/9/@3”9‘{%@

SANDIA REPORT

SAND92—-2137 « UC—705
Unlimited Release
Printed September 1994

EXODUS II: A Finite Element Data
Model

Larry A. Schoof, Victor R. Yarberry

Prepared by

Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550
for the United States Department of Energy
under Contract DE-ACO4-94AL85900

Approved for public release distribution is unlimited.

GPPSTLIITION OF THIS DDCUMENT IS gNLIMITED

Issued by Sandia National Laboratories, operated for the United States
Department of Energy by Sandia Corporation.

NOTICE: This report was prepared as an account of work sponsored by an
agency of the United States Government. Neither the United States Govern-
ment nor any agency thereof, nor any of their employees, nor any of their
contractors, subcontractors, or their employees, makes any warranty, express
or implied, or assumes any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or
service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring
by the United States Government, any agency thereof or any of their
contractors or subcontractors. The views and opinions expressed herein do
not necessarily state or reflect those of the United States Government, any
agency thereof or any of their contractors.

Printed in the United States of America. This report has been reproduced
directly from the best available copy.

Available to DOE and DOE contractors from
Office of Scientific and Technical Information
PO Box 62
Oak Ridge, TN 37831

Prices available from (615) 576-8401, FTS 626-8401

Available to the public from
National Technical Information Service
US Department of Commerce
5285 Port Royal RD
Springfield, VA 22161

NTIS price codes
Printed copy: All
Microfiche copy: A06

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original

document.

SAND92-2137 Distribution
Unlimited Release Category UC-705
Printed September 1994

EXODUS IlI: A Finite Element Data Model

Larry A. Schoof, Victor R. Yarberry
Computational Mechanics and Visualization Department
Sandia National Laboratories
Albuguerque, NM 87185

Abstract

EXODUS 1 is a model developed to store and retrieve data for finite element
analyses. It is used for preprocessing (problem definition), postprocessing
(results visualization), as well as code to code data transfer. An EXODUS II
data file is a random access, machine independent, binary file that is written
and read via C, C++, or Fortran library routines which comprise the
Application Programming Interface (API).

MASTER

1

[\S}

Table of Contents

Page
INtroduCtionccceeeveveeruecrerrenreeiecnenrerseenennenne rttssesssstssrasssntessntassnnanns vessesanesl
1.1 Availabilityccccoeeeveeveneereerenrenenes ereeressessuesstsssatesatessesasessesserteseerarard
Development of EXODUSII creesnenanes cesrrenrenasases ceeseesenene ereensseeaeses .3
Description of Data Objects vessssonsonsas cerereeaees eevererereareaaestessanaes vreenreneens 4
3.1 Global Parameters reeesseeseeasenaeses cevenesnnas creraesnseneassneasanenns reereesreessd)
3.2 Quality Assurance Data ceresresrteaessassssssssssanesansssssasassnsssasnnessD)
3.3 Information Datacceveereereverenreernene. creseesenessnesseaesasesanea e raasseenes 6

3.4 Nodal Coordinates cressssesnrestesasesuanns veeereeraeenes ceeesreesnresnaesansrarans .6

34.1 Coordinate Names cevesenssenereareane reseeeenens cevnrennene ceeeeessD

3.5 Node Number Map ceersessessensabesasenes RN

3.6 Element Number Mapccoceveeeeveereceevennnenn. evoeerennsasssaresssasasane TR

8

8

8

3.7 Optimized Element Order Mapccoeerereveeerereennenene ceessaresaesncesarans
3.8 Element BIOCKScccovuveeveneeeeerreeesaennne cevressssenns tesrrrreassranatasesnnanes
3.8.1 Element BIOCK PaTQMEErSccoveerrecruveeerveseesssneesssssncessssesssssens

3.9 Node SELS erieerrrerctreeenrreerre e wervreeeesnns rerreeernreeerraaesans rereveeesnrersnressse 11
3.9.1 Node Set. Parameters remreeeerrersessennne vereeeessrnnreneesesarns eeerrveseeses 11
3.9.2- Node Set Node List reerverssrnsersnnesresane teverneeesaneesareesnns 11
3.9.3 Node Set Distribution Factors veserererssnrnrenssvensassesesosssrnsnnreesl]

3.10 Concatenated Node Sets revesbrsasarssssbosesssosesebsasssasasesssasase ST |

3.11 Side Setscceeevverrvrecereane teecesseresersrsstessasersaseesssnsaessssssssrnneresssssrsessersrnes 1
3.11.1 Side Set Paramcters rerrreeersnnrensanne reerreens teeerrrntrerenennens SRR U
3.11.2 Side Set Element List crereeeeererraseennnns verseeenseveneesssnnassssasire .14
3.11.3 Side Set Side LiSt ...ccvvevveerieereeercvrssvnesnenens eerrrteeserenasesannessane 14
3.11.4 Side Set Node LiStcoooveevveemeeeeeseeeeveennen cerenn eernverersaerenes 14
3.11.5 Side Set Node Count LiStc..ooeveevvereevreeeeneeereeeeeeeeesesssesesnes 15
3.11.6 Side Set Distribution Factors eeernrreennras eeeererrereraees

3.12 Concatenated Side Setscccveeurvrueneee. tetesrseaeesstnseessssaserssarsssnnssnane 15

3.13 Object Propertiescececvveevereeveenenes ceerresresereeses rrersesssesssnessasssssssessass 1 T
3.13.1 Property Parameters crreeererrsnistsesassesssssasssssesseess L8
3.13.2 Property Values ceeveeeneseas creresaanes reeerenrsaseneas cerrsesnsaenine 18

3.14 Results Parameters eeverrnresrnaens rerveeeveees ververeenrenees erereesanes .19
3.14.1 Results Namescccoevevereeerereeerreeeneeneeeceeeenescmsevenns ceerererrannanes 19

3.15 Results Dataooevuveeveerneneeeeeiceeeneeneenas rereeeraeas iervesnresnssernesssesssesses 19
3.15.1 Time Values eerrverereaen eerernraereereranaees eerrveeesnnene veerrnnrresssrnneee 19
3.15.2 Global Results reeeneres eerrrerrrees teesreeeeererteesnareennns .19
3.15.3 Nodal Results rerveeeenreeesns tevsssossnsesssratessrsesessnseseressassasessosone 19
3.15.4 Element Results creeeeeeeeereraeesessnreessesssnnns veereentnn veeeee 20

3.16 Element Variable Truth Table crvvrerennsens ereeeetreensnnaenns ceervesenrennns .20

4.1.1 Create EXODUS ILHIE ...ocovueeeeieeerecnreeereeesrerencesvesssnnessassenns 23
'4.1.2 Open EXODUS ITFILE ..ccouoviieecerereeceneenieccnesessaesaeesssosssssanns 25
4.1.3 Close EXODUSTIIFIIE ... cesveeessneenseenns 27
4.1.4 Update EXODUS ILFIlEcccereemrrvervrnreseervasoserssessosassossssesssosss 28
4.1.5 Write Initialization Parametersccccccvecveererrevecrsvvecrsesesssenes 29
4.1.6 Read Initialization Parameterscccceeeveecveeeineeesrerseeesseesanenns 31
4.1.7 Write QA RECOTAS ..cucvunnrrmnremmecmsscrsecrmncs coeeersssamssnrsinessaassaressrreses 33
4.1.8 Read QA RECOTTAS ..occcoveeereerreenriecnecesrnecnreesseessaseessssnsessssonssnns 35
4.1.9 Write Information RECOIdScoevveeerreeerreeerreerrecirreesrnessenseasons 37
4.1.10 Read Information RECOIASccveevvevererrvrerreeerecneeccrnerneesnnnns 39
4.1.11 Inquire EXODUS Parametersc.ccecveeereeesecessersssccesanocsersanones 41
4.1.12 EIT0r REPOTLINGeoeeveerrnvrieessrvonensssassssssssnsasssssssnsssossssssssssses 45
4.1.13 Set Error Reporting Levelcuooivecieeniernnncneneirncsnrsnnnones 47
4.2 Model DESCIIPHONcoeeiieieenreeeeeerterteaeseeesesosenrenesseaeesassaeesesessensesens 48
4.2.1 Write Nodal COOrdiNatesccveereererverrruersrrersveessrsessresssessanens 49
4.2.2 Read Nodal COOTdINAESccoveeriesimreenissnnicresriessessessessassssenas 51
4.2.3 Write Coordinate NAMIESc..cccceereeeereeeereerrressesessaesssesssessasns 53
424 Read Coordinate NAMEScccvceeerreeerrrreneessrerecssressoressesssnssasssses 55
4.2.5 Write Node Number Mapccccocvoieevieseenseenseeenennencresncesenaees 56
4.2.6 Read Node Number Mapcccevvinvicninierenucsensensnesnssnesesnnes 58
4.2.77 Write Element Number Mapcouvevinnnininrnnnncnirnenecnnns 59
4.2.8 Read Element Number Mapccovueiioniinseincisennisinscnncns 61
4.2.9 Write Element Order Mapcocneivncinnneincnncssininecsseniens 62
4.2.10 Read Element Order Mapccoveviinenininnnsecnsenseessesnnesneas 64
4.2.11 Write Element Block Parameterscoveeeereeerrreenneereereeesroreeneess 65
4.2.12 Read Element Block Parametersc.coveeeerueersvrresrssneerressoseenes 68
4.2.13 Read Element BIOCKS IDSevvveeveeerereeenrieecnreeersevesssanensaesns 70
4.2.14 Write Element Block CONnECHVILYocccoveereeeivrsvcnressncseeruonee 71
4.2.15 Read Element Block Connectivityc.cccceeeen.e. eveurueneasessesnsans 72
4.2.16 Write Element Block AtIIDULES ...ccoveeveerreeeeerrreenenenreerecrorsenenes 73
4.2.17 Read Element Block AUDULESccocveerieerneeirreeeecineecsseeccneanas 75
4.2.18 Write Node Set ParamMetersccccveveeeereesecerrrreerreeesessessssssnsassssns 77
4.2.19 Read Node Set Parameterscccoeeeeeecoeeeececirreeseeeeeceseeeeens 79
4.2.20 WILLE NOGE SEL ..coveneeeeeeeerreeeirrreeecrrsrnseecesssnsssssessssnsasessssssssses 81
4.2.21 REad NOE SEL..uuuureeeeeeieeierirrereererereessesssreernressrssnsasessesssrsasssnes 82
4.2.22 Write Node Set Distribution Factorsccceeeevveeeerrveerrecrssnenns 83
4.2.23 Read Node Set Distribution FActorscccceevneeecrneeeereneieeens 85
4.2.24 Read NOde SES DS ..coeeeeeeeeeeerrrieeerecerreererecrersreesesssssssessssanenes 86
4.2.25 Write Concatenated NOde SEtSceeeevirrriiiniirneceecesceeecsnseesenns 87
4.2.26 Read Concatenated NOAE SEtSuveevieerieerericcrreeenrereereeeeresreeses 91
4.2.27 Write Side Set Parameters rerrsseesesssttveseseseessessssnsensesasnse 94
4.2.28 Read Side Set PATAMELETScccovvieveereeerervreeesrersareseesessessesssees 96
4.2.29 WIIE S1AE SEL ceveeeeieeereeeecreeeciececteeeeccraeeessseesssnesesssaesssesssanans 98
4.2.30 Read SIE SEL ...uueeeereeeerereeeeererrnreeeeereesesesssessseensrnssssssssessessrsnenss 100
4.2.31 Write Side Set Distribution Factorsccoceeeeeeerceeeececneeeennenn. 102
4.2.32 Read Side Set Distribution Factorscccecceeeerveeeniveresnersraenes 104

4.2.33 Read Side Sets IDSccereeevrerrerrerenrnessesesesesessesersssssssssens 105

4.2.34 Read Side Set Node List veenssnns ceeressnsnrenans reossensnsnases veer. 106

- 4.2.35 Write Concatenated Side SEtSouerererernrererereseeneseeesecssseses 108

4.2.36 Read Concatenated Side Setsccoerereeerrereceerenessaenesesesesns 112

4.2.37 Convert Side Set NOes t0 SISovvveeeeeeceeemeeeeeeeseosersenas 115

4.2.38 Write Property Arrays Namescoevvveveievevrsevisiemsaenesescsene 118

4.2.39 Read Property Arrays Namesccoceeeeeuerereiererenevsnenssesssesene 120

4.2.40 ‘Write ObJECt PIOPEITY ..cucecovvreeeeerereeneenessssensesssssssaesosessasssnne 122

