturba-
tion of magnetic field in the MHD-anchor region. A simple magneto-hydrodynamic
model is used to deduce from experimental data the pressure-weighted curvature of
the field lines that determines a plasma stability against flute modes. Main assets of
the approach are its simplicity and clearness, which allows it to be served as one of
the mains. It is also potentially of great utility to control the displacements of the
plasma from gec;metrical axis of the trap which arise in many cases due to uncon-
trolled errors in mounting of the coils, soft-iron parts near the machine, etc. Response
" to quadrupole external disturbances were also studied. Significant difference between

measured response and its theoretical estimate was found.
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Another set of experiments was devoted to studying the stabilization of the flutes

by a cusp end cell. The cusp cell was attached to the GDT device at early 1992.

The cusp coils was electrically tested and desired parameters were achieved. Within.

the frame of this Purchase Order we accurately measured plasma parameters in the
cusp, studied stability limits and measured some spatial characteristics of the unstable

MHD-modes above the instability threshold.
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Chapter 1

Stability of axisymmetric plasma

containing fast drifting particles

1.1 Introduction

Axial symmetry is a very desirable property of the mirror devices both for fusion and
neutron source applications. The main obstacle to be circumvented in the develop-
ment of such systems, is the flute instability of axisymmetric mirrors. In recent years
there appeared a number of proposals, devoted to the stabilization of the flute pertur-
bations in the framework of axisymmetric magnetic configurations, which are based
on the combining of the MHD unstable central cell with various types of end-cell sta-
bilizers [1]-[3]. In the present Chapter we concentrate ourselves just on this scheme,
including long solenoid \.vith a uniform field, conjugated with the end stabilizing an-
chor, intended to provide MHD stability of the system as a whole. The attractive
feature of such a configuration is that it allows to exploit finite larmor radius (FLR)
effects [5] for the stabilization of the flute perturbations. As js well known [5}, FLR
effects, being strong, stabilize all flute modes, except the one with azimuthal number
‘m= 1, corresponding to the “rigid” displacement of the plasma column (the “global”

mode). Consequently, in the conditions when FLR effects dominate, the anchor has




to stabilize the “global” mode only. Bearing in mind a favorable influence of FLR
effects we, however, don’t restrict our research by discussion of only “global” mode
stability and consider a general case of an arbitrary azimuthal mode.

The conventional approach to the stability analysis (used, for instance, in (1,2])
contains an assumption that the curvature-induced particle drift is slow as compared

with the scale-time of the flute perturbation growth,
Q4 <« T, (1.1)

where I' denotes a characteristic growth-rate of the flute perturbation (or a charac-
teristic frequency in the stable case), and €4 is a characteristic drift frequency in
the stabilizing anchor. Inequality (1.1) means that plasma particles in the anchor
undergo displacement remaining within the flute flux tube that they were initially
occupying. Therefore their perturbed position can be defined by 2-D hydrodynamic
displacement vector &, being the same for all particles, occupying in the initial state
some flux tube, irrespective to their velocity and pitch angle. So, one can analyze
the stability of the system in the framework of the familiar Kruskal-Oberman energy
principle [5]. Just this approach was used in [1,2).

On the other hand, the presence of a long central cell, possessing large inertia,

can result in the violation of (1.1). Indeed, flute growth-rate in the central cell itself
(without the anchor) scales as [8]

'~ ’UT,’/\/LCL“., (1.2)

>

where L., L, are lengths of solenoidal and transition regions respectively, and vT; 18
the ion thermal velocity in the central cell. It looks hardly probable to achieve a
stabilizing contribution of the anchor more than 1.5 — 2 times exceeding the unstable
contribution of the central cell. Hence, if one switches on the anchor, the characteristic
. frequency of the flute oscillations keeps its former value (1.2), just the sign of I'2

changes. Drift frequency around the magnetic axis in the anchor region is estimated




as follows:

cT,

~
eB,L?

B, being the magnetic field in the stabilizer middle plane, T, being plasma temper-

Qg (1.3)

ature in the stabilizer (to avoid unnecessary notation overloading in estimates, we
suppose electron and ion temperatures in the anchor to be equal to each other). As
it follows from (1.2),(1.3), growth-rate I' becomes really small as compared with the
drift frequency when L. is large enough. |

The latter conclusion gives rise to the interest for the investigation of the situation
when the drift frequency in the stabilizing anchor exceeds essentially the frequency

of MHD perturbations, i.e. when inequality inverse to (1.1) is satisfied:

Qs> T. (1.4)

To analyze the stability of such a system one cannot use Kruskal-Oberman energy
principle and has to rely on its modified version that takes into account the condition
(1.4).

The generalized energy principle accounting for the contribution of nonhydrody-
namic (in the sense of (1.4)) plasma species has been first formulated in [7], where
single-particle adiabatic invariant technique has been used to calculate the pertur-
bation of the particle energy. The energy variation, derived in [7], consists of the
contributions of both perturbed plasma and magnetic energies. However, if one in-
serts into the expression for W, presented in [7], the displacement vector € of the
flute perturbation
VpxB
& = T‘)

with 7 constant along the field line, then one comes to a somewhat paradoxical result.

(1.5)

Namely, it turns out that W, as given in [7], becomes identically zero (see Appendix
A). The reason is that authors of paper [7] retained in W only terms proportional
" to £2 while, as it has been shown in [8], the contribution of non-MHD particles to

the energy of the perturbations has a different structure, being proportional to £,




Henceforth in this Chapter we consider just the case of purely flute perturbations
(1.5).
Now it’s appropriate to mark one more aspect. The stabilization due to strong

FLR effects, mentioned above, takes place in the conditions [5]
T,

< —<_
< eB.a?’

(1.6)

where B,,T., a. are magnetic field, temperature and plasma radius in the central cell.
Combining (1.1), (1.3), (1.6) and taking into account the conservation of the magnetic

flux through the plasma cross-section,
B.a? ~ B,L?, (1.7)

(here we suppose that radial dimension of plasma in the stabilizer is of the same order
of its axial dimension L,) one can find that the assumption of the dominating FLR

effects in the limit (1.1) is valid only if
T, < T..

Since the latter condition is rather restrictive, it stresses all the more the actuality of
the stability analysis, involving particles with fast drift frequency (1.4).

The contents of the present chapter is as follows. In the next Section we repro-
duce the derivation of the generalized energy principle [8] for the axisymmetric case.
In Section 1.3 we invoke the cited energy principle to illustrate the possibility of the
stabilization of the flute instability due to the “negative inertia” effect. The investiga-
tion of the conditions, re:quired for the “negative inertia” stabilization in the magnetic
mirror and cusp, is the subject of Section 1.4 and Section 1.5, respectively. The influ-
ence of the nonlinear effects on the stability of plasma with fast drifting particles is
examined in Section 1.6. Section 1.7 is devoted to the application of the generalized
energy principle to the stability analysis of the neutron source device, proposed in
[9]. Section 1.8 contains conclusions. Several computational subjects are carried out

in Appendices. In particular, in Appendix C we show that the energy principle [8)

T T PR YO T ey
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admits the generalization to the intermediate frequency interval, I'/m <« Q4 < T, for

modes with high azimuthal numbers m.

1.2 Generalized energy principle for axisymmet-
ric plasma configurations

Suppose that in the anchor region there exists a population of hot particles with drift
frequencies satisfying inequality (1.4), while other plasma both in the anchor and in
the central cell is cold enough to admit conventional MHD treatment. We examine
the stability of such a system with respect to the purely electrostatic perturbations
that are characterized by the electrostatic potential ¢, constant along the field line.
The latter assumption, identical to the one made in [7], implies the presence of a cold
plasma component which justifies the constancy of the potential along the field line
and acts to provide quasineutrality condition.

It is convenient to adopt the following coordinate system: we mark every field
line with the polar coordinates 7, of its intersection with some plane, perpendicular
to the uniform magnetic field in the central solenoid. Instead of » one can use the
magnetic flux ® inside the cylindrical surface of the radius r: ® = nr?B,. A drift sur-
face can then be described by the equation ® = ®(7)). In the introduced coordinates
potential ¢ of the perturbations, corresponding to the mode with azimuthal number
m, is given by

» = @(P) cosmap. (1.8)
Note that
3(0) =0, (19)
since there is no azimuthal component of the electric field on the magnetic axis.
At a given configuration of magnetic and electrostatic fields, the drift surface for a

particle with a total energy € and magnetic moment p is determined by the constancy




of the longitudinal action

Il ®,9) = @M [ (e — uB ~ ep)dl, (1.10)

with the integration carried out between the turning points. If the condition (1.4) is
satisfied, then, with the electrostatic potential varying, the drift surface adjusts itself
to keep constant the magnetic flux inside the surface [10]. This occurs via variation
of the particle energy.

To find the change W of the kinetic energy of the particles (just this quantity
enters the energy principle for the perturbations with a scale-length much in excess
of the Debye radius), we use the following approach. We consider some group of
particles (of a total number AN) that in the initial state have certain values ‘of € and
P, and that are filling a drift surface characterized with a certain value of J. When
we slowly turn on the electrostatic potential of the perturbation, the drift surface
deforms and the kinetic energy of the particles changes. If we find the change of the
kinetic energy AW for this group, then, by summation over all the groups, we find
the required quantity .

The group AN is drifting along the contour ®(3) determined by the instantaneous
configuration of the electrostatic field and the instantaneous value of € . The number
of particles from this group dAN, occupying the section of the contour of the arc
length dy , can be presented in the form dAN = vdy , where v is the number of

particles per unit arc length. The stationarity condition uz,Zv = const yields:

ANQ
=" (1.11)
271
where 1) is the angular velocity of the bounce-averaged drift motion [11}:
. 27c

t) = J. is the transit time between the turning points, and Q is the drift frequency,

Q4 = 27 [/02”%/’] N (1.13)
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We use notations J, = 8J/0¢, Jg = 0J/03, etc., for the partial derivatives. The
change of the kinetic energy of these particles is, obviously,

final .
, (1.14)

initial

AI’V; U:ﬂ v(e — ego)d¢]

where the subscripts indicate the difference between the final and initial state. The
total energy € of particles is constant over the drift surface in the time-scale of Q47?,
while their kinetic energy € — ey varies from one field line to another according to
variation of ¢ . In this respect, AW, if divided by AN, represents the average (over
the drift surface) change of the kinetic energy.

The condition of flux conservation inside the drift surface can be written in the

form:
27 final
®(p)d =0, 1.15
/t; W)dv initiel (1.15)
where ®(7)) is a solution of the equation
J(e, 1, B, ) =0, (1.16)

In principle, equations (1.11)-(1.16) allow one to find the particle kinetic energy at
arbitrarily large o . However, we will consider only the case of small ¢ . The quantities
of the first order in ¢ will be denoted with subscript “1”, the second order corrections
by subscript “2”, etc.

