

Conf-940424-2

LA-UR 93-2967

Los Alamos National Laboratory is operated by the University of California for the United States Department of Energy under contract W-7405-ENG-36.

TITLE: MCNP ANALYSIS OF THE LIVERMORE PULSED SPHERES WITH
ENDF/B-VI

AUTHOR(S): Ronald C. Brockhoff
John S. Hendricks

SUBMITTED TO: 8th International Conference on Radiation Shielding,
April 24-27, 1994, Arlington, TX

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

RECEIVED
SEP 07 1993
OSTI

By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes.

The Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy.

MASTER

Los Alamos

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

Sc

MCNP ANALYSIS OF THE LIVERMORE PULSED SPHERES WITH ENDF/B-VI

**Ronald C. Brockhoff and John S. Hendricks
Los Alamos National Laboratory
Los Alamos, NM 87545**

I. INTRODUCTION

Twenty-five Livermore pulsed sphere experiments have been modeled with the MCNP4A code using ENDF/B-VI cross sections processed by the NJOY nuclear data processing system. These calculations have been compared to an earlier study using ENDF/B-V data using the MCNP4 code. These are the first MCNP4A benchmarks, the first ENDF/B-VI benchmarks with MCNP, and the first analysis of these NJOY-processed data. In general, these results validate the MCNP code, demonstrate that ENDF/B-VI and ENDF/B-V generally agree, and in some cases show that ENDF/B-VI gives better results than ENDF/B-V.

II. THE LIVERMORE PULSED SPHERE EXPERIMENTS

The neutron pulsed-sphere experiments were performed at Lawrence Livermore National Laboratory in the late 1960's to evaluate the performance of several neutron transport codes.¹ The experiments involved the placement of a tritium target in the center of a sphere of a given material. The target was bombarded with deuterium ions to induce the reaction $T(d,n)^4He$, which produces a nearly isotropic source of 14-MeV neutrons. Then the time-of-flight energy spectrum of the neutrons was measured at particular angles. These experiments were modeled for different sphere materials including 6Li , 7Li , Be, C, N, O, Mg, Al, Ti, Fe, Pb, H_2O , D_2O , CH_2 , CF_2 and concrete. The spheres were from 0.5 to 4.8 mean free paths thick.

III. MCNP4A CALCULATIONS

The MCNP Monte Carlo N-Particle radiation transport code was used to recalculate the Livermore pulsed sphere experiments. The new results are with MCNP4A² using ENDF/B-VI³ data. These are compared with 1991 results⁴ with MCNP4⁵ using ENDF/B-V⁶ data.

MCNP is a general-purpose Monte Carlo code for calculating the time-dependent continuous-energy transport of neutrons, photons, and/or electrons in three dimensional geometries. MCNP is used around the world for many diverse applications including nuclear criticality safety, radiation shielding, medical physics and radiotherapy, oil well logging, nuclear safeguards, and nuclear reactors.

The principal differences between MCNP4A and MCNP4 are (1) X-Windows graphics; (2) distributed memory multitasking; (3) a new, exclusive error analysis for assessing tally quality; (4) new criticality analysis and output; and (5) ENDF/B-VI physics. Only the inclusion of ENDF/B-VI physics is relevant to this study. In particular, the ⁹Be ENDF/B-VI cross sections utilize the new ENDF/B-VI File 6-Law 7 coupled energy-angle distribution formulation. The deuterium cross sections utilize the new ENDF/B-VI File 6-Law 6 phase space formalism. And many of the nuclear data used to model the Livermore pulsed spheres, particularly Fe, use the new Kalbach-87 formalism (File 6-Law 1-Lang 2) which also has coupled energy-angle scattering.

The ENDF/B-VI data are preliminary. Although ENDF/B-VI has been available for some time, the NJOY⁷ capability to utilize it for Monte Carlo continuous-energy data processing is new and still in the testing phase. The MCNP capabilities to utilize the new formats are also new and undergoing testing. However, the results presented here indicate that the ENDF/B-VI data, NJOY processed data, and MCNP4A all appear to be working correctly.

All the ENDF/B-V results were rerun instead of simply using the data of the 1991 MCNP Livermore pulsed sphere study⁴ to ensure that differences were the result of differing neutron libraries and not due to differences in MCNP. However, the new ENDF/B-V and the 1991 results are in reasonable agreement except for iron. As shown in Table 1, the ENDF/B-V results for iron are not as good as those reported in the 1991 study, since a special iron evaluation⁸ developed for the Fusion Materials Irradiation Test (FMIT) facility was used. Although ENDF/B-VI iron appears better than ENDF/B-V iron, neither is as good as the FMIT iron used in the 1991 study.

The ENDF/B-VI neutron libraries processed with NJOY⁷ in some instances utilize isotopic data rather than elemental data. In these cases, the isotopes for each element were combined to simulate the naturally occurring elements.

IV. RESULTS

Table 1 shows the new MCNP4A ENDF/B-VI results compared to ENDF/B-V results and experimental measurements for twenty-five pulsed sphere experiments.

The ENDF/B-V and ENDF/B-VI results are about the same for O, Mg, Al, Ti, H₂O, D₂O, CH₂, and concrete.