4.2.41 Read ObJECt PrOPEILYcoeeererenrerererrrerirereneeecassesesesessssssnes 124

4.2.42 Write Object Property AITaYcccccevveeeeereeevereemrreseesesescsnsenes 126

4.2.43 Read Object Property AITAYc.c.ceveeeevverereeesssnosessesescessnenes 128

4.3 ReSults Dataeecvvriinneccncceeenesuensessesssasenns e st resens 130
4.3.1 Write Results Variables Parametersococeeeeevervevercrcveecscenenee 131

4.3.2 Read Results Variables Parameterscooeueeueenn. reereesnneenns 133

4.3.3 Write Results Variables Namescocoeeeveeeemeeeeeeeeeeseesenens 135

4.3.4 Read Results Variables Namesc.ccoerveveereevereresnneenenenns 137

4.3.5 Write Time Value for a TIime Stepooeveveeeivereeenrcreeenene. 139

4.3.6 Read Time Value for a TIme Stepcceecerevcreevevererereereseenenenen 141

4.3.7 Read All Time ValUescccoevvvrererereeerererererireresesssesesesesenssas 143

4.3.8 Write Element Variable Truth Tableccecevveveeeviveneevenes 145

43.9 Read Element Variable Truth Tablecccovueeeeeueeeeveeeenne 147

4.3.10 Write Element Variable Values at a Time Stepc..cc........ 149

4.3.11 Read Element Variable Values at a Time Stepc.ccvenee.... 152

4.3.12 Read Element Variable Values through Timeooueuene... 154

4.3.13 Write Global Variables Values at a Time Stepcccccevrunee.. 157

4.3.14 Read Global Variables Values at a Time Stepcoceueuvemene.. 159

4.3.15 Read Global Variable Values through Timecoceueueeveunenee. 161

4.3.16 Write Nodal Variable Values at a Time Stepccoeverenenneene 163

4.3.17 Read Nodal Variable Values at a Time Stepccevuervenennee 165

4.3.18 Read Nodal Variable Values through Timeccceuvueuerence... 167

S REICIENCES ...uoneeitititiceceeeteterneententesenrene e s s e sssesessesss s sssssosessensssenenene 169
ADDENAIX A ...vviiriniiitreisieseeeesennesesessessesssssseseseessrsessssesessssessososessesasssssssnsasans A-1
Implementation of EXODUS II with NEtCDFccoeeveeeereceerecrerecrereereanenns A-1
DESCIIPLONocvvieiicitenitcrene e seseesreieceae e sassesesssesss s sesessesssssssensonssnsnonon A-1
EffICIENCY ISSUEScovemriereeereeieereteeteeeecectcse et seeaeaemteesessssesesssessesas A-1
netCDF Data Objectsccceeevvereervennenne ceseeenees ceesrnsaes R cevesassasons JA-1
AUIIDULES ..ottt ettt sses e e sesm e e esemtessesensas A-2
DIMENSIONSoueeiiirrereieiereeerereretereerese et s se e s eeeeseeaessssssessesesses A-2
VaIabIEsvmiiiieieeeeeceee ettt ettt e ee e e e st reseens A-4
APPENAIX B oot iectntrsetsteneteen e se st et e s st st sese e s et s s nas B-1
Function Call SUMMATYcvoveeieeveereiereeeeeeeeecee e eseeeeeeesesessssesesessssseseas B-1

C DINAINE TOULNESeerrererreereerrerererese e seseseeeeeeneesesesseessessesesessesessnsasans B-1
FORTRAN binding routines reereesrssesateaesas s snassaeestaesrananrenea B-9
ADPPENAIX € ..ttt reenteecuetetneeete e s ses e s s s e sesssuesesemsnsessesenensessseessses s nen C-1
EITOr MESSAZEScvcuirirreceeeeerivnrenaereisnsesssssesesesessssssssessssonssssssnsesssessesssssases C-1
APPENAIX D oottt ettt et e e e saean D-1

it

sesesecaee

4ssssecsesscese

Sample Codes
C Write Example Code ..
C Read Example Code
FORTRAN Write Example Code
FORTRAN Read Example Code

INAEX oeveneecccireeceree e

4900000000000 00004000000000000000c0ct0essoenD 1

sessrecssonse‘D 10

sosees

sesssiscssese

seeesesssssssscsce

e D-24
Joo 3 |

B L TR I TP PR YT Y

1 Introduction

EXODUS 1I is the successor of the widely used finite element (FE) data file format
EXODUS [1] (henceforth' referred to as EXODUS I) developed by Mills-Curran and
Flanagan. It continues the concept of a common database for multiple application codes
(mesh generators, analysis codes, visualization software, etc.) rather than code-specific
utilities, affording flexibility and robustness for both the application code developer and
application code user. By using the EXODUS 1I data model, a user inherits the flexibility of
using a large array of application codes (including vendor-supplied codes) which access this
common data file directly or via translators.

The uses of the EXODUS I data model include the following, as illustrated in Figure 1:

* problem definition -- mesh generation, specification of locations of boundary
conditions and load application, specification of material types.

* simulation -- model input and results output.

* visualization -- model verification, results postprocessing, data interrogation, and

analysis tracking.
Figure 1 Uses of EXODUS II
PROBLEM DEFINITION VISUALIZATION
- define geomelry
- discretize model - model verification

- results postprocessing
- data probing
- analysis tracking

- define load locations

- define locations of boumdary
conditions

- define material types

EXODUS II
DATA OBJECTS
- coordinates
- connectivity

- locations of loads

- resnits variables

TRANSLATOR

SIMULATION VENDOR
- stress analysis APPLICATION
- CFD analysis CODES
- shock physiscs analysis

- structural dynamics analysis

1.1 Availability

The EXODUS II library is maintained in the Sandia National Laboratories Engineering Anal-
ysis Code Access System (SEACAS) [2] and is available on a licensed basis. For more infor-
mation on obtaining the EXODUS II library, contact:

Marilyn K. Smith _
Computational Mechanics and Visualization Department
Department 1425

Sandia National Laboratories

P.O. Box 5800

Albuquerque, NM 87185-0441

PHONE: (505) 844-3082

FAX: (505) 844-9297

EMAIL mksmith@sandia.gov

For bug reports, documentation errors, and enhancement suggestions, contact:

Larry A. Schoof
PHONE: (505) 844-5156
EMAIL: laschoo@sandia.gov

2 Development of EXODUS II

The evolution of the EXODUS data model has been steered by FE application code
developers who desire the advantages of a common data format. The EXODUS II model has
been designed to overcome deficiencies in the EXODUS I file format and meet the following
functional requirements as specified by these developers:

¢ random read/write access.

» application programming interface (API) -- provide routines callable from
FORTRAN, C, and C++ application codes. - -

* extensible -- allow new data objects to be added without modifying the application
programs that use the file format.

» machine independent -- data should be independent of the machine which genérated it.

* real time access during analysis -- allow access to the data in a file while the file is
being created.

To address these requirements, the public domain database library netCDF.[3] was
selected to handle the low-level data storage. The EXODUS 11 library functions provide the
mapping between FE data objects and netCDF dimensions, attributes, and variables. (These
mappings are documented in Appendix A.) Thus, the code developer interacts with the data:
model using the vocabulary of an FE analyst (element connectivity, nodal coordinates, etc.)
and is relieved of the details of the data access mechanism. To provide machine
independency, the netCDF library stores data in eXternal Data Representation (XDR) [4]
format.

Because an EXODUS 1 file is a netCDF file, an application program can access data via
the EXODUS I API, the netCDF API, or XDR function calls directly. This functionality is
illustrated in Figure 2. Although the latter two methods require more in-depth understanding
of netCDF and/or XDR, this capability is a powerful feature that allows the development of
auxiliary libraries of special purpose functions not offered in the standard EXODUS 11 library.
For example, if an application required access to the coordinates of a single node (the standard
library function returns the coordinates for all of the nodes in the model), a simple function
could be written that calls netCDF routines directly to read the data of interest.

Figure 2 EXODUS II Implementation

(APPLICATION CODE)

I
Y

(_Exopus Il APY)
A

4
(' netCDF API

3 Description of Data Objects

The data in EXODUS II files can be divided into three primary categories: initialization
data, model, and results. '

Initialization data includes sizing parameters (number of nodes, number of elements, etc.),
optional quality assurance information (names of codes that have operated on the data), and
optional informational text.

The model is described by data which are static (do not change through time). This data
includes nodal coordinates, element connectivity (node lists for each element), element
attributes, and node sets and side sets (used to aid in applying loading conditions and
boundary constraints).

The results are optional and include three types of variables -- nodal, element, and global -
- each of which is stored through time. Nodal results are output (at each time step) for all the
nodes in the model. An example of a nodal variable is displacement in the X direction.
Element results are output (at each time step) for all elements in one or more element blocks.
For example, stress may be an element variable. Another use of element variables is to record
element status (a binary flag indicating whether each element is “alive” or “dead”) through
time. Global results are output (at each time step) for a single element or node, or for a single
property. Linear momentum of a structure and the acceleration at a particular point are both
examples of global variables. Although these examples correspond to typical FE applications,
the data format is flexible enough to accomodate a spectrum of uses.

A few conventions and limitations must be cited:

» There are no restrictions on the frequency of results output except that the time value
associated with each successive time step must increase monotonically.

» To output results at different frequencies (i.e., variable A at every simulation time step,
variable B at every other time step) multiple EXODUS 11 files must be used.

¢ There are no limits to the number of each type of results, but once declared, the
number cannot change.

» If the mesh geometry changes in time (i.e., number of nodes increases, connectivity
changes), the new geometry must be output to a new EXODUS 11 file.

The following sections describe the data objects that can be stored in an EXODUS 11 file.
API functions that read / write the particular objects are included for reference. API routines
for the C binding are in lower case; functions for the Fortran binding are in upper case. Refer
to Section 4 on page 21 for a detailed description of each API function.

3.1

Global Parameters

API functions: ex_put_init, ex_get_init; EXPINI, EXGINI

Every EXODUS II file is initialized with the following parameters:

Title -- data file title of length MAX_LINE_LENGTH (MXLNLN in Fortran). Refer to
discussion below for definition of MAX_LINE_LENGTH.

Number of nodes -- the total number of nodes in the model.

Problem dimension -- the number of spatial coordinates per node (1, 2, or 3).

" Number of elements -- the total number of elements of all types in the file.

Number of element blocks -- within the EXODUS data model, elements are grouped
together into blocks. Refer to Section 3.8 on page 8 for a description of element
blocks.

Number of node sets -- node sets are a convenient method for referring to grdups of
nodes. Refer to Section 3.9 on page 11 for a description of node sets.

Number of side sets -- side sets are used to identify elements (and their sides) for
specific purposes. Refer to Section 3.11 on page 12 for a description of side sets.

Database version number -- the version of the data objects stored in the file. This
document describes database version is 2.01.

API version number -- the version of the EXODUS library functions which stored the
data in the file. The API version can change without changing the database version and
vice versa. This document describes API version 2.01.

I/0 word size -- indicates the precision of the floating point data stored in the file.
Currently, four- or eight-byte floating point numbers are supported. It is not necessary
that an application code be written to handle the same precision as the data stored in
the file. If required, the routines in the EXODUS 1I library perform automatic
conversion between four- and eight-byte numbers. .

Length of character strings -- all character data stored in an EXODUS 1I file is either
of length MAX_STR_LENGTH (MXSTLN in Fortran) or MAX_LINE_LENGTH
(MXLNLN in Fortran). This allows Fortran application codes to declare the lengths of
character variables as predefined constants. These two constants are defined in the file
exodusIl.h (exodusILinc for Fortran). Current values are 32 and 80, respectively.

Length of character lines -- see description above for length of character strings.