In the linear approximation, equation (1.16) yields:

(61 — ep)Je + &:J5 = 0, (1.17)

wherefrom, taking into account relationships (1.8) and (1.15), we find that

g1 = 0, @1 = 8(,0:-15. (1.18)
Jo
The next order expansion of (1.16) gives:
1 2 1 2
J¢(€2 - e‘I’ltpé) + J‘}@z + EJ“(&P) - J¢¢@16¢ + §J§§§1 = 0. (119)




The requirement (1.15), when applied to &, , yields:

27 2 diy 1 1
/0 dp(e2 — eP1p3) = —/0 %(5%&2 - Jz@_fIHe‘P + §Jq><b¢’12), (1-20)‘
while from (1.14) we find that
_ AN ey
AW = F/0 [Gee + (62— e2ipa)ld. (1.21)
From equation (1.12) one obtains that
‘QLI Jz Jc J<I>q> 2Jc<1> JecJQ
Y1 Le - : . 2
¢ J‘I’ e * J‘I’ J<I> Jc B Jez 7 (1 2)

Now, using relationships (1.8), (1.18), (1.21) and (1.22), we can express AW in terms
of ¢:

1 2 Je 6852 ~2 Jc@ ch J:J<l><§
W =—= ZeZ¥ glet _ e 9
A € AN [J§ 5% +¢ A 2 N (1.23)

To perform the summation over the plasma particles, we introduce the distribution
function F'(g, p, ®), normalized according to the relationship AN = F (5,1, P)AApAD.

Then, the energy W of the perturbation acquires its final form:

W = —:]i-ez / dedpd®F(e, u, ®)x

Jz 6952 ~2 Jcé Jz: JcJ(I><I>
X [z‘aféw (2J.§ A —Jz—)] (1.24)

Sometimes it’s more convenient to use the expression for W in the form

W= 262 / dedpd®@?x

a J‘ Jg@ Jcc J¢J§>4> =

which can be obtained from (1.24) through the integration by parts of the first term in

the square brackets (1.24). There is no contribution of limits from the integration by
parts in (1.25), since on the upper limit there are no particles, and so the distribution

function equals to zero, while on the lower limit the potential ¢ vanishes according

to (1.9).
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In Appendix B we derive also the expression for the energy variation, relevant
to the conditions when the longitudinal energy of the particles is small as compared
with their transverse energy. In such a case plasma is located near the point of the
minimum field strength on the given field line (the so-called “disk”-like plasma), and

the contribution of the particles with fast drift can be expressed as

e? F d (¢

or after the integration by parts

e? @ OF
w=-% / dpd® il
4 # [LBOQ oo

(1.27)

where By is the minimum value of the field strength on the magnetic surface, corre-

sponding to the flux @, and Bys = 6B,/0®.

1.3 Stability of the “global” mode

Formulae (1.24), (1.25) define the contribution of only fast drifting particles (1.4) to
the total energy variation, while there exist two more terms, originated from plasma
particles with small drift frequencies (1.1), whose contribution can be obtained in the

framework of MHD approach. The first one scales as
W® > Mn.o®L.£2. (1.28)

Henceforward in this Section we consider the case of the “global” mode perturbations
with £ as a displacemeht of the plasma column as the whole in the central cell.
Expression (1.28) describes the kinetic energy of the perturbations. It is caused by
inertia of ions in the long central cell.

The second term,
_nea?

1WP) = £2, (1.29)

describes the potential energy of the perturbations caused by the field line curvature.

tr

The sign of W) is negative due to the unfavorable field line curvature in the transition

9
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region. As it follows from (1.28), (1.29), in the central cell itself (with the anchor
being switched off) the instability grows up with the characteristic increment given
by (1.2).

Taking into consideration the contribution (1.25) of the fast particles, notice that
the expression for W scales as p?. Since the displacement ¢ of the flux tube, filled
with a cold plasma, is determined by formula (1.5) with 7 = —(1/c) [ ¢dt, we see
that, if (1.25) is expressed in terms of £, it scales as

= n—}—?%z—B—fé?, (1.30)
Here we have supposed the radial dimension of plasma in the stabilizer to be of the
order of L,, and also condition (1.7) has been taken into account. Thus W scales as a
kinetic energy of the perturbations (~ é 2), giving contribution to W), not to W),
Therefore the presence of the fast drifting particles manifests itself in changing of the
“inertia” of the perturbations, not of their “rigidity”.

Fast drifting particles may affect the stability in two different ways, depending
on the sign of the energy 1¥". Positive value of W gives rise to the increasing of the
effective kinetic energy of the perturbations (or of their effective “inertia”) that , in
turn, leads to the decreasing of the increment I', but the instability still remains.

It seems to be more attractive another situation, when W is negative and, more-

over, the following requirement is satisfied:
w® LW <o. (1.31)

The negative sign of the effective kinetic energy corresponds to the oscillations of
the perturbations with the “negative inertia” in a hump-like potential (1.29). Since
the frequency of such oscillations is, obviously, real, condition (1.31) allows one to
conclude that the system becomes stable.

Estimates (1.28), (1.30), together with (1.31), impose one more constraint on the

plasma parameters:
n, L, p%{a Bf

> et —
ne Lo ~ L2 B2’

10




where py, is the ion larmor radius of the hot particle in the stabilizer region.

To cite one more example of the magnetic configuration in which the fast drifting
particles may considerably affect the stability of the plasma we consider a single non-
paraxial mirror of length L (with a plasma occupying a volume of the order of L3).
Let plasma consist of a thermal population with temperature T and density n, and a
hot population with temperature T, and density n. < n; let also the pressure of the
hot component exceed that of the cold one: n,T., > nT. For the mode of a “global”
displacement one can evaluate the plasma kinetic energy (per unit volume) as

n. T, .
(W + nM) £2, (1.32)

where £ is a (small) plasma displacement. The first term here represents a contribu-

tion of the fast particles. The potential energy is just
nT(¢/L), (1.33)

as fast particles do not contribute to it. If the drift frequency of the fast particles
is not too high,

Q 1 /n,TN\Y?
d<f(nM> ’

the inertia of the fast particles dominates. The estimate for the growth-rate I" is then

aT \ /2
I~ (n,T.) )

As n,T. > nT the growth-rate is automatically less than the drift frequency, ensuring
the applicability of our analysis. So, we see that, indeed, the “inertia” of the fast
drifting particles can be' dominant, despite their small density.

Notice that though in the present Section we have concerned ourselves with the
stability analysis of the “global” mode (estimates (1.28), (1.29), (1.32),(1.33) hold just
for the “global” mode perturbations), the stabilization due to the “negative inertia”
effect, discussed above, makes it possible to suppress, in principle, the instability of

an arbitrary azimuthal mode. However, as the “inertia” of the oscillations is negative

(see (1.31)), the dissipative instabilities are possible.

11
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1.4 “Negative inertia” stabilization in the mag-

netic mirror

As it was established in Section 1.3, the necessary condition for the stabilization of
the flute instability due to the “negative inertia” effect is the negative definition of

the energy variation W of the fast particles:
W <. (1.34)

In the given magnetic field the latter inequality imposes certain restrictions on the
possible profiles of the distribution function F' of the fast particles. In the present
Section we investigate the requirements, which the distribution function F' should fit
to satisfy (1.34) in the magnetic mirror configuration.

We start with the stability analysis of the paraxial magnetic mirror. In the frame-
work of the paraxial approach, the plasma radial dimension should be small compared
to the mirror-to-mirror distance. If we use the coordinate frame with the axis coin-
ciding with the magnetic axis, the longitudinal invariant J, up to the terms linear in
®, can be written as [7]

J = JO e, p) + 8TV (e, p).

The neglect of the higher order terms in @ is justified in the paraxial region. Since
the variation of F' in ® has a small scale-length, the first term in (1.25) is dominant,

and so expression for W reduces to a simplified form:

, 1, JO . OF 3
W=se / dedud® o @ = (1.35)

Since the derivative 0F/0® defines the sign of the diamagnetic frequency, one can
conclude from (1.12), (1.35), taking into account J{® > 0, that the energy variation
would be negative for those particles whose directions of the curvature-induced and
diamagnetic drifts coincide, and would be positive in the opposite case.

As an example of the stability analysis of the concrete plasma configuration, we

examine the stability of the hot “disk”-like plasma located in the middle plane of

12




the magnetic mirror. The energy variation of such a plasma is given by formulae
(1.26), (1.27). The paraxial expansion of the magnetic field in the middle plane can
be presented in the form [7]:

Bll
Bo=B-— Z—-E—@ (1.36)

where B is the field strength on the axis and prime denotes the derivative along the
axis. Note that B” > 0, since the magnetic field has a minimum in the middle plane.
Inserting (1.36) into (1.27), one obtains:
=2
@
=me‘— [dpd® — ——
e g / ;1, a@
As it follows from the latter expression, condition (1.34), necessary for the stabiliza-

tion, is satisfied for a descending plasma profile,

oF
a—@ <0. (1.37)

Now we investigate in more detail the stability of the “global” mode for the dis-
cussed above plasma configuration. The potential ¢, corresponding the “global” mode

perturbations, is given by

© = poV® cos . (1.38)

After the substitution of (1.36), (1.38) into (1.26), one can find
. B
W = —re?— / dpd® . (1.39)

Inequality (1.34) is sati%ﬁed in this case, and so the “negative inertia” stabilization
is realizable.

Up till now in the present Section the discussion has been restricted by the
framework of the paraxial plasma configurations. To illustrate the influence of non-
paraxiality on the stability of the plasma with fast particles, we turn to the stability
analysis of the hot “disk”-like plasma, localized in the middle plane of the magnetic

13
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Figure 1.1: Field lines of the mirror composed of two magnetic dipoles. Bold line

corresponds to the separatrix, passing through the point of zero field strength.

mirror composed of two equal co-axis magnetic dipoles (Fig. 1.1). The magnetic field

in the middle plane of such a mirror can be written in the form

2 —
&:BrL~%W
2(z +1)

where z = 4r?/L?, 7 is aradius in the middle plane, L is a distance between dipoles

(1.40)

and B. is the field strength in the middle point between them. The magnetic flux

can be expressed in terms of = as follows:
33/2 T
2 1+ :1:)3/ 2’

where ®, denotes the flux, corresponding to the separatrix that bounds the region of

(1.41)

s

the adiabatic confinement (see Fig. 1.1).
Now we examine the sign definition of the energy variation W for the “global”

mode perturbation (1.38). Consider the plasma envelope, involving particles located

14
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on the distance Ry from the axis in the equilibrium state. Inserting (1.38), (1.40),
(1.41) into (1.26), after elementary analysis one can obtain, that the energy variation

W occurs to be negative for the plasma envelopes with radii

Ro
7 <072, (1.42)

where R, is the separatrix radius, while for radii Ry, being outside the interval (1.42),
the energy W has a positive sign. Hence, non-paraxial effects lead to the violation of
the condition (1.34), and so the region of distant radii pays unfavorable contribution

to W in the sense of the possibility of the “negative inertia” stabilization.
P g

1.5 “Negative inertia” stabilization in the cusp

We start with the reproducing of some basic formulae, characterized cusp magnetic
configuration. In the cylindrical coordinate system with the axis of the device as

z-axis, cusp magnetic field can be written in the form:
B, = 2Gz, B, = —-Gnr, (1.43)

with G being constant, defining the value of the magnetic field. It’s convenient to

present equation, that governs the magnetic field line, as follows:

2 3

r’z =17, (1.44)

where parameter [ marks the given field line. The minimum value of the field strength

on the field line [ is expressed as
Bo(l) = V3GL (1.45)

Magnetic flux ¢ is connected with parameter ! of the field lines, forming the given

flux surface, through the formula

& = 2xGP°, (1.46)
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Now we proceed to the establishing of the conditions which provide the negative

definition of the energy variation W of the fast particles. We examine two limits:
€ — pBy < pBy, ' (1.47)

£ > pB,. (1.48)

Inequality (1.47) implies that the longitudinal energy of the particles is small as com-
pared with their transverse energy. These particles perform small bounce oscillations
nearby the point of the minimum field strength value (the “disk”-like plasma), and
their energy variation W is described by expressions (1.26), (1.27). The second condi-
tion, on the contrary, corresponds to the large longitudinal energy (the limiting case
of the inclined injection).
Analysis of the first limit is especially trivial. Indeed, as it follows from (1.44),(1.45),

the derivative 0B, /0% is positive. Hence, according to (1.27), the negative contribu-
tion to YW make those particles for which

OF
% > 0. (1.49)

Note, that the latter condition is opposite to the one (1.37), obtained for magnetic
mirror configuration in the same limit (for the “disk”-like plasma).