In some cases the ENDF/B-VI results are better than the ENDF/B-V results: ⁷Li, Be, N, Fe, and Pb.

Although the integral results in Table 1 look better for ENDF/B-VI in comparison to ENDF/B-V for carbon, the time of flight distribution for ENDF/B-VI carbon exhibits the greatest deviation from the experimental results of any material examined. Other materials such as ⁶Li appear to give better results using ENDF/B-V than ENDF/B-VI, regardless of how the data is analyzed.

V. CONCLUSION

The ENDF/B-VI library used with MCNP appears to give reasonable answers to a widely accepted benchmark, which should provide renewed confidence in the validity of the ENDF/B-VI data as well as the NJOY nuclear data processing system.

TABLE 1
ENDF/B-VI - MCNP LIVERMORE PULSED SPHERE
BENCHMARK COMPARISON

Material	mfp	ENDF/B-V		ENDF/VI	
		12-16 MeV ^a	2-16 MeV ^b	12-16 MeV ^a	2-16 MeV ^b
⁶ Li	0.5	0.9733	0.9787	0.9446	0.9774
⁶ Li	1.6	1.0079	1.0229	0.9174	0.9844
⁷ Li	0.5	0.9546	0.9764	0.9866	0.9829
⁷ Li	1.6	0.9275	0.9889	1.0193	1.0056
Be	1.8	0.9312	0.9952	0.9570	0.9831
C	0.5	0.9681	0.9881	0.9883	1.0150
C	2.9	0.9304	0.9622	1.0101	1.0589
N	1.1	0.8570	0.9266	0.9445	0.9806
N	3.1	0.8363	0.9706	0.9304	1.0090
O	0.7	0.9217	0.9851	0.9212	0.9838
Mg	0.7	1.0391	1.0275	1.0402	1.0272
Mg	1.9	0.9921	0.9599	0.9935	0.9601
Al	0.9	0.9338	0.9424	0.9348	0.9420
Al	2.6	0.7904	0.8386	0.7919	0.8389
Ti	1.2	1.0549	0.9831	1.0559	0.9810
Ti	3.5	1.0828	0.9387	1.0826	0.9378
Fe	0.9	0.9830	0.9776	0.9940	1.0008
Fe	4.8	0.8651	0.8308	0.8995	0.9468
Pb	1.4	0.8759	0.8540	0.8775	0.9035
H ₂ O	1.1	0.8902	0.9474	0.8856	0.9406
H ₂ O	1.9	1.0064	1.0651	0.9979	1.0546
D ₂ O	1.2	0.8692	0.9212	0.8626	0.9100
D ₂ O	2.1	0.9785	1.0199	0.9668	1.0028
CH ₂	0.8	0.9684	0.9967	0.9869	1.0157
CH ₂	3.5	0.8930	0.9835	0.9483	1.0327
CF ₂	0.9	0.9574	0.9736	1.0220	1.0417
CF ₂	2.9	0.7502	0.7742	0.9169	0.9478
Con	2.0	1.0036	1.0452	0.9915	1.0347

^a Energy range corresponds to 160 ns or less for all materials except concrete, which corresponds to 205 ns or less.

^b Energy range corresponds to 350 ns or less for all materials except concrete, which corresponds to 477 ns or less.

REFERENCES

1. C. Wong, J. D. Anderson, P. Brown, L. F. Hansen, J. L. Kammerdiener, C. Logan, and B. Pohl, "Livermore Pulsed Sphere Program: Program Summary Through July 1971," Lawrence Livermore National Laboratory report UCRL-51144 Rev. 1 (1972).
2. J. F. Briesmeister, Ed., "MCNP - A General Monte Carlo N-Particle Transport Code, Version 4A," Los Alamos National Laboratory report, LA-12625 (1993).
3. P. F. Rose and C. L. Dunford, Editors, "ENDF-102 Data Formats and Procedures for the Evaluated Nuclear Data File ENDF-6," Brookhaven National Laboratory report BNL-NCS-44945 (July 1990).
4. D. J. Whalen, D. A. Cardon, J. L. Uhle, and J. S. Hendricks, "MCNP: Neutron Benchmark Problems," Los Alamos National Laboratory report LA-12212 (1991).
5. J. F. Briesmeister, Editor, "MCNP - A General Monte Carlo Code for Neutron and Photon Transport, Version 3A," Los Alamos National Laboratory report LA-7396-M, Rev. 2 (1986).
6. R. Kinsey, Compiler, "ENDF-201 ENDF/B Summary Documentation," Brookhaven National Laboratory report BNL-NCS-17541 (ENDF-201) 3rd Edition (ENDF/B-V) (UC-80) (July 1979).
7. R. E. MacFarlane, D. W. Muir, and R. M. Boicourt, "The NJOY Nuclear Data Processing System, Volume 1: User's Manual," Los Alamos National Laboratory report LA-9303-M, Vol. I (ENDF-324) (May 1982).
8. E. D. Arthur and P. G. Young, "Evaluated Neutron-Induced Cross Sections for $^{54,56}\text{Fe}$ to 40 MeV," Los Alamos National Laboratory report LA-8626-MS (December 1980).