3.2 Quality Assurance Data
API functions: ex_put_ga, ex_get_ga; EXPQA, EXGQA

Quality assurance (QA) data is optional information that can be included to indicate which
application codes have operated on the data in the file. Any number of QA records can be
included, with each record containing four character strings of length MAX_STR_LENGTH
(MXSTLN in Fortran). The four character strings are the following (in order):

1. Code name -- indicates the application code that has operated on the EXODUS II file.

2. Code QA descriptor -- provides a location for a version identifier of the application
code. '

3. Date -- the date on which the application code was executed; should be in the format
01/25/93.

4. Time -- the 24-hour time at which the application code was executed; should be in the
format hours:minutes:seconds, such as 16:30:15.

3.3 Information Data
API functions: ex_put_info, ex_get_info; EXPINF, EXGINF

This is for storage of optional supplementary text. Each text record is of length
MAX LINE_LENGTH (MXLNLN in Fortran); there is no limit to the number of text records.

3.4 Nodal Coordinates

API functions: ex_put_coord, ex_get_coord; EXPCOR, EXGCOR

The nodal coordinates are the floating point spatial coordinates of all the nodes in the
model. The number of nodes and the problem dimension define the length of this array. The
node index cycles faster than the dimension index, thus the X coordinates for all the nodes is
written before any Y coordinate data are written. Internal node numbers (beginning with 1)
are implied from a nodes’s place in the nodal coordinates record. See Section 3.5 on page 7
for a discussion of internal node numbers.

3.4.1 Coordinate Names

API functions: ex_put_coord_names, ex_get_coord_names; EXPCON,
EXGCON

The coordinate names are character strings of length MAX_STR_LENGTH (MXSTLN in
Fortran) which name the spatial coordinates. There is one string for each dimension in the
model, thus there are one to three strings.

3.5 Node Number Map

API functions: ex_put_node_num_map, ex_get_node_num_map,
EXPNNM, EXGNNM

Within the data model, internal node IDs are indices into the nodal coordinate array and
internal element IDs are indices into the element connectivity array. Thus, internal node and
element numbers (IDs) are contiguous (ie., 1 . . . number_of_nodesand 1 . ..
number_of_elements, respectively). Optional node and element number maps can be
stored to relate user-defined node and element IDs to these internal node and element
numbers. The length of these maps are number_of_nodes and number_of_elements,
respectively. As an example, suppose a database contains exactly one QUAD element with
four nodes. The user desires the element ID to be 100 and the node IDs to be 10, 20, 30, and
40 as shown in Figure 3. ' '

Figure 3 User-defined Node and Element IDs

Node IDs Node coordinates 40 30
10 0.0 0.0
20 1.0 0.0 100
30 1.0 1.0
40 0.0 1.0 10 20

The internal data structures representing the above model would be the following:
* nodal coordinate array: (0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0)

* connectivity array:(1,2,3,4)

* node number map: (10, 20, 30, 40)

e element number map: (100)

Internal (contiguously numbered) node and element IDs must be used for all data
structures that contain node or element numbers (IDs), including node set node lists, side set
element lists, and element connectivity. Additionally, to inquire the value(s) of node or
element results variables, an application code must pass the internal node or element number
for the node or element of interest.

3.6 Element Number Map
APT functions: ex_put_el em_num_map, ex_get_elem num map,
' EXPENM, EXGENM

Refer to Section 3.5 for a discussion of the optional element number map.

7

3.7 Optimized Element Order Map
API functions: ex_put_map, ex_get_map; EXPMAP, EXGMAP

The optional element order map defines the element order in which a solver (e.g., a
wavefront solver) should process the elements. For example, the first entry is the number of
the element which should be processed first by the solver. The length of this map is the total
number of elements in the model.

3.8 Element Blocks

For efficient storage and to minimize I/O, elements are grouped into element blocks.
Within an element block, all elements are of the same type (basic geometry and number of
nodes). This definition does not preclude multiple element blocks containing the same
element type (i.e., “QUAD” elements may be in more than one element block); only that each
element block may contain only one element type.

The internal number of an element is defined implicitly by the order in which it appears in
the file. Elements are numbered internally (beginning with 1) consecutively across all element
blocks. See Section 3.5 on page 7 for a discussion of internal element numbering.

3.8.1 Element Block Parameters
API functions: ex_put_elem block, ex_get_elem block,
ex _get_elem blk_ids; EXPELB, EXGELB, EXGEBI

The following parameters are defined for each element block:

* Element block ID -- an arbitrary, unique, positive integer which identifies the
particular element block. This ID is used as a “handle” into the database that allows
users to specify a group of elements to the application code without having to know
the order in which element blocks are stored in the file.

* Element type -- a character string of length MAX_STR_LENGTH (MXSTLN in Fortran)
to distinguish element types. All elements within the element block are of this type.
Refer to Table 1, “Element Types and Attributes,” on page 9 for a list of names that are
currently accepted. For historical reasons, the names should be all upper case. It
should be noted that the EXODUS II library routines do not verify element type names
against a standard list; the interpretation of the element type is left to the application
codes which read or write the data. In general, the first three characters uniquely
identify the element type. Application codes can append characters to the element type
string (up to the maximum length allowed) to further classify the element for specific
purposes.

e Number of elements -- the number of elements in the element block.

* Nodes per element -- the number of nodes per element for the element block.

* Number of attributes -- the number of attributes per element in the element block. See
below for a discussion of element attributes.

3.8.2 Element Connectivity
API functions: ex_put_elem_conn, ex_get_elem conn; EXPELC, EXGELC

The element connectivity contains the list of nodes (internal node IDs; see Section 3.5 on
page 7 for a discussion of node IDs) which define each element in the element block. The
length of this List is the product of the number of elements and the number of nodes per
element as specified in the element block parameters. The node index cycles faster than the
element index. Node ordering follows the conventions illustrated in Figure 4, which includes
ordering for higher order elements. For lower order elements, simply omit the unused nodes.
These node ordering conventions follow the element topology used in PATRAN {5]. Thus, for
higher order elements than those illustrated, use the ordering prescribed in the PATRAN User
Manual. For elements of type CIRCLE or SPHERE, the topology is one node at the center of
the circle or sphere element. .

3.8.3 Element Attributes
API functions: ex_put_elem_attr, ex_get_elem_attr; EXPEAT, EXGEAT

Element attributes are optional floating point numbers that can be éssigncd to each
element. Every element in an element block must have the same number of attributes (as
specified in the element block parameters) but the attributes may vary among elements within
the block. The length of the attributes array is thus the product of the number of attributes per
element and the number of elements in the element block. Table 1, “Element Types and
Attributes,” lists the standard attributes for the given element types.

Table 1 Element Types and Attributes Attribute Descriptions
Element Type Attributes * A -- cross-sectional area.
CIRCLE R *V;--a vector that, together with
: the axis of the element defines
SPHERE R a plane for the beam element;
TRUSS A I bendu}g moment of.meryla
‘ . affects displacements in this
BEAM 2D: A LJ plane; I, bending moment of
3D: A1, 1,1, V,V,, V3 inertia affects bending out of
GLE this plane. v
* J -- torsional (polar) moment of
QUAD inertia.
SHELL I * T -- thickness
TETRA * R -- radius
WEDGE
HEX

Figure 4 Node Ordering for Standard Element Types

CIRCLE SPHERE
4 7
® L ® 3
° °
® 3 2 '@ 4 ¢
9
® @ @
1 5 2
TRUSS; BEAM; SHELL(2D) QUAD; SHELL(3D)
8 10
3
® 1
2 6
1 4 5
2
TRIANGLE TETRA
19 7
@
18
15
3
10

2

10

3.9 Node Sets

Node sets provide a means to reference a group of nodes with a single ID. Node sets may
be used to specify load or boundary conditions, or to identify nodes for a special output
request. A particular node may appear in any number of node sets, but may be in a single node
set only once. (This restriction is not checked by EXODUS II routines.) Node sets may be
accessed individually (using node set parameters, node set node list, and node set distribution
factors) or in a concatenated format (described in Section 3.10 on page 11). The node sets data
are stored identically in the data file regardless of which method (individual or concatenated)
was used to output them. '

3.9.1 Node Set Parameters
API functions: ex_put_node_set_param, ex_get_node_set_param,
ex_get_node_set_ids; EXPNP, EXGNP, EXGNSI

The following parameters define each node set:
* Node set ID -- a unique integer that identifies the node set.
« Number of nodes -- the number of nodes in the node set.

e Number of distribution factors -- this should be zero if there are no distribution factors
for the node set. If there are any distribution factors, this number must equal the
number of nodes in the node set since the factors are assigned at each node. Refer to
the discussion of distribution factors below.

3.9.2 Node Set Node List

API functions: ex_put_node_set, ex_get_node_set; EXPNS, EXGNS

This is an integer list of all the nodes in the node set. Internal node IDs (see Section 3.5 on
page 7) must be used in this list.

3.9.3 Node Set Distribution Factors
API functions: ex_put_node_set_dist_f£fact,
ex_get_node_set_dist_fact; EXPNSD, EXGNSD

This is an optional list of floating point factors associated with the nodes in a node set.
These data may be used as multipliers on applied loads. If distribution factors are stored, each
entry in this list is associated with the corresponding entry in the node set node list.

3.10 Concatenated Node Sets

API functions: ex_put_concat_node_sets,
" ex_get_concat_node_sets; EXPCNS, EXGCNS

11

Concatenated node sets provide a means of writing/reading all node sets with one function
call. This is more efficient because it avoids some I/O overhead, particularly when
considering the intricacies of the netCDF library. (Refer to Appendix A for a discussion of
efficiency concerns.) This is accomplished with the following lists:

* Node sets IDs -- list (of length number of node sets) of unique integer node set ID’s.
The ith entry in this list specifies the ID of the ith node set.

* Node sets node counts -- list (of length number of node sets) of counts of nodes for
each node set. Thus, the ith entry in this list specifies the number of nodes in the ith
node set.

» Node sets distribution factors counts -- list (of length number of node sets) of counts of
distribution factors for each node set. The ith entry in this list specifies the number of
distribution factors in the ith node set.

* Node sets node pointers -- list (of length number of node sets) of indices which are
pointers into the node sets node list locating the first node of each node set. The ith
entry in this list is an index in the node sets node list where the first node of the ith
node set can be located.

* Node sets distribution factors pointers -- list (of length number of node sets) of indices
which are pointers into the node sets distribution factors list locating the first factor of
each node set. The ith entry in this list is an index in the node sets distribution factors
list where the first factor of the ith node set can be located.

* Node sets node list -- concatenated integer list of the nodes in all the node sets.
Internal node IDs (see Section 3.5 on page 7) must be used in this list. The node sets
node pointers and node sets node counts are used to find the first node and the number
of nodes in a particular node set.

* Node sets distribution factors list -- concatenated list of the (floating point) distribution
factors in all the node sets. The node sets distribution factors pointers and node sets
distribution factors counts are used to find the first factor and the number of factors in
a particular node set.

To clarify the use of these lists, refer to the coding examples in Section 4.2.25 and Section
4.2.26.

3.11 Side Sets

Side sets provide a second means of applying load and boundary conditions to a model.
Unlike node sets, side sets are related to specified sides of elements rather than simply a list of
nodes. For example, a pressure load must be associated with an element edge (in 2-d) or face
(in 3-d) in order to apply it properly. Each side in a side set is defined by an element number
and a local edge (for 2-d elements) or face (for 3-d elements) number. The local number of the
edge or face of interest must conform to the conventions as illustrated in Figure 5. In this
figure, side set side numbers are enclosed in boxes; only the essential node numbers to

12

Figure 5 Side Set Side Numbering

4 3
- ®
1
® o
1 2
QUAD

[6]

4
¢

[y

SHELL (3D)

@

WEDGE

13

describe the element topology are shown. A side set may contain sides of differing types of
elements that are contained in different element blocks. For instance, a single side set may
contain faces of WEDGE elements, HEX elements, and TETRA elements.

3.11.1 Side Set Parameters
API functions: ex_put_side_set_param, ex_get_side_set_param,
ex_get_side_set_ids; EXPSP, EXGSP, EXGSSI

The following parameters define each side set:
* Side set ID -- a unique integer that identifies the side set.