Inserting (1.45), (1.46), (1.38) into (1.26), we find that for the global mode per-
turbations the energy W occurs to be positive. Consequently, one can’t stabilize the

global mode by the “negative inertia” effect in the conditions (1.47).

Now we examine the limit (1.48). Using (1.43), (1.44), one can derive the following

expression for longitudiﬁal action J:
r 1/2
J=Jo [ a1+ 1/ [ro — (1 + 1777,
™

where Jo = 24/ uGE, 1o = €/2'/°uGl and integration being carried between the
roots of expression in the square brackets. Inequality (1.48) leads to the requirement

To > 1, which, in turn, allows one to calculate approximate values of r; and 7,:
™™ 1/ To, T2 = 7Tg,
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and then to compute J:

J =23, (1.50)

Differentiation of (1.50) with respect to € and @, and substitution of the corresponding’

derivatives into (1.25) give:

9me? o2 ( OF 31F
Hence, one comes to the following relation
OF 31F

that provides the negative contribution of the particles to the energy W.

For the potential (1.38) of the global mode perturbation, the calculation of the
expression (1.24) leads, with account for (1.46), (1.50), to the positive value of W.
The latter states that in the limit (1.48) the “negative inertia” stabilization of the

global mode is impracticable.

1.6 Nonlinear stability

Up to this Section we have investigated the stability of plasma, containing fast drift-
ing particles, in the linear approximation within the assumption of the infinitesimal
amplitude o of the perturbed potential. In this approach the energy variation W
of the fast particles was found to be quadratic in ¢ (see (1.25)). As o grows, the
character of the relationship between W and ¢, modifies, since the nonlinear effects
switch on. The latter may lead to the changing of the sign of W and, hence, may
affect the stability of the system as the whole. Therefore it is of the certain interest
to calculate the energy W for the finite amplitudes ¢ as well. As an example of such
calculations we shall carry out the nonlinear stability analysis of the hot “disk”-like
plasma, localized in the middle plane of the magnetic mirror, compose of two equal

co-axis magnetic dipoles (1.1). Suppose that particle energy is high enough to satisfy
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condition (1.4). Henceforward we shall concentrate ourselves on the stability of the

“global” mode with the perturbation of the potential given by

0 = oy 5 o5, (153)

Here @, represents the magnetic flux corresponding to the separatrix, that bounds
the region of the adiabatic confinement (see Fig. 1.1).

Consider a plasma envelope formed by N particles, located on the magnetic surface
®, in the equilibrium state. The energy and the magnetic moment of each particle
are € and p respectively. According to (1.11)-(1.14), the energy variation of such
particles can be expressed as

Qg 2mdy -
W=N (As - %/0 Eego) ) (1.54)

where Ae is the changing of the total energy of the particle, constant along the
drift surface. Another designations are the same as in Section 1.2. It should be
stressed that formula (1.54) is valid for an arbitrary magnitude of the amplitude of
the perturbed potential (not only for the infinitesimal one). Just the calculation of
the function 1 (i) is the goal of the present Section.

In the case of the “disk”-like plasma the particle transverse energy greatly exceeds
its longitudinal energy, and so the kinetic energy of the particle approximately equals
to uBy, with the magnetic field in the mirror equatorial plane By, being determined
by (1.40). In the same fashion as in Section 1.2, the perturbed drift surface can be
described by the function @(¢), which is as yet unknown. The kinetic energy of the
particle on the ®(3)) surface is given by equation

1Bo(®) = pBo(®o) + Ae — epo % cos b, (1.55)
where the flux @ being determined by (1.41). Equation (1.55) allows one to define
the shape of drift surface ®(1)) as well as to find the energy Ac. Indeed, every value
Ac governs some solution ®() of equation (1.55). However, among all this solutions

we have to chose the only one, that satisfies the additional requirement (1.15). Then
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the corresponding value Ae will be just the desired particle total energy variation.
Since the presented above scheme of the solution of equation (1.55) doesn‘t admit the
analytical approach, the problem was investigated numerically.

Once the dependence ®(7)) has been found, it would not be difficult to compute
the second term in the right side of (1.54). For the “disk”-like plasma the angular
velocity (1.12) reduces to the form

H a.Bo Bcp
b (s )
T | R

which has a clear interpretation: the angular velocity is determined by the gradient

and E x B drifts. Finally, inserting (1.56) into (1.54), one obtains the value for the

(1.56-)

energy variation W.

The numerical computation results are presented on Fig (1.2), where the depen-
dence of W/N versus ¢, being shown. Plasma envelopes with various radii R, in the
equilibrium state were examined. The energy W/N (being equal to the variation of
the kinetic energy of a single particle, averaged over the drift surface) is measured in
the units of e, while amplitude ¢, is measured in the units of e/e. The radius Ry is
normalized on the separatrix radius. Dotted lines relate to the parabolic profiles of
the linear approximation.

It should be noted one more point now. Equation (1.55) possesses the solution
®(¢), satisfying the requirement (1.15), not for an arbitrary large g, but for the
amplitudes, less than some fixed value, determined by the radius Ry of the envelope
in the equilibrium state. The latter is a consequence of the fact that for sufficiently
large ¢y the drift surfa,ce; breaks up, i.e. it ceases to be a closed surface. Just for this
reason the curves on Fig. 1.2 terminate at various values of the maximum allowable
amplitude o.

The curves on Fig. 1.2(a)-(c) relate to the values Ry < 0.72R,, that is the interval
where, according to (1.42), the linear theory predicts the negative definition of the

. energy W, that, in turn, implies the possibility of the “negative inertia” stabilization.

For the large amplitudes g the quadratic fall of the energy W slows down and then
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Figure 1.2: The energy variation W/N plotted as a function of the amplitude gy of
the perturbed potential. The values of W/N and & are measured in the units of ¢
and /e, respectively. Curves relate to the following radii Ry of plasma envelopes in
thc.? equilibrium state (Ry is normalized on the separatrix radius): a — 0.4; & - 0.54; c
- 0.6; d - 0.8 . Parabolic profiles of the linear approximation are shown with dotted

lines.




gives way to the rise of W. However, for plasma envelopes with radii Ry < 0.54R,, the
energy W remains negative for the arbitrary allowable amplitudes ¢, (Fig. 1.2(a)). In
the case, when Ry = 0.54R,, the energy W becomes zero for the maximum allowable
potential amplitude (Fig. 1.2(b)). In the region 0.54R, < Ry < 0.72R, the energy
W is found to be positive for the large amplitudes ¢, (Fig. 1.2(c)), and hence the
possibility of the “negative inertia” stabilization fails.

In the interval 0.72R, < Ry < R,, where according to the linear theory the energy
W increases as 2, the nonlinear effects lead to even greater growth-rate of the profile
W(po) (Fig. 1.2(d)). Thus in this case the energy W occurs to be positive for all
possible amplitudes. Consequently, the nonlinear stabilization due to the “negative

inertia” effect in the interval of Ry under examination turns to be impossible.

1.7 Application to the beam-plasma neutron source

Our results can be of some interest for the development of the beam-plasma neutron
source (BPNS) [9]. In this system a relatively short mirror machine is filled with a cold
tritium plasma which serves as a target for high energy (~60keV) deuterons which
are produced by NB injection and confined in the same mirror machine. In order to
reduce the heat losses through the cold plasma electrons, there is envisaged the use
of the long solenoidal sections with gradually decreasing magnetic field between the
mirror cell and the end-walls: as the target plasma is a collisional one and the heat
flux is determined by the thermal conductivity, this arrangement indeed reduces the
heat flux. Another implication of the using of these long sections is a considerable
increase of the inertia of the flute perturbations. As one can easily show [13], for the

global mode the kinetic energy can be evaluated as

Mndl

"2 2132
6 ..aOBO

" where ¢ is a plasma displacement in the equatorial plane of the device, By and aq are

magnetic field strength and plasma radius in this plane, respectively. Denoting the
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half-length of the mirror cell as L, one can obtain the following expression for the

potential energy:

&(n.T./P)ralL,

where the subscript “+” refers to the high energy particles.

The growth-rate T' of the flute perturbations is equal to

1/2
1(T.)1/2 n.L
\M ndl ’
B[

while the drift frequency of the fast ions is
/2
oy 2)
S~ 77 (M '
Here p, denotes the Larmor radius of the hot particle. After the substitution of the

numerical values of all variables (see [9]), it turns out that

T
— ~ 0.1
¥ 0-1,

that is, the contribution of the fast ions to the potential energy of the flute pertur-
bations in fact is zero. This should allow the change of the magnetic configuration
from Yin-Yang to axisymmetric one, with the corresponding simplification of design

of the neutron source.

1.8 Conclusions

In the present Chapter we have analyzed the stability of the axisymmetric mirror
device with respect to purely electrostatic flute perturbations. We have investigated
the scheme consisting of the long central cell conjugated with the end stabilizer that
contains hot plasma. One of the main results of our research is the establishing of the
fact, that a population of hot particles with fast azimuthal drift (see (1.4)) may pay a
favorable contribution to the MHD stability of the system as the whole. The reason

22




is that fast drifting particles affect not potential energy of MHD perturbations but
rather their kinetic energy, and in the case, when the effective kinetic energy is found
to be negative, the stabilization due to the “negative inertia” effect takes place.

Another system, to which our results can be applied, is a two-component plasma
consisting of a cold dense background and a minority of hot particles that determines
the plasma pressure (like in some versions of mirror-based neutron sources [9,17]). At
high enough density of a cold component, condition (1.4) can easily be met.

We have also showed that the energy principle, formulated in [8], can be gen-
eralized on the intermediate frequency interval I'/m <« Qg < T for the azimuthal
modes with high numbers m (see Appendix C). Therefore all conclusions, concerning

the stabilization due to the “negative inertia” effect, can be transformed to these

conditions as well.

Appendices

A Van Dam-Rosenbluth-Lee energy principle in
the case of the flute perturbations
We start with the introducing the Clebsh coordinates (c, 8) [15] with property
B=Vax V4.

The a coordinate is chosen so that the contour surfaces of constant o form a nested
series of topological cylinders, and it is normalized to enclose the magnetic flux 27
by any « surface. The § coordinate is angle-like and of period 27 on each a surface.
In the limit of zero 8 the magnetic field satisfies equation V x B = 0, and hence it

can be expressed as a gradient of some potential x:

B=Vy. (1.57)

T T



Vectors

(Va ,V8 ,Vx) (1.58)

compose a covariant basis that we are going to deal with. We also define a contrvariant

basis (u,v,T), dual to (1.58), in such a way that

Vi x Vyx
- TR
Vax Vx
v
T_VaxVG_ b
- B? - B

According to the energy principle 7], derived within the assumption of the fast

particle drift (see condition (1.4)), the energy variation W consists of two terms:
W =W; + W,. (1.59)

The first one, Wy, represents the local part of W and can be written in the Taylor-
Hastie form [14] :

Wy = é/dsw [O'Qi +(Q%+ojyb- (€ x Q)+ ¢€ - V'p

—(1/B)(2Q; +&- VB)(&- V'p1)] - (1.60)

Here & is the displacement vector, Q is the Eulerian magnetic field perturbation,
Q=Vx(£xB),

the subscripts ||, L refer to the parallel and perpendicular components with respect

to the direction of the unperturbed magnetic field, and the coeflicients o and (,
o=1-B"(0p)/0B), (=1-(8°py/8B%,

are measures of stability against firehose and mirror anisotropy modes, respectively.

- Also, the following notations are introduced:

V' =V — (VB)§/dB,
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g=Dbb:VE. (1.61)

The kinetic contribution to the energy variation, W}, originated from the fast

drifting particles, is given by

W = —% [ dodsduds [(%?)J((H))z + (%) (g—?)e(H)z] , (1.62)

H = —mvjq — pB(V - £ - q), (1.63)

where

and F = F(J(a,0,¢,1),¢, pt) is the equilibrium distribution function, depending only
on the integrals of motion (see e.g. [16]). Single angle brackets in (1.62) describe the

()= (g—;’) B § (...,

while double angle brackets denote the average both over bounce and drift motions:

(...)) = (%) : j{ dé (g-i-) :(. s (1.64)

where & = §dfa(f) is the flux adiabatic invariant (o = () defines the particle

bounce average:

drift-surface, and integration is performing with J and € being constant), (062/6¢),
is the precessional drift period, and (8e/da)s = (dB/dt) is the bounce-averaged rate
of precession [10].

Now we turn to the calculation of the energy (1.59) for the flute-like perturbations,

characterized by the following displacement vector £ :

£=Db{y+&,, (1.65)
BxV
€L = 22 1, (1.66)

with function 7 constant along the field line,

7 = n(e, ).

Since
V7= @Va + @

Ba o6 V6,
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the perpendicular displacement (1.66) can be expressed as

on_, On
£, =~ 5t 5, (1.67)‘

In the curved coordinate system (e, 8,1) ( with I as a coordinate along the field line,

determined by dl = dx/B ) one obtains:

i 8 (1 0n 0 (1 0y
v-g= Bal( )+Bz [ao (E%)_a—a(mae)]

&) _2[0Bon _oBon)
=5y ( ) [69 8o~ e 06 (1.68)
As it follows from (1.61), (1.65), the expression for q yields:
_ 9%
q= al £_L : (b - V)b'

Accounting for V x B = 0, and using the relationships
(b-V)b=-bx(V xb),

Vxb= —%(VB x b),

we come to

_ 6 110BOn 0By
= [ae B B 6] (1.69)
After simple manipulations one can find from (1.63), (1.68), (1.69) that
oJ dl 8 (Mv]
= (%) J5 aq (o)
8J\ " r dl 8B &y 6By
' - 1 —_— e — .
* (65) B, (3171 + 1B) [ao be " Ba 69] (1.70)

The contribution from the first 1ntegral vanishes, since the particle energy conserves
along the field line.

As it was shown in [15],

oJ dl




oJ dl 6B
%= 5 (M} + 1B) o5 (1.72)
Combining (1.71),(1.72) with (1.70), one can rewrite the expression for (H) as
8J\'8J8n  (8J\ 8] bn
W) = (55) B68a " (65) 56.90" (1.73)

Now it is easy to perform the average of (H) over the drift motion. Inserting
(1.73) into (1.64) and taking into account that

(B).- %" ()-8
om~(5), o) - (), fa-o

Finally, using
OF\ __(8J) (0 (oF
Oa ], - Oe J\Ba ) \0T )

one obtains after the substitution of (1.73) into (1.62):

e feones (7)) ((8)-
@@ @)

Here we have changed the set of the integration variables, and perform the integration

we have:

over de instead of dJ.

Now we turn to the.calculation of the energy variation W;. Since Wy does not
depend on the parallel component & (see [14]), and besides that the displacement
(1.65) does not perturb the magnetic field, Q = 0, the expression (1.60) reduces to

Wy = ‘%f & (%(ﬁl - VB)(€L- V'pi)+

o[22 -20)

89 8a Oa 08 (1.75)
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The parallel and perpendicular pressure components, presented in (1.75), are given

by

o= [ ZE% B MeF,
I vy h

ded
p_1.=/ % B uBF.

!

The substitution of (1.67) into (1.75) leads to

w,_ 1 [£o [0B[0POB 0P (or\' 0B [0P0B _0P] (0r)’
+= 2 ‘B aa 8B ba  dal \ 86 80 |6B 86 ~ 86| \ba
_0B[0POB 0P| ondn 0B [0POB _0F] onon
8o |6B o8 001008 68 |OBOa Oal 80a
where P = py +p,,

(1.76)

P =/deduB (M} + pB)F(p,e,J).
Yy

The calculation of the derivatives of P, entering into (1.76), gives:

/ddF ——( M>,

Yl

6P (AI'U“ T ILB) dé‘d;l,B 2, oF
8P 8B (Mv} + uB) dedpB 8F
=5 = / dedpF 5 (BT +/ o (00 uE) ( ae)

Now reminding that d®z = dadfdl/B, and accounting for (1.71), (1.72), (1.77), one

can transform (1.76) to

‘ 2
W= = / dedpdadd {gi (gi ) (%) +

_0J (OF\ (&n\* (8J (8F\  8J (OF\\ &ndn |78
NEACTIACE, 89 \8c), " 8a\80), ) 8606a | (1.78)

The latter expression, together with equations

oF\ _os(or\ (or\ _oi(oF
o6 5_39 aJ z’ Oa c_aa oJ :’
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or\ _ o (a7)\ (oF
o6 5_39 Oa Oa c’

allows one to show easily that W; equals to the expression (1.74) with the inverse

sign, and hence the energy variation (1.59) is found to be identically zero.

B Energy principle for the “disk”-like plasma

Consider the limit of zero longitudinal hot plasma pressure, p = 0, when transverse
energy of hot particles greatly exceeds their longitudinal energy. In the equilibrium
state these particles perform small bounce oscillations round minimum field point, so

that
£ — ;LBQ <K [LBo, (179)

By marks minimum value of the field strength on the given field line. Using expansion
of B along the field line in the vicinity of By,

B ~ B, + B,

one can carry out the integration in (1.10) explicitly:

Ae

VuB’

with Ae = ¢ — pBy. Now it would not be difficult to calculate with sufficient accuracy

J =nV2M (1.80)

e- and ®- derivatives of J:

J J
J. = Az Jo = —ltBoch—sa
By J
— — =% < 1.81
ch 07 Jz@ B AS’ ( )
J Bs J
= — B _— B _—_—
Jsz K owAE+u e Z AT

Here we have taken into account, that Ae/pBy is a small parameter according to

(1.79). Substitution of (1.81) into (1.24) leads to the following expression for the
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energy variation:

e? F d [ &
=% [duds = 2 (22}, :
W 4/,u1> . dq)(Bo@) (1.82)

Note that there is no integration over de in (1.82). The reason is that in the case
under consideration, the distribution function F depends on ¢ approximately in a 6-

functional way, F ~ §(e — pBy), and so the integration over de can be done explicitly.

C Generalization of the energy principle for the

case: I'/m<« Qy <T

The crucial point of the derivation of the expression for the energy variation in paper
[8] (as well as in [7]) is the exploitation of the fact that the flux adiabatic invariant
conserves. As is well known (see, e.g. [10]), when the frequency of the drift motion
1y around the axis is high as compared with the inverse characteristic time of vari-
ation of the electric and magnetic fields, then the magnetic flux ® encompassed by
the drift surface is an adiabatic invariant (notation ® shouldn’t be confused with a
flux coordinate @ , an independent variable). In the case considered in the present
paper, the magnetic field is constant; the varying is electrostatic potential y of the
perturbations. The slowness of variation of ¢ in the above mentioned sense (see (1.4))
guarantees the conservation of .
When considering the case of perturbations with high azimuthal mode number
m > 1, one may encounter the situation when the drift frequency ), is lower then T’
but higher than I'/m : '
T/m < Qa<T. | (1.83)

The inequality Qy < T’ means that one cannot thoughtlessly use the traditional adi-
abatic invariant ®. However, we shall show that, under the condition I'/m <« Qq,
there exists another adiabatic invariant, similar to &.

We consider the potential perturbation (not necessarily small) which is of the form

(1.8) and changes in time with the characteristic frequency I'. Then the inequality
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I'/m < (4 means that the guiding centre traverses one spatial period of the system
in a time that is short as compared to the time of potential variation. Just this fact
is a basis for existence of the generalized adiabatic invariant.

The guiding centre motion, averaged over the fast bouncing along the field line,

is governed by the following equations [11]:

. 27e
¢ = __JCI’}
et”
) (1.84)
é = ﬁ‘];!’,
et”

where ¢ = J. is the transit time between the turning points. In the context of the
problem under consideration, J is a constant of motion (as well as ). Resolving the
equation J = const with respect to € , we can find the function e(,®) for a given
particle. By differentiating the function J(e(3, ®), ®,1) over 1 and & , we find:

%&_ 4 _ &
oy J.’ 8 J.’
and the equations of motion (1.84) acquire the Hamiltonian form:
. 27c O
Y= o
: (1.85)
_ _2mc B
e oY’

with ¢ and @ being canonically conjugate variables and ¢ playing a role of Hamil-
tonian. As the explicit dependence of € on ¢ is slow in the sense that the guiding
centre traverses one spatial period of the system (in coordinate % ) in a time short
as compared to the time 6f potential variation, equations (1.85) possess an adiabatic

invariant

& = ® dip, (1.86)