¢ Number of sides -- the number of sides in the side set.

SEF

* Number of distribution factors -- this should be zero if there are no distribution factors
for the side set. If there are any distribution factors, they are assigned at the nodes on the
sides of the side set. Refer to the discussion of distribution factors below.

3.11.2 Side Set Element List
API functions: ex_put_side_set, ex_get_side_set; EXPSS, EXGSS

This is an integer list of all the elements in the side set. Internal element IDs (see Section 3.5
on page 7) must be used in this list.

3.11.3 Side Set Side List
API functions: ex_put_side_set, ex _get_side_set; EXPSS, EXGSS

This is an integer list of all the sides in the side set. This list contains the local edge (for 2-d
elements) or face (for 3-d elements) numbers following the conventions specified in Figure 5.

3.11.4 Side Set Node List
API functions: ex_get_side_set_node_list; EXGSSN

It is important to note that the nodes on a side set are not explicitly stored in the data file, but
can be extracted from the element numbers in the side set element list, local side numbers in the
side set side list, and the element connectivity array. The node IDs that are output are internal
node numbers (see Section 3.5 on page 7). They are extracted according to the following
conventions:

1. All nodes for the first side (defined by the first element in the side set element list and
the first side in the side set side list) are output before the nodes for the second side.
There is no attempt to consolidate nodes; if a node is attached to four different faces,
then the same node number will be output four times -- once each time the node is
encountered when progressing along the side list. ‘

14

2. The nodes for a single face (or edge) are ordered to assist an application code in deter-

mining an “outward” direction. Thus, the node list for a face of a 3-d element proceeds
around the face so that the outward normal follows the right-hand rule. The node list
for an edge of a 2-d element proceeds such that if the right hand is placed in the plane
of the element palm down, thumb extended with the index (and other fingers) pointing
from one node to the next in the list, the thumb points to the inside of the element. This
node ordering is detailed in Table 2, “Side Set Node Ordering,” on page 16.

3. The nodes required for a first-order element are output first, followed by the nodes of a
higher ordered element. Again, this is illustrated in Table 2, “Side Set Node
Ordering,”

3.11.5 Side Set Node Count List
API functions: ex_get_side_set_node_1list; EXGSSN

The length of the side set node count list is the length of the side set element list. For each
entry in the side set element list, there is an entry in the side set side list, designating a local
side number. The corresponding entry in the side set node count list is the number of nodes
which define the particular side. In conjunction with the side set node list, this node count
array provides an unambiguous nodal description of the side set.

3.11.6 Side Set Distribution Factors
API functions: ex_put_side_set_dist_fact,
ex_get_side_set_di st_fact'; EXPSSD, EXGSSD

This is an optional list of floating point factors associated with the nodes on a side set.
These data may be used for uneven application of load or boundary conditions. Because
distribution factors are assigned at the nodes, application codes that utilize these factors must
read the side set node list. The distribution factors must be stored/accessed in the same order
as the nodes in the side set node list; thus, the ordering conventions described above apply.

3.12 Concatenated Side Sets

API functions: ex_put_concat_side_sets,
ex_get_concat_side_sets; EXPCSS, EXGCSS

Concatenated side sets provide a means of writing / reading all side sets with one function
call. This is more efficient because it avoids some I/O overhead, particularly when
considering the intricacies of the netCDF library. This is accomplished with the following
lists:

*» Side sets IDs -- list (of length number of side sets) of unique integer side set ID’s. The
ith entry in this list specifies the ID of the ith side set.

15

Table 2 Side Set Node Ordering

Element Type

Side #

Node Order

——

QUAD

1

L25

2,3,6

3,47

Al Wl N

4,1,8

SHELL

1,2,3,4

4,3,2,1

1,2,5

2,3,6

3,4,7

|l wn| W

4,1,8

TRIANGLE

[y

1,2,4

2,3,5

W | N

3,1,6

TETRA

1,2,4,5,9,8

'2,3,4,6, 10,9

1,4,3,8,10,7

Bl W] N =

1,3,2,7,6,5

WEDGE

1,2,5,4,7,11, 13, 10

2,3,6,58,12,14, 11

1,4,6,3,10,15,12,9

1,3,2,9,87

[V I G OB [)

4,5,6,13,14, 15

[y

1,2,6,5,9 14,17, 13

2,3,7,6, 10, 15, 18, 14

3,4,8,7,11, 16, 19, 15

L,5,8,4, 13,20, 16, 12

1,4,3,2,12,11, 10,9

A|lwn]] WIDN

5,6,7,8,17,18, 19,20

16

3.13

Side sets side counts -- list (of length number of side sets) of counts of sides for each
side set. Thus, the ith entry in this list specifies the number of sides in the ith node set.
This also defines the number of elements in each side set.

Side sets distribution factors counts -- list (of length number of side sets) of counts of
distribution factors for each side set. The ith entry in this list specifies the number of
distribution factors in the ith side set.

Side sets side pointers -- list (of length number of side sets) of indices which are
pointers into the side sets element list (and side list) locating the first element (or side)
of each side set. The ith entry in this list is an index in the side sets element list (and
side list) where the first element (or side) of the ith side set can be located.

Side sets distribution factors pointers -- list (of length number of side sets) of indices
which are pointers into the side sets distribution factors list locating the first factor of
each side set. The ith entry in this list is an index in the side sets distribution factors list
where the first factor of the ith side set can be located.

Side sets element list -- concatenated integer list of the elements in all the side sets.
Internal element IDs (see Section 3.5 on page 7) must be used in this list. The side sets
side pointers and side sets side counts are used to find the first element and the number
of elements in a particular side set.

Side sets side list -- concatenated integer list of the sides in all the side sets. The side
sets side pointers and side sets side counts are used to find the first side and the number
of sides in a particular side set.

Side sets distribution factors list -- concatenated list of the (floating point) distribution
factors in all the side sets. The side sets distribution factors pointers and side sets
distribution factors counts are used to find the first factor and the number of factors in
a particular side set.

Object Properties

Certain EXODUS II objects (currently element blocks, node sets, and side sets) can be
given integer properties, providing the following capabilitities: :

1.

2.

assign a specific integer value to a named property of an object.

tag objects as members of a group. For example element blocks 1 and 3 and side sets 1
and 2 could be put in a group named “TOP.”

This functionality is illustrated in Table 3, “Sample Property Table,” which contains the
property values of a sample EXODUS 1I file with three element blocks, one node set, and two
side sets. Note that an application code can define properties to be valid for only specified
object types. In this example, “STEEL” and “COPPER” are valid for all element blocks but
are not defined for node sets and side sets.

17

Table 3 Sample Property Table

NAME EB 1 EB2 EB 3 " NS 1 SS 1 SS2
D 10 20 30 [100 200 201
TOP 1 0 1 0 1 1
LEFT 1 1 0 1 1 lo
STEEL 0 0 1 NULL |[NULL |NULL
COPPER || 1 1 0 NULL ||NULL | NULL

Interpretation of the integer values of the properties is left to the application codes, but in
general, a nonzero positive value means the object has the named property (or is in the named
group); a zero means the object does not have the named property (or is not in the named
group). Thus, element block 1 has an ID of 10 (1 is a counter internal to the data base; an
application code accesses the element block using the ID), node set 1 has an ID of 100, etc.
The group “TOP” includes element block 1, element block 3, and side sets 1 and 2.

3.13.1 Property Parameters
API functions: ex_put_prop_names, eXx_get_prop_names; EXPPN, EXGPN

The parameters include the number of properties and the names of length
MAX_ STR_LENGTH (MXSTLN in Fortran) for each property for each object type (i.e.,
element blocks, node sets, or side sets). In the preceding example, there are five properties for
element blocks (i.e., “ID”, “TOP”, “LEFT”, “STEEL”, and “COPPER”), three properties for
node sets (i.e., “ID”, “TOP”, and “LEFT”), and three properties for side sets (i.e., “ID”,
“TOP”, and “LEFT”). .

3.13.2 Property Values
API functions: ex_put_prop, ex_get_prop, ex_put_prop_array,
ex_get_prop_array; EXPP, EXGP, EXPPA, EXGPA

Valid values for the properties are positive integers and zero. Property values are stored in
arrays in the data file but can be written / read individually given an object type (i.e., element
block, node set, or side set), object ID, and property name or as an array given an object type
and property name. If accessed as an array, the order of the values in the array must
correspond to the order in which the element blocks, node sets, or side sets were introduced
into the file. For instance, if the parameters for element block with ID 20 were written to a file,
and then parameters for element block with ID 10, followed by the parameters for element
block with ID 30, the first, second, and third elements in the property array would correspond
to element block 20, element block 10, and element block 30, respectively. This order can be
determined with a call to ex_get_elem_blk_ids (EXGEBI for Fortran) which returns an

18

array of element block IDs in the order that the corresponding element blocks were introduced
to the data file.

3.14 Results Parameters
API functions: ex_put_var_param, ex_get_var_param; EXPVP, EXGVP

The number of each type of results variables (element, nodal, and global) is speciﬁcd only
once, and cannot change through time.

3.14.1 Results Names

API functions: ex_put_var_names, ex_get_var_names; EXPVAN, EXGVAN

Associated with each results variable is a unique name of length MAX_STR_LENGTH
(MXSTLN in Fortran).

3.15 Results Data

An integer output time step number (beginning with 1) is used as an index into the results
variables written to or read from an EXODUS 1I file. It is a counter of the number of “data
planes” that have been written to the file. The maximum time step number (i.¢., the number of
time steps that have been written) is available via a call to the database inquire function (See
“Inquire EXODUS Parameters” on page 41). For each output time step, the following
information is stored.

3.15.1 Time Values
API functions: ex_put_time, ex_get_time,ex_get_all_t imesi EXPTIM,
EXGTIM, EXGATM

A floating point value must be stored for each time step to identify the “data plane.”
Typically, this is the analysis time but can be any floating point variable that distinguishes the
time steps. For instance, for a modal analysis, the natural frequency for each mode may be
stored as a “time value” to discriminate the different sets of eigen vectors. The only restriction
on the time values is that they must monotonically increase.

3.15.2 Global Results
"API functions: ex_put_glob_vars, ex_get_glob_vars,
ex_get_glob_var_time; EXPGV, EXGGV, EXGGVT

This object contains the floating point global data for the time step. The length of the array
is the number of global variables, as specified in the results parameters.

3.15.3 Nodal Results
API functions: ex_put_nodal_var, ex_get_nodal_var,
ex_get_nodal_var_time; EXPNV, EXGNV, EXGNVT

19

This object contains the floating point nodal data for the time step. The size of the array is
the number of nodes, as specified in the global parameters, times the number of nodal
variables.

3.15.4 Element Results

API functions: ex_put_elem_var, eXx_get_elem var,

ex_get_elem_var_time; EXPEV, EXGEV, EXGEVT

Element variables are output for a given element block and a given element variable.
Thus, at each time step, up to m element variable objects (where m is the product of the
number of element blocks and the number of element variables) may be stored. However,
since not all element variables must be output for all element blocks (see Element Variable
Truth Table below), m is the maximum number of element variable objects. The actual
number of objects stored is the number of unique combinations of element variable index and
element block ID passed to ex_put_elem_var (EXPEV for Fortran) or the number of non-
zero entries in the element variable truth table (if it is used). The length of each object is the
number of elements in the given element block.

3.16 Element Variable Truth Table

API functions: ex_put_elem_var_tab, ex_get_elem_var_tab; EXPVTT,

EXGVTT

Because some element variables are not applicable (and thus not computed by a
simulation code) for all element types, the element variable truth table is an optional
mechanism for specifying whether a particular element result is output for the elements in a
particular element block. For example, hydrostatic stress may be an output result for the
elements in element block 3, but not those in element block 6.