Ty
where integration is carried out over one spatial period Ty, equal to 2 /m. Of course,
for slow enough potential variations, I' « g , the integration in (1.86) can be
extended to a full rotation of a particle around the axis, and (1.86) reduces to the

standard flux invariant.
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Now it becomes clear that the expression for the energy variation, that takes into
account conditions (1.83), coincides with formula (1.24). Indeed, all calculations in
this case would exactly repeat calculations, performed in Section 1.2, with the only
exclusion: ® conservation requirement should be replaced by the requirement of the
conservation of ®*. But this changing doesn’t, obviously, affect formula (1.24), since
the averaging of the expressions, composed of function (1.8), either over 2 /m-interval
(as in (1.86)) or over 2n-interval (as in the expression for &) would finally lead to the

same result.
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Chapter 2

Non-paraxial axisymmetric MHD

anchors

Big attention is paid last years to search for axisymmetric configurations of magnetic
field which can provide MHD stable plasma confinement [1,7]. By obvious reasons,
preference is given to the configurations with “natural” singlyconnected region of
plasma confinement. Perspective for this direction of research has been demonstrated
in (7} where non-paraxial mirror trap, formed by a system of two small coils (i.e.,
dipoles) in an external relatively weak homogeneous magnetic field, has been pointed
out to be the example of stable axisymmetric configuration. Inserting of non-paraxial
mirror trap into the composition of an open (for instance, an ambipolar) device guar-
anties stability of large-scale flute perturbations, while small-scale perturbations are
supposed to be stabilized due to Finite Larmor Radius effects. In this chapter, we
poit out a method of search for axisymmetric configurations which provide stability
of rigid (m = 1) flute mode and prove several theorems, elucidating the effect of

non-paraxiality on sloshing ions stabilization of flute modes {3,4'.
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2.1 Stability of disk-shaped plasma

Let us, first, consider disk-shaped plasma with p; = 0, confined at the equatorial
plane z = 0 of non-paraxial mirror trap. For the sake of simplicity, we assume for the
trap to be symmetrical about the plane z = 0. Such system is stable against global
flute mode provided that there exist at least one point along radius, near which the

following two inequality are simultaneously satisfied [7]:

By d dB, dBy

k. e Setek S 2

rdr dr = 2 dr ) (2.1)
d & dB,
—— — > .
drrBy dr — 0, (2:2)

where By(r) = B.(r,0) is the magnetic field at the equatorial plane,
r
® = 27.—/ dr rBo(r)
0

is the magnetic flux throughout the circle of radius 7. The first inequality (2.1) guar-
anties the existence of “longitudinal” minimum of magnetic field near z = 0 plane
and, hence, stability against plasma displacement along field lines. The second in-
equality provides stability against global displacements of the plasma across magnetic
field. In the region, close to plasma axis as well as very distant from it, the conditions
(2.1), (2.2) are incompatible {7]. Therefore the region, selected by these inequalities,
if it exists, has form of a ring. The above mentioned system of two magnetic dipoles
with superimposed weak homogeneous external magnetic field gives first example of
such “ring of stability”. Trying to ascertain which magnitude of the external field
corresponds to arising t}'le ring of stability readily gives a common guide of search for

the system with the ring of stability.

2.1.1 System of two magnetic dipoles

Magnetic dipole m produces magnetic field

_ 3(mR)R — R’m
= =

B

(2.3)
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at the point with radius-vector R. First of all, we note that own magnetic field of
pair of similar dipoles, directed along the axis z wich connects them, goes to zero at
the equatorial plane z = 0 on a distance from the axis. If to choose a half of distance
between the dipoles for the unit of length, then from (2.3) we get

2 — 12

.BO(T) = Bw 2(1 +7‘2)5/2,

(2.4)

where B, = 4m is the field at the center r = z = 0 of coordinates, so that the
null of the magnetic field is the circle of the radius » = /2. A separatrice surface
matches the null and separates the regions with reverse direction of magnetic field
B. If to superimpose weak homogeneous magnetic field H, co-directed with the field
B on the axis z of the dipoles system, the circle of second null, initially (at H = 0)
placed at infinity (r = co) in the equatorial plane, approaches to the first null and
merges it near the radius 7 = 2 when H/B, = 5752 ~ 1.79. Simultaneously with
the merging, the regions of reversely directed magnetic field disappear (see Fig. 2.1).
Not specifving further our chose of magnetic system, we show that it is the moment
of merging when the ring of stability appears for disk-shaped plasma.

We can neglect the effects connected with cylindrical geometry of the problem
and consider the magnetic field to be planar near null rings. Collating cylindrical
coordinates {r, ¢, =z} to Cartesian ones {z, y, =z}, we can write the expansion
of scalar magnetic potential 1, which satisfies to the equation A = 0, in the following
form:

Y = Hz — azz + B(z?z — %23) +y(z? — 2°%) + v(z2® — %:c:;) (2.5)

With ascertaining the symmetry about the plane z = 0, the coefficients v, v should be
equalized to zero. The coefficient « can be converted into zero by means of changing
the center of coordinates by /283 along the axis z and redefining H to H + a?/48.
After this, the magnetic field B = V4 remains depending on the two parameters H
and S only:

B, =2fzz, B, =0, B, = H + Bz® — 2%, (2.6)
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Figure 2.1: Map of magnetic field near null. ¢ — H/f = —1, b— H/B = +1.
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with one of them, for instance g, being positive. With the approach (2.6) used, field

lines are cubic hyperbolas. They are described by the following equation

¢=¢o+ Hz +ﬂ(%:c3—:cz2) = const (2.7)

and are shown on Fig. 2.1. The magnetic field in the equatorial plane
Bo(m) =H + ﬁ:L‘z (2.8)

has the extremum, equal to H. If H/8 < 0, magnetic field nulls lay in the equatorial

plane (see Fig. 2.1,a):

H
Ty,2 = =+ _"E) 21,2 = 07 (2'9)

while they are plased symmetrically on both sides from it if H/8 > 0 (see Fig. 2.1,b):

[H
iv1,2 = 0, 21,2 = :i: E (210)

The inequalities (2.1), (2.2), which determine the boundaries of stability ring, are

transformed in the case of planar field by means of limiting transition to the form

dBo ., d*B, dBy .,
/)< < 2(=—=)2. 2.
(d:z:) _BOd:L'2 _2((1:13) (2.11)
Inserting here By from (2.8), we get the condition
1H H
—=<Br <= 2.12

which can be satisfied \‘vhen H/B > 0 only. For H/B > 0 there are two solutions;
however one of them corresponds to outer ring of stability, which is separated from
plasma’s axis by the separatrix. Outer boundaries z = +,/H/B of the couple of
rings are fixed by the condition of stability of global displacement, while the internal
boundaries z = +/H/38 by the condition of stability of longitudinal displacements.
The configuration of the kind, shown on Fig. 2.1,b, can be created by two methods.
In the first variant, the coils marked by the plus sign on Fig. 2.1,b, produce on their

axis magnetic field co-directed with the external quasi-homogeneous field. This is

39




configuration of non-paraxial mirror kind. In the alternative variant, the coils, marked
by the minus sign, produce anti-directed magnetic field, forming the configuration
of divertor kind. Dashed line on Fig. 2.1,b connects the extremums magnetic field
along field lines, i.e., the points where (B,V)B = 0. The magnetic field achieves
its maximum on the piece AB and its minimum on every other pieces, including the
line OAO'. Hence, longitudinal stability is provided on the piece OAO’; however,
the condition of global displacement stability is not fulfilled there. Thus, the ring
of stability exists only near the equatorial plane. In the divertor variant, the ring
of stability can get close to the plasma axis, which lays below bottom edge of thr
Fig. 2.1; when this occurs, the ring of stability disappears and two separate mirrors
appear instead of the divertor.

As it was already pointed out, merging of nulls and, hence, formation of stability
rings in the system of two dipoles occurs for very weak external field. However, from
practical point of view, the opposite case, where non-paraxial anchor field is less than
external field of solenoidal part of an open trap, is more interesting. Considering for
the ratio b of anchor’s magnetic field to external one to be small, we can rewrite the
inequalities (2.1), (2.2) in the form

db 1 db d?b dzb 1 db
(E) rVdp drz)/ dr - dr2 T rdr — ( ) (2.13)

As b — 0, the inequalities (2.13) can be satisfied in narrow interval close to the radius
70, such that

rd?b/dr? + db/dr = 0. (2.14)

Having substituted rd?b/dr? in the left-hand-side of inequalities chain (2.13) by
—db/dr, we easy ascertain that it is less than the right-hand-side if

Zdb

r3 dr

/ drr — > 0. (2.15)

. Among all solutions ry of the equation (2.14), the inequality (2.15) separates those,

which correspond to ring of stability. Using (2.4) we find that, in the case of dipoles
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system, the equation (2.14) has two solutions 7o = 2(1 & 1/4/3)*/2, but only one of
them, namely ro = 2(1 — 1/+/3)*/2 ~ 0.85, satisfies to the inequality (2.15). This
solution does not depend on sign of b, i.e., corresponding ring of stability exists at
any direction of external field about the dipoles’ magnetic filed.

Let:, us show that the ring of stability is separated by separatrix from the plasma's
axis r = 0 if B,/H > 0, i.e., if external magnetic field is opposite to the direction of
dipoles’ filed at their axis. The separatrix is the filed lil}e which goes through the nulls.
When B./H — +0, magnetic filed nulls are placed near the dipoles. Using (2.3), we
find the coordinates of the nulls. They are circles of radius r,(%1) ~ {/;/_H placed
approximately in the coils planes z = +1. The magnetic flux throughout the circles
is equal to &, = 37m?/3H'/3, Equalizing it to the magnetic flux function ® ~ = H *r?
in the equatorial plane, we get that the separatrix radius r,(0) = 3/ 2BL/3 o213 13
is significantly less there than 7g.

In the case, where external field is antiparallel to the magnetic dipoles (B./H < 0),
magnetic nulls are placed on plasma axis, while the separatrix surrounds the dipoles
themselves and does not cross the equatorial surface.

Thus, in the disk-shaped plasma, inserted into the field of two magnetic dipoles
(i.e., coils of small radius), there appears two ring of stability when H/B. = 1.79%.
As H increases above the cited value, one of the rings (external one) disappears,
while other ring exists up to H/B. — oo; however the latter “departs” beyond the

separatrix at some value of H.

2.1.2 System of two close coils

As an example, opposite to the system of two dipoles, we consider the magnetic
configuration consisting of two closely placed thin equal coils, inserted into external
magnetic field, co-directed to the coils. Once again we take a half of distance between
" the coils for the measure of length, but now suppose that it is much less than the coils’

radius, i.e., B > 1. Near wire of such coils, their magnetic field once again can be

L o



e, e vy rer oy e —;
N 3y, LT

T

considered in plane approximation. We introduce Cartesian coordinate system {z, z}
with the center, laying at the middle of line which connects parallel currents and with
axis z directed along the radius » = R + z of cylindrical system of coordinates. The
axis 7 = 0 of the coils corresponds to infinitely removed point z = —oco for the planar
a.pproximation R > 1. Summing fields of linear currents I we find the magnetic field

H in the equatorial plane z:

Bo= ~B.R [5— 2 ] (2.16)
™

z?2+1
where B. = 4wI/cR is the field of the coils on their axis in the equatorial plane, and
§ = wH/B.R. Ascertaining the behavior of nulls of the function (2.16), it is easy to
understand that there is a couple of stability rings when |§] > 1/2. Apart it, there
are two more rings with one of them existing for any value of é.

The condition for the stability ring to exist (2.11) for the field (2.16) can be

reduced to the form

(o - 1)°
O«
2(z? ~1) ~

We first consider the case § > 0, when the external field H is co-directed with the coils’

z(z? —3)’§ < 1. . (2.17)

filed on their axis. Then mazimum of magnetic field is formed under the coils on their
axis. The couple of stability rings, appearing when~5 > 1/2, is placed on both sides
from z = 1 in the region ¢ > 0, i.e., outside the coils with the current. For § — 1/2+0,
outer ring of stability is in the region 1 + /6 —1/2/v/3 <z <1+ \/:S—jl—/.?, and
internal ring is placed symmetrically on other side from z = 1. As § — oo, outer ring
moves to z = v/3, and internal one moves to z = +0, their widths decrease as 1/6.
One more solution of the inequalities (2.17) exists for any § > 0. It corresponds to
the most internal ring of stability which, for § — +0, extends from z = —(2 + \/5)
formally to £ = —oc; in fact it extends to # ~ —R/l, where plane approximation

breaks. Forth solution corresponds to the most external ring. For § — +0 it occupies

" wide region 2+ /5 < z < +oo but disappears after shrank to zero width at the point

zp, = (3 + 2%/3 4 25/3)1/2 = 2.95 when § = z(2? + 3)/3(z? + 1)? = 0.122.
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Thus, there exist two rings of stability for 0 < § < 0.122 <, one for 0.122 < § <
0.5, and three for § > 0.5. All three existing rings become Very narrow as § — oo.

Their boundaries are fixed by the following inequalities
~V3-1/66 <z <—3-1/125,
1/66 <z < 1/36, (2.18)
V3-1/66§<z < —/3-1/126.

Let us now show that in the limit § — co (as well as for § — 1 /2 + 0) the third ring
is separated from the system’s axis @ = —oco by separatrix, and, hence, for any § can
not be used for stabilization of the plasma which occupies near-axis region, i.e., lays
inside the separatrix.

Magnetic field nulls lays in the coils’ plane when § > 1. Substituting the coordi-

nates of the nulls z = 1/2§, z = +1 into the magnetic flux function
1 1., s 1. \.
®(z,z) = —B.R{z6 — aln[a: +(z=1)] - L—lln{:z: +(z+1)*} - @,
we get its value at the separatrix

¢, = lB.KRln ieé| + Do.

™

Next, from the equation ®(z,,0) = &, we find the coordinate of the separatrix in
the equatorial plane: z, = (1/26)In|es|. Comparing it with (2.18) proves the above
made statement.

If 6 < 0, minimum of magnetic field is formed under the coils. Every results are
reproduced from previous ones by means of simultaneous change of signs of § and z.
It appears therefore, that there is by one ring of stability, placed inside the separatrix,
for § < —0.5 and for —0.122 < § < 0, but no single ring for —0.122 < § < —0.5. 1t
" should be mentioned however that the configuration with § < 0 might have no big

value because it has nulls on the axis inside plasma.
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2.2 Stability of isotropic plasma

Here we consider isotropic plasma with a specific heat ratio v and introduce the notion

for the specific volurhe

U(@) = % (2.19)

as a function of magnetic flux ®. The ring of stability in the isoptropic plasma is the

region where
d _dU
— P <~
Viztas =7

Let us ascertain whether the ring of stability appears right after merging of magnetic

& <1>(Z—g)2. (2.20)

field nulls as it does in disk-shaped plasma. Published till now results of numerical
calculation (7] did not exclude such possibility. They show that in the configuration
of two dipoles the ring of stability appears for H/B. ~ 2.3%, while nulls merging,
as it was mentioned in the Sec. 2.1, occurs for H/B. ~ 1.8%. Little discrepancies
between the two values of H/B. could be prescribed to an inaccuracy of numerical
calculation.

As before, we can use planar approximation (2.6) near the region of nulls merging.

It was established for the example of disk-shaped plasma that the rings of stability
exist only when H/f > 0 and are placed symmetrically on both sides about the line
OO’ which links magnetic field nulls (see Fig. 2.1). Hence, it is sufficient once more
to analyze the case H/8 > 0 only.

Having noted that dI/B = dz/B, = dz/23zz, and excluding z by means of the
field line equation (2.7) we get from (2.19):

dé

1 oc
@ =72 ), Ve s+e- gy

(2.21)

where £ = |z|/\/H/B, f = |® — ®o|\/II3/8, and & is a real root of the equation
e3—E—f=0.
" The condition (2.20) for the ring of stability to exist under the planar approxima-
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tion comes to the requirement for the minimum of the function

- d*U ,,dU

S(f) = Uﬁ/(g)2 (2-22)

be less than 4. In the limiting case f = co we have S = 4, while for f — 0 get
S = —In f. The function (2.22) achieves its minimal value S, = 2.69 for f = 0.48.
Thus, in the contrary to the case of disk-shaped plasma, no ring of stability appears
at the moment of nulls merging if plasma is isotropic and its specific heat ratio is not

fantastically large, i.e., v < 2.69.

2.3 Stabilization by sloshing ions

Let us ascertain now how the effects of non-paraxiality affect stabilization of flute
perturbations by sloshing ions. This method of stabilization is based on formation
of a piece with relatively large slope of field lines to the system’s axis in the region
where there pressure peak of an anisotropic plasma is quite big so that 1,

8 P(2,B)
—a—EWZ— > 0. (2.23)

where P(®, B) = p,(®, B)+p.(®, B). The condition (2.23) is obtained with paraxial
approximation used, which means that slope angle of field lines is nevertheless small
in comparison with right angle.

In order to ascertain how the condition (2.23) is modified after accounting for the
effects of non-paraxiality, we consider the magnetic field differing a little from the

homogeneous field H:
B, = b.(r, z), B, = H + b.(r,2), B,=0. (2.24)

Moreover, we consider that b,, — 0 as z — *oco. When writing out the equation of
a field line in such weakly inhomogeneous field, it is useful to distinguish line’s small

" deviation £ < 7y from straight line:

7(z) = ro + &(ro, 2). (2.25.)
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Sufficient condition for flute modes (large-scale as well as small-scale ones) to be

stable in a plasma with steep boundary is W > 0 where the integral

/ =P (%0, B) (2.265

rB?2
is calculated along the boundary field line. Here ®; is the magnetic flux throughout
the circle of total plasma radius, & curvature projection onto external normal (directed
from the axis) of the field line. Introducing the notation f(B) = P(®,, B)/B? and
keeping the terms of order not higher than first power of b,./H, we get from (2.26)

W = / i~ [fo(H) (T"’) (H)df"(H) . (2.27)

Integrating first terms yields zero since [dlk = 0 and B, = 0 at the ends of the
interval of integration. As to the remaining terms (already having small parameter),
we can substitute there k = d{/dz = b./H. Making integration of (2.27) by parts

and accounting for

d 1 0
Ebz('rg, Z) = ——.—a—rOT'ob,.(T‘o,Z)

T'o

casts the condition 11" > 0 into the form

d P(®,B) P(%, B)
gt 2 ) g (2.28)

where index ‘0’ has been omitted, H substituted by B, and

(@) =r4%/dz(%)2/zd%/dz (rb,)?

In paraxial approxim.ation, the inequality (2.28) coincides with (2.23) since b, « »
and, hence, e = 0.

In the limiting case Oln |b.!/01In+ — oc, which corresponds to “planar” magnetic
ficld approximation near the conductors with current, we get € = 1/2. Hence, instead

of (2.23) we have the condition

8 P(®,B)
55_3_2 > 0. (2.29)
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For the latter condition to be satisfied, greater anisotropy is needed than the paraxial
region needs.

Now we shall show that the latter conclusion is also valid in the intermediate
region between the axis and the conductors. Having b, expanded into Furiet integral
of Beséel’s functions I;:

+o0 .
b, (r,z) = / dk a, T, (kr)e

we find that
+oco 00
f dzb?(r,z) = 27.'/ dk lax|? 2 (kr).

Since
2
4B,

d 2
— >
de =z — dm(mIl(m)) =0,

it is easy to prove that the derivatives of the integrals in both sides of the inequality

(2.28) are positive. Hence,
e(®) > ¢(0) = 0.

Thus, non-paraxial effects strengthen the requirements for the degree of nisotropy

needed for stabilization of flute modes in axisymmetric open mirror devices for plasma

confinement.
With rejecting the approximation of quasi-homogeneous field, we now estab-
lish obligatory condition of stabilization by sloshing ions for planar magnetic field

{B:(z,2),0, B.(z,2)}. Steep boundary plasma in a planar magnetic field is stabile

against flute perturbation provided that
I\‘;P(@o, B)
W = / A= (2.30)

We adopt the convention to count magnetic flux from plane of symmetry = = 0, which

is analog of the axis if symmetry » = 0 for the case of an axisymmetric magnetic field,

, le.,

<I>=/O dz B,(z, z).




We shall show that if P(®, B) = F(®)G(B) and

d G(B)
dB B?

<0

for every B, then W/ F is a monotonically decreasing function of ®. Since ¥ = 0 for

® = 0 (i.e., on the system’s axis) from this statement it must follow that the opposite .

inequality
d G(B)
dB B?

is needed to be fulfilled, at least for some values of B, for stabilization of flute per-

>0

turbations.

To prove this, we calculate the derivative dW/d®, assuming that magnetic field is

vacuum and, hence,

_16B _0B
"= Bon " 8’

where 8/0n stands for the derivative over the normal to field line. Bringing in the
derivative 8/0% under the integral sign in (2.30) and accounting for Bdl,'dn = 0,

we get
7 2
iy_z dl EB_B_;_(?_B.)?iE .
d® F B* On? On’ dB B*4

Substituting the relation

i (QE)L(B_BZ _&°B
Gn2 B |'on’ T Vol or’

which follows from the equations divB = 0, rotB = 0, and integrating the term
8?B/81? by parts we get finally

d W g[(aB . 0B 2]_d_

G
—_— = —\2 _— R 9
wr-J 8% T )| EE (2:31)

which ends the proof.
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Chapter 3

Experiments on the GDT facility

Main Contrubutors: V.Anikeev, P.A.Bagrianskii, P.A.Deichuli, A.N.Karpushov,

V.N.Khudik, A.Ivanov, A.I.LRogozin, T.V.Salikova

3.1 Measurements of a plasma equilibrium re-

sponse to external multipole fields in an ax-

¥

isymmetric gas-dynamic trap

V.Anikeev, P.A.Bagrianskii, V.N.Khudik, A.Ivanov, T.V.Salikova

3.1.1 Introduction

In this paper we report on the results of studies of a plasma equilibrium in the gas-
dynamic trap in the presence of small non-axisymmetric disturbances of the main
magnetic field. These studies were initiated by experimental observations on the
plasma behavior during its decay in various configuration of the magnetic field. Re-
* cent studies of a gun-produced plasma decay in the GDT facility have shown that

violation of the MHD-stability criterion results in growth of large-scale flute-like per-
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Parameters Value
Mirror-Mirror Tm
Diameter of Central
Cell Vacuum Chamber 1m
Magnetic Field 0.22T/16T
Coils Current Duration ~ 100ms
Base Pressure 5x 107 "Torr
Central Cell
Plasma Density 0.5—1x 10"cm=2
Electron Temperature up to 40eV

Table 3.1: Parameters of the GDT facility.

turbations. When driven unstable these perturbations cause fast plasma losses across
the magnetic field '1!. During these experiments it was found that the plasma behav-
ior, in particular, in equilibrium state exhibited a significant role of non-axisymmetric
disturbances of magnetic field. This gave raise to experimental efforts to qualify these
effects and, if possible, find the ways of their controlling. The experimental layout is
schematically depicted in Fig.3.1.