It is helpful to describe the truth table as a two dimensional array, as shown in Table 4,
“Element Variable Truth Table,” Each row of the array is associated with an element variable;
each column of the array is associated with an element block. If a datum in the truth table is
zero (table (i, j) =0), then no results are output for the ith element variable for the jth
element block. A nonzero entry indicates that the appropriate result will be output. In this
example, element variable 1 will be stored for all element blocks; element variable 2 will be
stored for element blocks 1 and 4; and element variable 3 will be stored for element blocks 3
and 4. The table is stored such that the variable index cycles faster than the block index.

Table 4 Element Variable Truth Table

Elem Block #1 | Elem Block #2 | Elem Block #3 | Elem Block #4
Elem Var #1 1 1 I |
Elem Var #2 1 0 0 1
Elem Var #3 0 0 1 1

20

4 Application Programming Interface (API)

EXODUS I files can be written and read by application codes written in C, C++, or
Fortran via calls to functions in the application programming interface (API). Functions
within the API are categorized as data file utilities, model description functions, or results data
functions.

In general, the following pattern is followed for writing data objects to a file:
1. create the file with ex_create (or EXCRE for Fortran);

2. write out global parameters to the file using ex_put_init (or EXPINT for For-
tran);

3. write out specific data object parameters; for example, put out element block parame-
ters with ex_put_elem_block (or EXPELB for Fortran);

4. write out the data object; for example, put out the connectivity for an element block
with ex_put_elem_conn (or EXPELC for Fortran);

5. close the file with ex_close (or EXCLOS for Fortran).

Steps 3 and 4 are repeated within this pattern for each data object (i.e., nodal coordinates,
element blocks, node sets, side sets, results variables, etc.). For some data object types, steps 3
and 4 are combined in a single call. For instance, ex_put_ga (or EXPQA for Fortran) writes
out the parameters (number of QA records) as well as the data object itself (the QA records).
During the database writing process, there are a few order dependencies (e.g., an element
block must be written before element variables for that element block are written) which are
documented in the description of each library function.

The invocation of the EXODUS II API functions for reading data is order independent,
providing random read access. The following steps are typically used for reading data:

1. open the file with ex_open (or EXOPEN for Fortran);

2. read the global parameters for dimensioning purposes with ex_get_init (or
EXGINT for Fortran);

3. read specific data object parameters; for example, read node set parameters with
ex_get_node_set_param (or EXGNSP for Fortran);

4. read the data object; for example, read the node set node list with
ex_get_node_set (or EXGNS for Fortran);

5. close the file with ex_close (or EXCLOS for Fortran).

21

Again, steps 3 and 4 are repeated for each object. For some object parameters, step 3 may
be accomplished with a call to ex_inquire (or EXINQ for Fortran) to inquire the size of
certain objects.

In developing applications using the EXODUS II API, the following points may prove
beneficial:

4.1

.

All functions that write objects to the database begin with ex_put_ (EXP for
Fortran); functions that read objects from the database begin with ex_get_ (EXG for
Fortran).

Function arguments are classified as readable (R), writable (W), or both (RW).
Readable arguments are not modified by the API routines; writable arguments are
modified; read-write arguments may be either depending on the value of the argument.

All application codes which use the EXODUS II API must include the file
‘exodusIL.h’ for C or ‘exoduslLinc’ for Fortran. These files define constants that are
used (1) as arguments to the API routines, (2) to set global parameters such as
maximum string length and database version, and (3) as error condition or function
return values.

Throughout this section, sample code segments have been included to aid the
application developer in using the API routines. These segments are not complete and
there has been no attempt to include all calling sequence dependencies within them.
Additionally, most arrays in the Fortran coding examples are shown dimensioned to

- some maximum value (i.e., MAXQA, MAXINF, MAXNOD, etc.). These values are not

predefined constants so the library routines cannot check actual numbers of records
against them. They are shown in this document simply to give an indication of how to
statically dimension the arrays if necessary.

Because 2-dimensional arrays cannot be statically dimensioned, either dynamic
dimensioning or user indexing is required. Most of the sample code segments utilize
user indexing within 1-dimensional arrays even though the variables are logically 2-
dimensional.

There are many netCDF utilities that prove useful. ncdump, which converts a binary
netCDF file to a readable ASCII file, is the most notable.

Because netCDF buffers /0, it is important to flush all buffers (with ex_update in
C or EXUPDA in Fortran) when debugging an application that produces an EXODUS
II file.

Data File Utilities

This section describes data file utility functions for creating / opening a file, initializing a file
with global parameters, reading / writing information text, inquiring on parameters stored in
the data file, and error reporting .

22

4.1.1 Create EXODUS II File

The function ex_éreate or (EXCRE for Fortran) creates a new EXODUS 1I file and returns
an ID that can subsequently be used to refer to the file. '

All floating point values in an EXODUS II file are stored as either 4-byte (“float” in C;
“REAL*4” in FORTRAN) or 8-byte (“double” in C; “REAL*8” or “DOUBLE PRECISION”
in FORTRAN) numbers; no mixing of 4- and 8-byte numbers in a single file is allowed. An
application code can compute either 4- or 8-byte values and can designate that the values be
stored in the EXODUS II file as either 4- or 8-byte numbers; conversion between the 4- and 8-
byte values is performed automatically by the API routines. Thus, there are four possible com-
binations of compute word size and storage (or /O) word size.

In case of an error, ex_create returns a negative number; EXCRE returns a nonzero error
number in IERR. Possible causes of errors include:

» Passing a file name that includes a directory that does not exist.

» Specifying a file name of a file that exists and also specifying a no clobber option.
» Attempting to create a file in a directory without permission to create files there.

» Passing an invalid file clobber mode.

ex_create: C Interface
int ex_create (path, cmode, comp_ws, 10_ws);

char* path (R)
The file name of the new EXODUS II file. This can be given as either an absolute path
name (from the root of the file system) or a relative path name (from the current
directory).

int cmode (R)
Clobber mode. Use one of the following predefined constants:

* EX_NOCLOBBER To create the new file only if the given file name does

not refer to a file that already exists.
* EX_CLOBBER To create the new file, regardless of whether a file with

the same name already exists. If a file with the same
name does exist, its contents will be erased.

int* comp_ws (RW)
The word size in bytes (0, 4 or 8) of the floating point variables used in the application
program. If O (zero) is passed, the default sizeof (float) will be used and returned in
this variable. WARNING: all EXODUS II functions requiring floats must be passed floats
declared with this passed in or returned compute word size (4 or 8).

int* io_ws (R) ‘
The word size in bytes (4 or 8) of the floating point data as they are to be stored in the
EXODUS II file. '

23

The following code segment creates an EXODUS 1I file called test . exo:

#include”exodusII.h”
int CPU_word_size, IO_word_size, exoid;

CPU_word_size = sizeof(float); /* use float or double */
IO_word_size = 8; /* store variables as doubles */
/* create EXODUS II file */
exoid = ex_create (“test.exo’, /* filename path */
EX_CLOBBER, /* create mode */
&CPU_word_size, /* CPU float word size in bytes */
&I0_word_size); /* I/0 float word size in bytes */

EXCRE: Fortran Interface

INTEGER FUNCTION EXCRE (PATH, ICMODE, ICOMPWS, IOWS, IERR)

CHARACTER* (*) PATH (R)
The file name of the new EXODUS II file. This can be given as either an absolute path
name (from the root of the file system) or a relative path name (from the current
directory).

INTEGER ICMODE (R)
Clobber mode. Use one of the following predefined constants:

* EXNOCL To create the new file only if the given file name does not refer to a
file that already exists.
¢ EXCLOB To create the new file, regardless of whether a file with the same

name already exists. If a file with the same name does exist, its
contents will be erased.

- INTEGER ICOMPWS (RW)
The word size in bytes (0, 4 or 8) of the floating point (REAL) variables used in the
application program. If 0 (zero) is passed, the default size of floating point values for the
machine will be used and returned in this variable. WARNING: all EXODUS I functions
requiring reals must be passed reals declared with this passed in or returned compute word
size (4 or 8).

INTEGER IOWS (R)

The word size in bytes (4 or 8) of the floating point (REAL) data as they are to be stored in
the EXODUS 1I file.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following code segment creates an EXODUS 1 file called test . exo., specifying default
values for compute and I/O word sizes:

include ‘exodusII.inc’
integer cpu_ws, io_ws
¢ create EXODUS 11 files;
¢ REAL variables are default reals; store in file as DOUBLE PRECISION

cpu_ws = 0
io_ws = 8
idexo = excre {‘test.exo’, EXCLOB, cpu_ws, io_ws, ierr)

24

4.1.2 Open EXODUS II File

The function ex_open or (EXOPEN for Fortran) opens an existing EXODUS 1I file and
returns an ID that can subsequently be used to refer to the file, the word size of the floating
point values stored in the file, and the version of the EXODUS II database (returned as a
“float” in C or “REAL” in Fortran, regardless of the compute or /O word size). Multiple files
may be “open” simultaneously. ’

In case of an error, ex_open returns a negative number; EXOPEN returns a nONzero error
number in TERR. Possible causes of errors include:

» The specified file does not exist.

¢ The mode specified is something other than the predefined constant EX_READ
(EXREAD for Fortran) or EX_WRITE (EXWRIT for Fortran).

+ Database version is earlier than 2.0.

ex_open: C Interface
int ex_open (path, mode, comp_ws, io_ws, version);

char* path (R)
The file name of the EXODUS II file. This can be given as either an absolute path name
(from the root of the file system) or a relative path name (from the current directory).

int mode (R)
Access mode. Use one of the following predefined constants:

¢ EX_READ To open the file just for reading.
* EX_WRITE To open the file for writing and reading.
int* comp_ws (RW)

The word size in bytes (0, 4 or 8) of the floating point variables used in the application
program. If O (zero) is passed, the default size of floating point values for the machine will
be used and returned in this variable. WARNING: all EXODUS II functions requiring
reals must be passed reals declared with this passed in or returned compute word size (4 or
8). '

int* io_ws (RW)
The word size in bytes (0, 4 or 8) of the floating point data as they are stored in the
EXODUS II file. If the word size does not match the word size of data stored in the file, a
fatal error is returned. If this argument is 0, the word size of the floating point data already
stored in the file is returned.

float* version (W)
Returned EXODUS 1I database version number. The current version is 2.01

The following opens an EXODUS 1I file named test . exo for read only, using default set-
tings for compute and 1/O word sizes:

#include “exodusII.h”
int CPU_word_size, IO_word_size, exoid;
float version;

25

CPU_word_size = sizeof(float); /* float or double */
I0_word_size = 0; /* use what is stored in file */

/* open EXODUS II files */

exoid = ex_open (“test.exo”, /* filename path */
EX_READ, " /* access mode = READ */
&CPU_word_size, /* CPU word size */
&I0_word_size, /* 10 word size */
&version) ; /* ExodusII library version */

EXOPEN: Fortran Interface

INTEGER FUNCTION EXOPEN (PATH, IMODE, ICOMPWS, IOWS, VERS,
IERR)

CHARACTER* (*) PATH (R)
The file name of the EXODUS II file. This can be given as either an absolute path name
(from the root of the file system) or a relative path name (from the current directory).

INTEGER IMCDE (R)
Access mode. Use one of the following predefined constants:

* EXREAD To open the file just for reading.
* EXWRIT To open the file for writing and reading.
INTEGER ICOMPWS (RW)
The word size in bytes (0, 4 or 8) of the floating point variables used in the application
program. If O (zero) is passed, the default size of floating point values for the machine will
be used and returned in this variable. WARNING: all EXODUS 1I functions requiring

reals must be passed reals declared with this passed in or returned compute word size.

INTEGER IOWS (RW)
The word size in bytes (0, 4 or 8) of the floating point data as they are stored in the
EXODUS II file. If the word size does not match the word size of data stored in the file, a
fatal error is returned. If this argument is 0, the word size of the floating point data already
stored in the file is returned. .

REAL VERS (W).
Returned EXODUS II version number. The current version is 2.01

INTEGER IERR (W) :
Returned error code. If no errors occurred, 0 is returned.