The GDT experiment consists of an axisymmetric central cell and two outboard
MHD-anchors attached from both ends. Axisymmetric magnetic field has a strength
of 0.15-0.22T at the midplane and up to 16T at magnetic mirrors. The field was
produced by a set of axisymmetric coils installed on the vacuum chamber. Main
parameters of the GDT facility are summarized in the Tabl.3.1. More details on the
facility and key objectives of the experimental program it was build for, are given in
[2).

The plasma build-up in the trap was performed by a plasma gun located beyond

the magnetic mirror in one of the end tanks. During the gun operation plasma

51




remained macroscopically stable, within certain limits, even if the instability threshold
defined by the pressure-weighted curvature criterion [3}was exceeded. This stability
was attributed to the electric contact of plasma in the central cell with the plasma
inside the gun where it is supposed to be highly conductive across the magnetic field.
The peak plasma density reached during a typical shot for 3ms gun operation was
~ 6 x 103cm~2 with electron temperature 5-10eV.

As it was previously reported [1]after the gun was turned off, the plasma be-
havior and parameters of the decay became sensitive to the averaged curvature of
the field lines in the trap. In an unstable decay, the azimuthal spectrum of driven
perturbations was found be dominated by a rigid-shift mode of m=1. Further exper-
iments [4Jhave shown that measured correlation between the growthrates of unstable
azimuthal modes are consistent with the theory including finite Larmor radius effects
[5].

These effects are significant for standard conditions of the GDT experiments even
if any auxiliary heating (ICRF or neutral beams) was not applied to increase the
plasma temperature over its initial value of ~3-10eV" just after the gun off.

Temporal development of the flute modes were observed with the use of Langmiur
probes located near the magnetic mirrors at various azimuthal positions. Design of
the probe array and parameters of the hardware were those that allow to measure
amplitudes and phases of the modes up to m=12 in 100kHz frequency band. Plasma
column offset and radial width were measured by making use of linear probe arrays
located in the central cell and inside the expander.

In the stable decays, plasma column after the gun turned off had a chaotic initial
offset from the geometrical axis of the trap. Subsequently, during ~300-500usec, the
plasma ivolved to a position that was almost the saine for different shots. The motion
had a form of shifting into the final position that further remained invariable during

_the decay (~2ms) or it appeared as a damped oscillation about this position. A

few samples of trajectories of center of the plasma column during the relaxation are
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shown in the Fig.3.2. As it easily seen from the figure the final position of the plasma
centroid is shifted considerably from the geometrical axis of the machine.

In [6] the influence of external non-axisymmetric disturbances on a plasma equi-
librium in a long axisymmetric open trap was treated in approximation of ideal MHD-
theory. It was found that the plasma should respond to dipole disturbances by off-axis
shifting. Higher order multipole disturbances should cause more complicated pertur-
bations of pressure profile with corresponding azimuthal number. We attributed the
plasma offset observed in our experiments to uncontrollable dipole disturbances of
the magnetic field. Rough estimations have indicated a few gauss transverse field
would be sufficient for that. In particular, residual dipole disturbances of the main
axisymmetric field may result from misalignments of the coils, existing of soft-iron-
made parts near the device, etc. Because of the pulse character of the main magnetic
field, screening currents in metallic structures of the walls of the building also pro-
vide considerable contribution to the distortions. Note that the unstable decays also
exhibited a preferable direction of the centroid motion during the decays.(see Fig.3.3).

Completely avoid distortions of the axisymmetric magnetic configuration is practi-
cally impossible. Ve therefore concluded that it is very important to develop reliable
control system of a plasma equilibrium position and shape which will be able to re-
duce these distortions to acceptable level. Furthermore, this system, of course if it has
a proper frequency response, can be used to stabilize large scale flute perturbations.
In this report we studied the possibility to control the plasma equilibrium by the use
of coils that produce a-small transverse magnetic fields in the regions of the plasma
expansion beyond the mirrors. As it was first mentioned in 6}, because of the fact
that the main magnetic field here is quite small, the external field applied in these

regions altering the equilibrium to a maximum degree.
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3.1.2  Estimates of the equilibrium parameters in the pres-

ence of multipole disturbances.

A plasma equilibrium in an axisymmetric gas-dynamic trap with multipole external
disturbances of the magnetic field was first discussed theoretically in (7). The equilib-
rium was treated in an approximation of ideal magneto-hydrodynamic. To facilitate
the discussion of our experiments we display the main relationships following mainly
to the results of [6,7]. In case when a small dipole field is applied, the components
of the magnetic field can be written in the form ( using a long thin approximation):
H, = H(z),H, = §H_(z) — 2H'(z), where H(z) - is unperturbed on-axis magnetic
field. It follows from the results of [7] that at a midplane, surfaces of a constant
plasma pressure are to be enclosed circles:
(X + 4P+ (Y + E)°= const (1)
Here X and Y -are coordinates of a point at the midplane,

¢ F(H)ds d?
A= / H3/2 dz? 20

¢ F(H)ds d°
B= [ T
¢ F(H)ds &
_./ T H3Z g2

function F(H) describes pressure distribution along magnetic field lines in the gas-

R—1/2

dynamic trap{8] :
Pi+P; =2P(X,Y)F(H), R- current mirror ratio , functions §z = R(z)™Y/2 [t, }?(:)l/z%dz,
sy = R(z)~'/? fft R(z)l/z%”;dz were the integrands comprise corresponding compo-
nents of the perturbations of the field- §H,§H,,.
If, simultaneously, a quadrupole disturbance of the form §H, = ~2b(z)x;6H, =
+2b(z)y. 6H, = —(z* — yz)j—“z’) is applied, it makes the surfaces of a constant pressure
be ellipsoids:

X+ (V+@r

= const (2)

oz c?




with coordinates of a center: [—4; ] and ellipticity of

Qo

b
Parameters of the ellipsoids are functions of the following integrals:

£ 1/2 1/2 2
e /dsF(HR BV &
dz2
B /z dsF(H)R\?E~'/? 2
H? =%
. /t dsF(H)R1/2E1/2 a2 P g
dz?
¢ dsF(H)Rl/zE V2R
—/ H? =

where E(z) = exp(4 [§ %((—l)dz) is a function of the b(z), that describes an ampli-
tude of the quadrupole perturbation of the field.

Value of the integrals which define off-axis shift of the entire plasma column and
its ellipticity, strongly depends on a choice of upper limit that corresponds to the
points near end walls where the magnetic field is small. It is quite obvious that
response of the plasma column is determined mainly by a region at the radial profile
where pressure gradient has its maximum. According to this consideration , while
integrating along the axis we searched for the parameters at these field lines at the
same z-positions. We fixed the upper limit in z by a condition that one of the two
imposed limitation will be broken at a field line corresponding to a maximum of the
pressure gradient: kp < Kpei, f < 1. For our experimental conditions, practically
the former limitation was violated. The value of kp..;; in calculations was varied from
0.1 to 0.5.

It is worth noting that stability properties of the plasma can be judged quan-
titatively from the data on the plasma offset as a function of amplitude of applied
dipole perturbation. The C-integral entering the Eq.1 represents. with an accuracy
of multiplying on a nonessential factor, the pressure weighted curvature. Exactly the
same expression enters the NlHD-stability criterion [3] for the localized modes with

m >1. Of course, we consider a paraxial approximation to be valid.
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Let split the stability integral into two parts one of that corresponds to segment
of the field line in the central cell and another to that in the end cells. The stability
criterion is then can be reformulated in terms of a ” safety factor” Q which is defined
as absolute value of the ratio of these integrals. The plasma will be stable against
curvature-driven flute localized modes when Q>1. Similarly, the safety factor can
be defined for arbitrary radial and azimuthal modes. In our previous experiments: 9],
the Q-value measured for the gun-produced plasma in the GDT facility appeared be
somewhat less than calculated for m=1 mode with xp..;=0.5.

Measurements of the plasma off-axis shift under dipole disturbance externally
applied inside the expander, can provide one with the data on the safety factor for
high-m localized modes. This value then can be used to estimate Q for large-scale
modes which control the plasma life time when driven unstable. Within the frames of
the model used in (9,10,11] for analysis of the experimental data one is able to obtain
independent estimate of Kpeit, which define upper limit in C-integral. This approach
suggests, of course, that parameters of the plasma flow in the expander is correctly
covered by either izothermal or adiabatic model {10;.

A comparison to the experimental data on electrostatic potentials in expander
show, that these models are reasonably accurate only for high electron temperature
in the central cell’d’. Nevertheless, this approach to estimate the parameter of rp..;;

seems to be important.

3.1.3 Results of measurements.

Dipole perturbations.

Experimental layout and locations of the main diagnostics used are shown in
Fig.3.4. Dipole perturbation in the expander was produced by a pair of coils with
radius of 0.84 installed at the distance between them of 2.1 (not shown in the figure).
The magnetic field generated by the coils was practically homogeneous over the region

in expander occupied by the plasma. Fig.3.5 shows experimentally measured shift of
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the plasma centroid as a function of transverse field amplitude in the expander.
Also shown in the Fig.3.5 are calculated curves for various values of kp..;; in the
case of adiabatical plasma flow in expander. The curve corresponding to £peri=0.3.
gives the best fit to experimental data. Sensitivity of the calculated offset to the
limitation imposed on Kpe.; is illustrated by the curves with xp_.;;=0.1;0.5 (curves ,).

Quadrupole perturbation.

Quadrupole perturbations in the expander were generated by four properly con-
nected coils of 0.5m in diameter (Fig.3.4). Ellipticity of the plasma column was
measured by a linear array of Langmiur probes (6) located inside the central cell
and by 8mme-interferometer (8) located just beyond the mirror throat in expander.
To obtain the ellipticity from interferometer data, we used values of (NL) measured
along the perpendicular plasma diameters.

On-axis amplitude of the perturbation, determined by the function b(z), signifi-
cantly changed inside the expander. Fig.3.6 shows experimentally measured ellipticity
as a function of b(z)-value directly in the z-point where disturbing coils were located.
We observed the expected ellipticity, calculated for £p..;; =0.3, being approximately
3-4 times larger then the measured values.

Possible reasons for that will be discussed in the next section.

3.1.4 Discussion.

As it was already mentioned, in our previous experiments on the MHD-stability limits
in the gas-dynamic trap’, we have found a contribution of the expanders to the stability
criterion be considerable less than calculated for xp.;=0.5. Present experiments also
indicate that kp..;=0.3 is a more appropriate value to be used. Thus il can be
concluded that the safety factor inferred from the data on the equilibrium response
to dipole disturbance gives a reasonable estimation.