The following opens an EXODUS II file named test . exo for read only, using default set-
tings for compute and I/O word sizes:

include ‘exodusII.inc’
integer cpu_ws, i1o_ws
real vers

c

c open EXODUS II file

cpu_ws = 0
o ws = 0
idexo = exopen (‘test.exo’, EXREAD, cpu_ws, io_ws, vers, ierr)

26

4.1.3 Close EXODUS II File

The function ex_close or (EXCLOS for Fortran) updates and then closes an open EXODUS
11 file. -

In case of an error, ex_close returns a negative number; a warning will return a positive
number. EXCLOS returns a nonzero error (negative) or warning (positive) number in TERR.
Possible causes of errors include:

 data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

ex_close: C Interface
int ex_close (exoid);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

The following code segment closes an open EXODUS 1I file:

int error, exoid;

error = ex_close (exoid) ;

EXCLOS: Fortran Interface

SUBROUTINE EXCLOS (IDEXO, IERR)

INTEGER IDEXO (R) .
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IERR (W) :
Rctumed error code. If no errors occurred, 0 is returned.

The following code segment closes an open EXODUS 1 file:

call exclos (idexo, ierr)

27

4.1.4 Update EXODUS II File

The function ex_update or (EXUPDA for Fortran) flushes all buffers to an EXODUS 11 file
that is open for writing. This routine insures that the EXODUS 1I file is current.

In case of an error, ex_update returns a negative number; a warning will return a positive
number. EXUPDA returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

ex_update: C Interface
int ex_update (exoid) ;A

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

The following code segment flushes all buffers to an open EXODUS II file:

int error,exoid;

.error = ex_update (exoid);

EXUPDA: Fortran Interface |

SUBROUTINE EXUPDA {(IDEXO, IERR)
INTEGER IDEXO (R)

EXODUS file ID returned from a previous call to EXCRE or EXOPEN.
INTEGER IERR (W) ‘

Returned error code. If no errors occurred, 0 is returned.

The following code segment flushes all buffers to an open EXODUS 11 file:

c
¢ update the data file; this should be done at the end of every
Cc time step to ensure that no data is lost if the analysis dies
c

~ call exupda (idexo, ierr)

28

4.1.5 Write Initialization Parameters

The function ex_put_init (EXPINT in Fortran) writes the initialization parameters to the
EXODUS II file. This function must be called once (and only once) before writing any data to
the file.

In case of an error, ex_put_init returns a negative number; a warning will return a posi-
tive number. EXPINT returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:
+ data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).
» data file opened for read only.
» this routine has been called previously.

ex_put_init: C Interface

int ex_put_init (exoid, title, num_dim, num_nodes, num_elem,
num_elem_blk, num _node_sets, num_side_sets);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

char* title (R)
Database title. Maximum length is MAX_LINE_LENGTH.

int num_dim (R)
The dimensionality of the database. This is the number of coordinates per node.

int num_nodes (R)
The number of nodal points.

int num_elem (R)
The number of elements.

int num_elem blk (R)
The number of element blocks.

int num_node_sets (R)
The number of node sets.

int num_side_sets (R)
The number of side sets.

The following code segment will initialize an open EXODUS 1I file with the speciﬁedpparam—
eters:

int num_dim, num_nods, num_el, num_el_blk, num_ns, num_ss, error, exoid;

/* initialize file with parameters */

num_dim = 3; num_nods = 46; num_ el = 5; num_el_blk = 5;

num_ns = 2; hum_ss = 5;

error = ex_put_init (exoid, “This is the title”, num_dim,
num_nods, num_el,num_el_blk, num_ns, num _ss);

29

EXPINI: Fortran Interface

SUBROUTINE EXPINI (IDEXO, TITLE, NDIM, NUMNP, NUMEL, NELBLK,
NUMNPS, NUMESS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

CHARACTER*MXLNLN TITLE (R)
Database title.

INTEGER NDIM (R)
The dimensionality of the database. This is the number of coordinates per node.

INTEGER NUMNP (R)
The number of nodal points.

INTEGER NUMEL (R)
The number of elements.

INTEGER NELBLK (R)
The number of element blocks.

INTEGER NUMNPS (R)
The number of node sets.

INTEGER NUMESS (R)
The number of side sets.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following code segment will initialize an open EXODUS 1I file with the specified
parameters:

include ‘exodusII.inc’
character* (MXLNLN) title
c
¢ initialize file with parameters
c
title = “This is the title”
num_dim = 2
num_nodes = 8
num_elem = 2
num_elem_blk = 2
num_node_sets = 2
num_side_sets = 2

call expini (idexo, title, num_dim, num nodes, num_elem,
1 num_elem blk, num node_sets, num_side_sets, ierr)

30

4.1.6 Read Initialization Parameters

The function ex_get_init (EXGINTI in Fortran) reads the initialization parameters from
an opened EXODUS II file. :

In case of an error, ex_get_init returns a negative number; a warning will return a posi-
tive number. EXGINTI returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

ex_get_init: C Interface

int ex_get_init (exoid, title, num dim, num_nodes, num_elem,
num_elem_blk, num node_sets, num_side_sets) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

char* title (W) A
Returned database title. String length may be up to MAX_LINE_LENGTH bytes.

int* num_dim (W)
Returned dimensionality of the database. This is the number of coordinates per node.

int* num_nodes (W)
Returned number of nodal points.

int* num_elem (W)
) Returned number of elements.

int* num_elem blk (W)
Returned number of element blocks.

int* num_node_sets (W)
Returned number of node sets.

int* num_side_sets (W)
Returned number of side sets.

The following code segment will read the initialization parameters from the open EXODUS II
file: .

#include “exodusII.h”

int num_dim, num_nodes, num_elem, num elem_blk,

num_node_sets, num_side_sets, error, exoid;

char title[MAX_ LINE LENGTH+1];

/* read database parameters */

error = ex_get_init (exoid, title, &num dim, &num_nodes,

&num_elem, &num_elem blk, &num_node_sets, &num_side_sets);

31

EXGINI: Fortran Interface

SUBROUTINE EXGINI (IDEXO, TITLE, NDIM, NUMNP, NUMEL, NELBLK,
NUMNPS, NUMESS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

CHARACTER*MXLNLN TITLE (W)
Returned database title.

INTEGER NDIM (W)
Returned dimensionality of the database. This is the number of coordinates per node.

INTEGER NUMNP (W)
Returned number of nodal points.

INTEGER NUMEL (W)
Returned number of elements.

INTEGER NELBLK (W)
Returned number of element blocks.

INTEGER NUMNPS (W)
Returned number of node sets.

INTEGER NUMESS (W)
Returned number of side sets.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following code segment will read the initialization parameters from the open EXODUS I
file:

character* (MXLNLN) titl

c .

¢ read database parameters

c
call exgini ({(idexo, titl, num_dim, num_nodes, num_elemn,
1 num_elem blk, num node_sets, num_side_sets, ilerr)

32

4.1.7 Write QA Records

The function ex_put_ga (or EXPQA for Fortran) writes the QA records to the database.
Each QA record contains four MAX_STR_LENGTH-byte character strings. The character
strings are:

1) the analysis code name

2) the analysis code QA descriptor

3) the analysis date '

4) the analysis time

In case of an error, ex_put_ga returns a negative number; a warning will return a positive
number. EXPQA returns a nonzero error (negative) or warning (positive) number in TERR.
Possible causes of errors include:

» data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

» data file opened for read only.
* QA records already exist in file.

ex_put_ga: C Interface

int ex_put_ga (exoid, num_ga_records, ga_record[][41);
int exoid (R)

EXODUS file ID returned from a previous call to ex_create or ex_open.

int num_ga_records (R)
The number of QA records.

char* ga_record (R)
Array containing the QA records.

The following code segment will write out two QA records:

int num _ga_rec, error, exoid;
char *ga_record{2][4];

/* write QA records */

num_ga_rec = 2;

ga_record[0]1[0] = “TESTWT1”;

ga_record[0]1[1] = “testwtl”;

ga_record[0][2] = #07/07/93";

ga_recoxd[0][3] = 715:41:33";

ga_recoxrd[1l][0] = “FASTQ”;

ga_record[1l]{1l] = “fastqg”;

ga_recoxrd[1l]{2] = #07/07/93";

ga_record[1l][3] = #16:41:33";

error = ex_put_ga (exoid, num _ga_rec, da_record);

33

EXPQA: Fortran Interface

SUBROUTINE EXPQA (IDEXO, NQAREC, QAREC, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER NQAREC (R)
The number of QA records.

CHARACTER*MXSTLN QAREC (4,*) (R)

Array containing the QA records.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following code segment will write out two QA records:

c NOTE: MAXQA is the maximum number of QA records
c
include’exodusII.inc’
character* (MXSTLN) ga_record(4,MAXQA)
c
c write QA records
c

num_ga_xrec = 2

ga_record(1l,1l) = “TESTWT2”
ga_record(2,1) = “testwt2”
ga_record(3,1) = 707/07/93“
ga_record(4,1) = #15:41:33"
ga_record(l,2) = “FASTQ”

ga_xrecord(2,2) = *fastg”

ga_record(3,2) = #07/07/93*
ga_record(4,2) = “16:41:33”

call expga (idexo, num _ga_rec, dga_record, ilerr)

34

4.1.8 Read QA Records

The function ex_get_ga (or EXGQA for Fortran) reads the QA records from the database.
Each QA record contains four MAX_STR_LENGTH-byte character strings. The character
strings are:

1) the analysis code name

2) the analysis code QA descriptor

3) the analysis date

4) the analysis time

Memory must be allocated for the QA records before this call is made. The number of QA
records can be determined by invoking ex_inguire (or EXINQ in Fortran). See Section
4.1.11 on page 41. '

In case of an error, ex_get_ga returns a negative number; a warning will return a positive
number. EXGQA returns a nonzero error (negative) or warning (positive) number in TERR.
Possible causes of errors include:

¢ data file not properly opened with call to ex_create or ex_open (EXCRE or
~EXOPEN for Fortran).
* a warning value is returned if no QA records were stored.
ex_get_qa: C Interface

int ex_get_ga (exoid, ga_record[][4]);

int exoid (R) .
EXODUS file ID retumned from a previous call to ex_create or ex_open.

char* ga_record (W)
Returned array containing the QA records.

The following will determine the number of QA records and read them from the open
EXODUS II file: :

#include “exodusII.h”

int num_ga_rec, error, exoid
char *ga_record[MAX_QA_REC][4];

/* read QA records */
ex_inguire (exoid, EX_INQ QA, &num_ga_rec, &fdum, cdum);
for (i=0; i<num_ga_rec; i++)
for (§=0; j<4; j++)
ga_record[i] [j] =

(char *) calloc ((MAX_STR_LENGTH+1l), sizeof(char));

error = ex_get_ga (exoid, ga_record);

35

EXGQA: Fortran Interface

SUBROUTINE EXGQA (IDEXO, QAREC, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

CHARACTER*MXSTLN QAREC(4,*) (W)
Returned array containing the QA records.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following will determine the number of QA records and read them from the open
EXODUS II file:

C NOTE: MAXQ2A is the maximum number of QA records
c

include ’‘exodusII.inc’

character* (MXSTLN) ga_xrecord(4,MAXQA)

¢ read QA records

call exing (idexo, EXQA, num_ga_rec, fdum, cdum, ierr)

call exgga (idexo, ga_record, ilerr)

36

4.1.9 Write Information Records

The function ex_put_info (or EXPINF for Fortran) writes information records to the
database. The records are MAX_LINE_LENGTH-character strings.

In case of an error, ex_put_info returns a negative number; a warning will return a posi-
tive number. EXPINF returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* data file opened for read only.

* information records already exist in file.

ex_put_info: C Interface
int ex_put_info (exoid, num_info, info);

int exoid (R) :
EXODUS file ID returned from a previous call to ex_create or ex_open.

int num_info (R)
The number of information records.

char** info (R)
Array containing the information records.

The following code will write out three information records to an open EXODUS I file:

int error, exoid, num_info;
char *infol[3];

/* write information records */

num_info = 3;

info[0] = “This is the first information record.”;
info[l] = “This is the second information record.”;
info{2] = “This is the third information record.”;

error = ex_put_info (exoid, num_info, info);

EXPINF: Fortran Interface

SUBROUTINE EXPINF (IDEXO, NINFO, INFO, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

37

INTEGER NINFO (R)
The number of information records.