The origin of the difference between expected and measured responses of the

plasma equilibrium to quadrupole disturbance is now not well understood. The ideal
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MHD-theory predicts the response to be inversely proportional to slightly modified
stability criterion of localized modes {6,7]. Ryutov [12] has pointed out that where
may be several pitfalls. Specifically, he suggested that the effects of finite ion Larmor
radius may qualitatively change the response as they prevent a plasma be distorted
with azimuthal numbers m>1. The same should be valid if the entire plasma column
will forced to rotate by a transverse electrical field. Further theoretical considerations
and experiments are needed to provide quantitative answers. Comparison of measured
response to quadrupole perturbations apparently indicated that there should be a
cause of its significant reduction comparing to ideal MHD-theory.

The majority of data were taken when the magnetic field in the end tank was
of the expander’s configuration. During these experiments the cusp coils have been
already installed on the GDT. Thus, properly reconnecting outer and inner coils of
the end tank we were able to choose the cusp or expander {or use in a certain series of
shots. A distinct feature of the cusp-anchored gas-dynamic trap is the singularity of a
specific volume of flux tubes [ —cg near the axis. A theory that relevant to this case [13]
deduces the equilibrium response quite different comparing to that for the trap with
an expander end cell. The ellipticity vs amplitude of a quidrupole disturbance in the
cusp is presented in Fig.3.7. The fitting curve for the experimental data reasonably

agree with our theoretical estimates.

b
0

3.2 A neutral beam probe for measurements of
density fluctuations in the GDT experiment.

A.A Ivanov, A.l.Rogozin

A neutral beam probe was developed to measure density profile and fluctuations
in the central cell of the GDT. This diagnostics has been already used in the initial
stage of the GDT experimental program [14]. Yet it was found that a current and an

energy (15-30kV) of the ion source used are too small to obtain reasonable data with
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powerful neutral beam heating. Notwithstanding the diagnostics was located beyond
the turning point of the sloshing ions, scattered particles provided too large noise
signal to surface-barrier detectors. This was very difficalt to avoid since the energy
of scattered particles were of the same order as in the diagnostic beam (~10-15keV ).
Newly developed diagnostics has increased capabilities due to higher accelerating
voltage and the beam current. Fig.3.8 is a schematic diagram of the major components
of the system designed for GDT. The neutral beam probe incorporates a deuterium
neutral beam and a secondary ion detectors. The detectors are collimated to see
the ions borning from the beam particles on small segments of the beam trajectory.
The collisional ionization rate of the beam atoms is almost independent on plasma
temperature. Thus, the density profile can be deduced from detector currents data
and knowledge of the large (with a scale of ~ lcm)density fluctuations along the

beam. Main parameters of the diagnostics equipment is listed in the Tabl.3.2.

Parameters
Species D+, H*
Beam energy up to 60kV
Beam current 0.1-2.2mA
Initial beam diameter 10mm
Beam divergence ~1 deg.
Spatial resolution (achieved in GDT) ~lcm
Time resolution (achieved in GDT) ~ 20pusec
RF-power(27MHz) required to ion source 200W

Table 3.2: Parameters of the source and power supply system.

The parameters presented at the Tabl.3.2 are those achieved during tests before
installing on the GDT midplane. Initial attempts to operate on GDT have shown that

residual detector currents during neutral beam heating are small enough allowing to
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start the measurements.

3.3 Stability properties of a cusp-anchored gas-
dynamic trap.

V.Anikeev, P.A.Bagrianskii, P.A.Deichuli, A.N.Karpushov,
A.A.Ivanov, T.V.Salikova, Yu.A.Tsidulko

3.3.1 Introduction.

Theory predicts that it is possible to increase the safety factor over that for a single
expander if one uses a cusp end-cell. The axial confinement time of a collisional plasma
in a cusp is substantially large then that for the expander. This circumstance can
be exploited to obtain more dense plasma for the same inward flux from the central
cell. A pressure-weighted curvature of the field lines corresponding to a maximum
density gradient at the midplane is inversely proportional to a magnetic pressure
which is much higher in the cusp then in the expander. However, increased density in
the cusp overpowers the influence of this unfavorable factor. Simple particle balance
model was developed to estimate the plasma parameters in the cusp. It was assumed
that the density on a field line is determined by a balance of collisional flows through
a point and an outer ring cusps. We also assumed the entire volume of the cusp filled
by the plasma of a constant density. To avoid the diocotron instability driven by
a high speed ion drift in the layer of the ring cusp the limitation was applied that
the layver width should be large then two ion Larmor radii. Additional coils set were
designed to generate optimal cusp configuration. In early 1992 the GDT facility was
fitted by this coils set. Fig.3.9 shows a schematic diagram of the cusp end-cell. Main
parameters of the cusp are summarized in the Tabl.3.3.

The estimation of safety factor included in the Tabl.3.3 refers to the case of 50eV

electron temperature.
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Parameters

Ring Cusp Field up to 1.76T

Minimum Field * 0.04T
Plasma 0.1
Calculated Safety Factor 5]
Layer Width in Ring
Cusp 0.12cm
Ring Cusp Radius 53.5cm

Ion Larmor Radius

in the Ring Cusp 0.06cm

Table 3.3: Cusp Parameters.

3.3.2 Experiments with Gun-Produced Plasma.

A hydrogen-fed plasma gun located in the opposite expander was used for plasina
build-up in the trap. The gun was normally operated within 3ms. The initial plasma
density within the range of 5 — 10 x 10'*¢cm™2 and electron temperature 5-10eV can
be established. The radial plasma profile in the cusp in the vicinity of the mirror
throat is shown on the Fig.3.10. Local radial coordinates shown on the Fig.3.10
are those that were mapped on to the midplane. The density was measured by a
movable triple probe from shot to shot. Existence of a cavity in the profile can be
explained by the fact tilat bundles of the field lines near the cusp axis have a larger
volume to fill by the plasma flow from the central cell. We performed calculation
runs to verify this assumption using by experimentally measured values of plasma
density and temperature in the central cell during the plasma build-up. The results
were found be quantitatively consistent with the data. They are also presented in
" the Fig.3.10. Outer half of the cusp was almost empty with the exception of the

near-axis region. Possibly it was due to the plasma penetration through the null
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of the cusp. The unfavorable consequence of the cavity existence is that since the
local contribution to stability integral is determined by the local density gradient
(particularly by its sign), the safety factor for global MHD-modes will be decreased.

Fig.3.11 shows plasma profile in the ring cusp. The width of the profile was in
a good'agreement with the measurements near the magnetic mirror. This indicates
the absence of significant plasma losses in the layer. We were able to change plasma
pressure in the cusp and its contribution to stability criterion by varying of the mirror
ratio in thé central cell. Similar procedure was used previously for measurements of
safety factor for the GDT with the expander{9]. The plasma life time vs mirror
ratio from the central cell to the cusp is plotted in the Fig.3.12. In contrast to
our expectations, above the mirror ratio of ~30 plasma lifetime rapidly falls down
indicating enhanced plasma losses. All diagnostics also have shown a development
of large scale perturbations in the central cell which would cause these losses. It
was observed that the plasma motions in the central cell and in the cusp were not
correlated. Plasma position in the cusp was absolutely insensitive to a large amplitude
shift of the plasma column in the central cell. We attributed this observation to the
drive of the resistive ballooning instability [15'that had to occur for small plasma
temperatures. Our study of the plasma heated by neutral beams demonstrates the
importance of the electron temperature. There are some indications of a trend for
the correlations to raise with T, in qualitative agreement with the theory{15]. Since
we were not satisfiled with the existence of the cavity on the density profile in the
cusp we tried to fill it by making use of a plasma gun which fired directly into the
cusp. Density profile and temporal evolution of on-axis plasma density which were
measured with additional gun on is shown in Fig.3.13. Curve labeled a) in the Fig.3.13

illustrates a time history of the on-axis density during the additional gun operation.
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3.3.3 Experiments with Neutral Beam Heating.

As the gun-produced plasma was observed to be unstable we were continuing experi-
ments with the neutral beam heating. Temporal dependence of absorbed power from
the neutral beams operated with 15kV energy is presented in F 1g.3.14. Also shown in
the Fig.3.14 are total power of charge exchange losses, power transferred to plasma
electrons by the drag of the sloshing ions and a growthrate of the sloshing ion’s energy
content. Electron temperature of the plasma during the heating and energy content
of sloshing ions are shown in the Fig.3.15;3.16.

Multichord attenuation data obtained from the main neutral beams are presented
in Fig.3.17 for the shots with the cusp coils on and off. In the latter case, the plasma
was strongly unstable. Rapid plasma perturbations with characteristic scales of order
of the plasma radius were observed. In the former case, in contrast, the plasma profile
was well defined although fast motions of the plasma were also monitored. Plasma
density at the periphery was even increasing during the heating which we attributed
to a gas release from the walls impinged by the beams. Unfortunately, because of the
fast changes of the plasma parameters during the decay with the neutral beam heating
and a significant shot-to-short variability we were not able accurately measure the
safety factor of the cusp-anchored gas-dynamic trap. Nevertheless, the bulk plasma
temperature in the range of 30-40eV and maximal density of the sloshing ions of order
of ~ 1x10**cm™~3were obtained. Thus we concluded that the plasma is globally stable
at least for the large scale flute-like modes. Temporal behavior of the safety factor
during the heating was calculated with the use of the plasma parameters measured
in the central cell and in the cusp( Fig.3.18). For the hollow plasma profile the safety
factor for the entire plasma accounting contribution of the sloshing ions appeared to be
above the instability threshold while for the filled profile it was favorable throughout a
decay (curve b)). We suspect that the plasma behavior in these experiments may has
" a certain concern to the theory described in the first two-chapters of present report.

It is very likely that effects of magnetic drift of the sloshing ions and an interaction
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with a limiter result in significant difference of stability properties expected from ideal

MHD-theory.
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Figure 3.1: The GDT layout
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Figure 3.2: Plasma centroid motion during stable deccays.
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Figure 3.3: Centroid motion during unstable decays.
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Figure 3.4:Experimental layout and diagnostics.

1.Plasma gun; 2. Mirror coils; 3. Central cell coils;

4. Expander coils; 5. Disturbing coils; 6. Linear

probe array. 7. Movable triple probe; 8. 8mm-interferometer.
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Figure 3.5: Plasma offset vs amplitude of dipole disturbance
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Figure 3.6: Elliptisity vs amplitude of quadrupole disturbance.
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Figure 3.7: Elliptisity vs amplitude of quadrupole disturbance in the cusp.
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1—Vacuum chamber 5—Plasma absorber
&—Transition coils 6—Ti—pump
3—Mirrors

7—Additional plasma gun
4—Cusp coils

Figure 3.9: Schematic of Cusp End Cell.
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Figure 3.10: Plasma Profiles in the Cusp.
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Figure 3.11: Plasma Profile in Ring Cusp.
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Figure 3.12: Plasma Lifetime as a Funtion of Mirror Ratio.
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Figure 3.13: Plasma Parameters in the Cusp with additional Gun.

a.Temporal variation of on-axis Density;b. Plasma Profile in the Cusp.
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Figure 3.14: Energy ba-lance during neutral beam heating.
1. Pyeam-trapped power; 2.Pyqg-power transmitted to plasma electrons; 3. Pez-charge-

exchange losses; 4. %f--growth rate of sloshing ion energy content.
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Figure 3.15: Electron temperature.
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Figure 3.16: Energy Content of Sloshing Ions.
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Figure 3.17: Plasma profile during neutral beam injection.
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