CHARACTER*MXLNLN INFO(*) (R)
Array containing the information records.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following code will write out three information records to an open EXODUS II file:

¢ NOTE: MAXINF is the maximum number of information records
c
include ’‘exodusII.inc’
character* (MXLNLN) inform(MAXINF)
c
¢ write information records
c

num_info = 3
inform(1)

inform(2)
inform(3)

“This is the first information record.”
“This is the second information record.”
“This is the third information record.”

call expinf (idexo, num_info, inform, ierr)

38

4.1.10 Read Information Records

The function ex_get_info (or EXGINF for Fortran) reads information records from the
database. The records are MAX_LINE_LENGTH-character strings. Memory must be allo-
cated for the information records before this call is made. The number of records can be
determined by invoking ex_inquire (or EXINQ in Fortram). See Section 4.1.11.

In case of an error, ex_get_info returns a negative number; a warning will return a posi-
tive number. EXGINF returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

 data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).
* a warning value is returned if no information records were stored.
ex_get_info: C Interface

int ex_get_info (exoid, info);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

char** info (W)
Returned array containing the information records.

The following code segment will determine the number of information records and read them
from an open EXODUS II file:

#include “exodusII.h”

int error, exoid, num_info;
char *info[MAXINFO];

/* read information records */
error = ex_inquire {(exoid,EX_INQ_ INFO, &num_info, &fdum, cdum) ;

for (i=0; i<num_info; i++)
info[i] = (char *) calloc ({MAX_LINE_LENGTH+1), sizeof(char));

error = ex_get_info (exoid, info);

EXGINF: Fortran Interface

. SUBROUTINE EXGINF (IDEXO, INFO, IERR)

INTEGER IDEXO (R) '
"EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

CHARACTER*MXLNLN INFO(*) (W)
Returned array containing the information records.

39

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following code segment will determine the number of information records and read them
from an open EXODUS II file:

c NOTE: MAXINF is the maximum number of information recorxds
c

include ’‘exodusII.inc’

character* (MXLNLN) inform(MAXINF)
¢ read information records

call exing (idexo, EXINFO, num_info, fdum, cdum, ierr)

call exginf (idexo, inform, ierr)

40

4.1.11 Inquire EXODUS Parameters

The function ex_inguire (or EXINQ in Fortran) is used to inquire values of certain data
entities in an EXODUS 1II file. Memory must be allocated for the returned values before this
function is invoked. ’

In case of an error, ex_ingquire returns a negative number; a warning will return a positive
number. EXINQ returns a nonzero error (negative) or warning (positive) number in TERR.
Possible causes of errors include:

» data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* requested information not stored in the file.
* invalid request flag.

ex_inquire: C Interface

int ex_inguire (exoid, req info, ret_int, ret_float,
ret_char);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int reqg_info (R)
A flag which designates what information is requested. It must be one of the following
constants (predefined in the file exodusII.h):

e EX_INQ_API_VERS The EXODUS II API version number is returned in
ret_float. The API version number reflects the
release of the function library (i.e., function names,

‘argument list, etc.). The current API version is 2.01.

¢ EX_INQ DB_VERS The EXODUS II database version number is returned in
ret__float. The database version number reflects the
format of the data in the EXODUS 1I file. The current
database version is 2.01.

e EX_INQ TITLE The title stored in the database is returned in
ret_char.

e EX_INQ_DIM The dimensionality, or number of coordinates per node
(1, 2 or 3), of the database is returned in ret_int.

e EX_INQ_NODES The number of nodal points is returned in ret_int.

e EX_INQ_ELEM The number of elements is returned in ret_int.

¢ EX_INQ ELEM_BLK The number of element blocks in returned in ret_int.

e EX_INQ NODE_SETS The number of node sets is returned in ret__int.

* EX_INQ_NS_NODE_LEN The length of the concatenated node sets node list is
returned in ret_int.

e EX_INQ_NS_DF_LEN Thelength of the concatenated node sets distribution list
is returned in ret_int.

¢ EX_INQ_SIDE_SETS The number of side sets is returned in ret _int.

* EX_INQ_SS_ELEM_LEN The length of the concatenated side sets element list is
returned in ret_int.

41

e EX_INQ_SS_DF_LEN The length of the concatenated side sets distribution
factor list is returned in ret_int.

¢ EX_INQ_SS NODE LEN The aggregate length of all of the side sets node lists is
returned in ret_int.

e« EX_TINQ_EB_PROP “The number of integer properties stored for each
element block is returned in ret__int; this number
includes the property named “ID”.

* EX_INQ_NS_PROP The number of integer properties stored for each node
set is returned in ret_int; this number includes the
property named “ID”.

s EX_INQ_SS_PROP The number of integer properties stored for each side set
is returned in ret_int; this number includes the
property named “ID”.

e EX_TINQ_0OA The number of QA records is returned in ret_int.

e EX_INQ_INFO The number of 1nformat10n records is returned in
ret_int.

s EX_INQ_TIME The number of time steps stored in the database is

retumned in ret_int.
int* ret_int (W)
Returned integer, if an integer value is requested (according to req_info); otherwise,
supply a dummy argument.

float* ret_float (W)
Returned float, if a float value is requested (according to req_info); otherwise, supply a
dummy argument.

char* ret_char (W)
Returned single character, if a character value is requested (according to req_info);
otherwise, supply a dummy argument.

As an example, the following will return the number of element block properties stored in the
EXODUS II file:

#include “exodusII.h”

int error, exoid, num_props;
float fdum;

char *cdum;

/* determine the number of element block properties */

error = ex_inquire (exoid, EX_INQ EB_PROP, &num_props, &fdum, cdum);

EXINQ: Fortran Interface

SUBROUTINE EXINQ (IDEXO, INFREQ, INTRET, RELRET, CHRRET,
IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

42

INTEGER INFREQ (R) :
A flag which designates what information is requested. It must be one of the following
constants (predefined in the file exodusII. inc):

* EXVERS The EXODUS II API version number is returned in RELRET. The
' API version number reflects the release of the function library (i.e.,
function names, argument list, etc.). The current API version is
2.01.
¢ EXDBVR The EXODUS II database version number is returned in RELRET.
The database version number reflects the format of the data in the
EXODUS II file. The current database version is 2.01.

e EXTITL ‘The title stored in the database is returned in CHRRET.
* EXDIM The dimensionality, or number of coordinates per node (1, 2 or 3),
of the database is returned in INTRET.
* EXNODE The number of nodal points is returned in INTRET.
* EXELEM The number of elements is returned in INTRET.
* EXELBL The number of element blocks in returned in INTRET.
* EXNODS The number of node sets is returned in INTRET.
* EXNSNL The length of the concatenated node sets node list is returned in
INTRET. :
* EXNSDF The length of the concatenated node sets distribution factors list is
_ returned in INTRET.
s EXSIDS The number of side sets is returned in INTRET.
e EXSSEL The length of the concatenated side sets element list is returned in
INTRET.
* EXSSDF The length of the concatenated side sets distribution factors list is
returned in INTRET.
* EXSSNL The aggregate length of all of the side sets node lists is returned in
. INTRET. ‘
* EXNEBP The number of integer properties stored for each element block is
returned in INTRET; this number includes the property named
“ID”.
* EXNNSP The number of integer properties stored for each node set is
returned in INTRET; this number includes the property named
“ID”.
* EXNSSP The number of integer properties stored for each side set is returned
~ in INTRET; this number includes the property named “ID”.
* EXQA The number of QA records is returned in INTRET.
* EXINFO The number of information records is returned in INTRET.
s EXTIMS The number of time steps stored in the database is returned in
INTRET.

INTEGER INTRET (W) .
Returned integer, if an integer value is requested (according to INFREQ); otherwise,
supply a dummy argument.

REAL, RELRET (W)
Returned float, if a float value is requested (according to INFREQ); otherwise, supply a
dummy argument.

43

CHARACTER* (*) CHRRET (W)
Returned single character, if a character value is requested (according to INFREQ);
otherwise, supply a dummy argument.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

As an example, the following will return the number of element block properties stored in the
EXODUS II file:

include ’exodusII.inc’

real fdum

character*l cdum
c
c read element block properties
<

call exing (idexo, EXNEBP, num_props, fdum, cdum, ierr)

4.1.12 Error Reporting

The function ex_err or (EXERR for Fortran) logs an error to stderr. Itis intended to pro-
vide explanatory messages for error codes returned from other EXODUS 1I routines. This
function does not return an error code.

The passed in error codes and corresponding messages are listed in Appendix C. The pro-
grammer may supplement the error message printed for standard errors by providing an error
message. If the error code is provided with no error message, the predefined message will be
used. The error code EX_MSG is available to log application specific messages.

ex_err: C Interface

void ex_err (module_name, message, err_num);

char* module_name (R)
This is a string containing the name of the calling function.

char* message (R)
This is a string containing a message explaining the error or problem. If EX_VERBOSE
(see ex_opts) is true, this message will be printed to st derr. Otherwise, nothing will
be printed.

int err_num (R)
This is an integer code identifying the error. EXODUS II C functions place an error code
value in exerrval, an external int. Negative values are considered fatal errors
while positive values are warnings. There is a set of predefined values defined in
exodusII.h. The predefined constant EX_PRTLASTMSG will cause the last error
message to be output, regardless of the setting of the error reporting level (see ex_opts).

The following is an example of the use of this function:

#include “exodusII.h”

int exoid, CPU_word_size, IO_word_size, errval;
float version;

char errmsg[MAX_ERR_LENGTH];

CPU_word_size = sizeof(float);
I0_word_size = 0;

/* open EXODUS II file */

if (exoid = ex_open (“test.exo”, EX_READ, &CPU_word_size, &IO_word_size, -
&version)

{

erxrval = 999;

sprintf (errmsg, “Error: cannot open file test.exo”);

ex_err (”prog_name”, errmsg, errval);

}

45

EXERR: Fortran Interface

SUBROUTINE EXERR (MODNAM, MSG, ERRNUM)

CHARACTER*MXSTLN MODNAM (R)
This is a string containing the name of the calling function.

CHARACTER*MXLNLN MSG (R)
This is a string containing a message explaining the error or problem. If EXVRBS (see
EXOPTS) is true, this message will be printed to stderxr. Otherwise, nothing will be
printed.

INTEGER ERRNUM (R)
This is an integer code identifying the error. EXODUS I Fortran functions place an error
code value in ierr, areturned value. Negative values are considered fatal errors while
positive values are warnings. There is a set of predefined values defined in
exodusII.inc. The predefined constant PRTMSG will cause the last error message to
be output, regardless of the setting of the error reporting level (see EXOPTS)

The following is an example of the use of this function:

include 'exoduslI.inc’

integer cpu_ws

(o]

open EXODUS II files

cpu_ws = 0
io_ws = 0
idexo = exopen (“test.exo”, EXREAD, cpu_ws, io_ws, vers, ierr)

if (ierr .lt. 0) then

Q

error was fatal, so print it out; override setting of exopts

call exerr (”progname”, ““, PRTMSG)
endif

46

4.1.13 Set Error Reporting Level

The function ex_opts (or EXOPTS for Fortran) is used to set message reporting options.

In case of an error, ex_opts returns a negative number; a warning will return a positive
number. EXOPTS retumns a nonzero error (negative) or warning (positive) number in IERR.

ex_opts: C Interface
int ex_opts (option_val);

int option_val (R)
Integer option value. Current options are:

e EX_ABORT Causes fatal errors to force program exit. (Default is
false.)
* EX_DEBUG Causes certain messages to print for debug use. (Default
: s false.)
* EX_VERBOSE Causes all error messages to print when true, otherwise

no error messages will print. (Default is false.).
NOTE: Values may be OR’ed together to provide any combination of these capabilities.

For example, the following will cause all messages to print and will cause the program to exit
upon receipt of fatal error:

#include “exodusII.h”

ex_opts (EX_ABORT | EX_VERBOSE) ;'

EXOPTS: Fortran Interface
SUBROUTINE EXOPTS (OPTVAL, IERR)

INTEGER OPTVAL (R)
Integer option value. Current options are:

* EXABRT Causes fatal errors to force program exit. (Default is false.)
* EXDEBG Causes certain messages to print for debug use. (Default is false.)
* EXVRBS Causes all error messages to print when true, otherwise no error

messages will print. (Default is false.)
INTEGER IERR (W) .
Returned error code. If no errors occurred, 0 is returned.

NOTE: Values may be OR’ed together to provide any combination of capabilities.

For example, the following will cause all messages to print:

include ‘exodusII.inc’
call exopts (EXVRBS, IERR)

47

4.2 Model Description

The routinés in this section read and write information which describe an EXODUS II finite
element model. This includes nodal coordinates, element order map, element connectivity
arrays, element attributes, node sets, side sets, and object properties.

48

4.2.1 Write Nodal Coordinates

The function ex_put_coord (or EXPCOR for Fortran) writes the coordinates of the nodes
in the model. The function ex_put_init (EXPINI for Fortran) must be invoked before
“this call is made.

Because the coordinates are floating point values, the application code must declare the arrays

passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in For-

tran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or '
ex_open (or EXOPEN for Fortran).

In case of an error, ex_put_coord returns a negative number; a warning will return a posi-
tive number. EXPCOR returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

+ data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran). '

» data file opened for read only.
o data file not initialized properly with call to ex_put_init (EXPINT for Fortran).

ex_put_coord: C Interface

int ex_put_coord (exoid, X_Coor, y.COOr, 2z_COOY);
int exoid (R)

EXODUS file ID returned from a previous call to ex_create or ex_open.

void* x_coor (R)
The X coordinates of the nodes.

void* y_coor (R)
The Y coordinates of the nodes. These are stored only if num_dim> 1; otherwise, pass in
dummy address. '

void* z_coor (R) .
The Z coordinates of the nodes. These are stored only if num_dim > 2; otherwise, pass in
dummy address.

The following will write the nodal coordinates to an open EXODUS Il file:

int error, exoid;

/* if file opened with compute word size of sizeof(float) */
float x[8], yI[8], z[8]; ‘

/* write nodal coordinates values to database */

; zr[O]

x[{0] = 0.0; y[0] = 0.0; = 0.0;
x[1)] = 0.0; y[1] = 0.0; z[1] = 1.0;
x[2] = 1.0; yv[2] = 0.0; z[2] = 1.0;
x[3] = 1.0; y[3] = 0.0; =z[3] = 0.0;

49

x[4] = 0.0; v[4] = 1.0; z[4] = 0.0;
®{5) = 0.0; v[5] = 1.0; z[5] = 1.0;
x[6] =-1.0; y[6] = 1.0; z{6] = 1.0;
x[7] =1.0; y[7]1 = 1.0; z[7] = 0.0;

error = ex_put _coord (exeid, x, y, z):

EXPCOR: Fortran Interface

SUBROUTINE EXPCOR (IDEXO, XN, YN, ZN, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

REAL XN(*) (R)
The X coordinates of the nodes.

REAL YN(*) (R) .
The Y coordinates of the nodes. These are stored only if NDIM > 1; otherwise, pass in a
dummy address. -

REAL ZN(*) (R)

The Z coordinates of the nodes. These are stored only if NDIM > 2; otherwise, pass in a
dummy address.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following will write the nodal coordinates to an open EXODUS 1I file:

real x(8), y(8), dummy(1l)
c .
¢ write nodal coordinates values for a 2-d model to the database
o :

x(1) = 0.0
x{(2) = 1.0
x{(3) = 1.0
x(4) = 0.0
x(5) = 1.0
x(6) = 2.0
x(7) = 2.0
x{(8) = 1.0
y(1) = 0.0
y(2) = 0.0
y(3) =1.0
v(4) = 1.0
v(5) = 0.0
y(6) = 0.0
v(7) = 1.0
v(8) = 1.0

call expcor (idexo, X, y, dummy, ierr)

50

4.2.2 Read Nodal Coordinates

The function ex_get_coord or (EXGCOR for Fortran) reads the coordinates of the nodes.
Memory must be allocated for the coordinate arrays (x_coor, y_coor, and z_coor)
before this call is made. The length of each of these arrays is the number of nodes in the mesh.

Because the coordinates are floating point values, the application code must declare the arrays
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in For-
tran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or
ex_open (or EXOPEN for Fortran).

In case of an error, ex_get_coord returns a negative number; a warning will return a posi-
tive number. EXGCOR returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* a warning value is returned if nodal coordinates were not stored.

ex_get_coord: C Interface

int ex_get_coord (exoid, x_coor, y_COOr, Z_coor);
int exoid (R)

EXODUS file ID returned from a previous call to ex_create or ex_open.

void* x_coor (W)
Returned X coordinates of the nodes.

void* y_coor (W)
Returned Y coordinates of the nodes. These are returned only if num_dim> 1; otherwise,
pass in a dummy address.

void* z_coor (W)
Returned Z coordinates of the nodes. These are returned only if num_dim > 2; otherwise,
pass in a dummy address.

The following code segment will read the nodal coordinates from an open EXODUS II file:

int error, exoid;
float *x, *y, *z;

/* read nodal coordinates values from database */

X = (float *) calloc(num_nodes, sizeof(float)):
y = (float *} calloc(num_nodes, sizeof(float)):
if (num_dim >= 3)
z = (float *} calloc(num nodes, sizeof(float));
else
z = 0;

error = ex_get_coord (exoid, x, vy, z);

51

EXGCOR: Fortran Interface

SUBROUTINE EXGCOR (IDEXO, XN, YN, ZN, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

REAL XN(*) (W)
Returned X coordinates of the nodes.

REAL YN(*) (W)
Returned Y coordinates of the nodes. These are returned only if NDIM > 1; otherwise, pass
in a dummy address.

REAL ZN(*) (W) _
Returned Z coordinates of the nodes. These are returned only if NDIM > 2; otherwise,
pass in a dummy address.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following code segment will read the nodal coordinates from an open EXODUS 1I file:

¢ NOTE: MAXNOD is the maximum number of nodes
¢
real x(MAXNOD), vy (MAXNOD), z(MAXNOD)
c
¢ read nodal coordinates values from database
c

call exgcor (idexo, x, y, 2z, ierr)

52

4.2.3 Write Coordinate Names

The function ex_put_coord_names or (EXPCON for Fortran) writes the names of the
coordinate arrays to the database. The function ex_put_init (EXPINI for Fortran) must
be invoked before this call is made.

In case of an error, ex_put_coord_names returns a negative number; a warning will
return a positive number. EXPCON returns a nonzero error (negative) or warmng (posmve)
number in TERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* data file opened for read only.
* data file not initialized properly with call to ex_put_init (EXPINI for Fortran).

ex_put_coord_names: C Interface
int ex_put_coord_names (exoid, coord_names) ;.

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

char** coord_names (R)
Array containing num_dim names (of length MAX_ STR_LENGTH) of the nodal
coordinate arrays.

The following coding will write the coordinate names to an open EXODUS I file:

int error, exoid;
char *coord_names[3];

coord_names[0] = “xXcoor”;
coord_names[l] = “ycoor”;
coord_names[2] = “zcoor”;

error = exX_put_coord_names (exoid, coord_names);

EXPCON: Fortran Interface

SUBROUTINE EXPCON (IDEXO, NAMECO, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

CHARACTER*MXSTLN NAMECO(*) (R)
Array containing NDIM names for the nodal coordinate arrays.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned

53

The following coding will write the coordinate names to an open EXODUS II file:

include ’'exodusII.inc’
character* (MXSTLN) coord_names (3)

coord_names{(l) = “xcoor”
coord_names (2) = “ycoor”
coord_names (3) = “zcoor”

call expcon (idexo, coord_names, ierr)

54

4.2.4 Read Coordinate Names

The function ex_get_coord_names or (EXGCON for Fortran) reads the names
(MAX_STR_LENGTH-characters in length) of the coordinate arrays from the database.
Memory must be allocated for the character strings before this function is invoked.

In case of an error, ex_get_coord_names returns a negative number; a warning will
return a positive number. EXGCON returns a nonzero error (negative) or warning (positive)
number in TERR. Possible causes of errors include: '

* (data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* a warning value is returned if coordinate names were not-stored.

ex_get_coord_names: C Interface
int ex_get_coord_names (exoid, coord_names); .

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

char** coord_names (W)
Returned pointer to a vector containing num_dim names of the nodal coordinate arrays.

The following code segment will read the coordinate names from an open EXODUS II file:

int error, exoid;
char *coord_names{31};

for (i=0; i<num_dim; i++)
coord_names[i] = (char *) calloc ((MAX_STR_LENGTH+1l), sizeof(char));

. error = ex_get_coord_names (exoid, coord_names);

EXGCON: Fortran Interface

SUBROUTINE EXGCON (IDEXO, NAMECO, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

CHARACTER*MXSTLN NAMECO(*) (W)
Returned array containing NDIM names for the nodal coordinate arrays.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following code segment will read the coordinate names from an open EXODUS II file:

character* (MXSTLN) coord_names(3)

call exgcon (idexo, coord_names, -ierr)

55

4.2.,5 Write Node Number Map

The function ex_put_node_num_map (or EXPNNM for Fortran) writes out the optional
node number map to the database. The function ex_put_init (EXPINI for Fortran) must
be invoked before this call is made.

In case of an error, ex_put_node_num_map returns a negative number; a warning will
return a positive number. EXPNNM returns a nonzero error (negative) or warning (positive)
number in TERR. Possible causes of errors include:

¢ data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

+ data file opened for read only.
» data file not initialized properly with call to ex_put_init (EXPINT for Fortran).
* anode number map already exists in the file.

ex_put_node_num_map: C Interface
int ex_put_node_num_map (exoid, node_map) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int* node_map (R)
The node number map.

The following code generates a default node number map and outputs it to an open EXODUS
II file. This is a trivial case and included just for illustration. Since this map is optional, it
should be written out only if it contains something other than the default map.

int *node_map, error, exoid;
node_map = (int *) calloc(num_nodes, sizeof(int));

for (i=1l; i<=num_nodes; i++)
node_map[i-1] = i;

error = ex_put_node_num map (exoid, node_map);

EXPNNM: Fortran Interface

SUBROUTINE EXPNNM (IDEXO, MAPNOD, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER MAPNOD(*) (R)
The node number map.

56

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following code generates a default node number map and outputs it to an open EXODUS
II file. This is a trivial case and included just for illustration. Since this map is optional, it
should be written out only if it contains something other than the default map.

c NOTE: MAXNOD is the maximum number of nodes
c.
integer node_map (MAXNOD)
c
¢ write node order map
e

do 10 i = 1, num_nodes
node_map(i) = i

10 continue

call expnnm (idexo, node_map, ierr)

57

4.2.6 Read Node Number Map

The function ex_get_node_num_map (or EXGNNM for Fortran) reads the optional node

number map from the database. If a node number map is not stored in the data file, a default
array (1,2,3, . .. num_nodes) is returned. Memory must be allocated for the node number

map array (num_nodes in length) before this call is made.

In case of an error, ex_get_node_num_map returns a negative number; a warning will
return a positive number. EXGNNM returns a nonzero error (negative) or warning (positive)
number in IERR. Possible causes of errors include: ’

~ * data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

 if a node number map is not stored, a default map and a warning value are returned.

ex_get_node_num_map: C Interface

int ex_get_node_num_map (exoid, node_map) ;
int exoid (R)

EXODUS file ID returned from a previous call to ex_create or ex_open.
int* node_map (W)

Returned node number map.

The following code will read a node number map from an open EXODUS II file:

int *node_map, error, exoild;

/* read node number map */
node_map = (int *) calloc (num_ncdes, sizeof(int));
error = eX_get_node_num_map (exoid, node_map);

EXGNNM: Fortran Interface

SUBROUTINE EXGNNM (IDEXO, MAPNOD, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER MAPNOD(*) (W)
Returned node number map.

INTEGER IERR (W)
Returned error code. If no errors occurred, O 1s returned.

The following code will read a node number map from an open EXODUS 1I file:

integer node_map (MAXNODES)
c
¢ read node number map
call exgnnm (idexo, node_map, ierr)

58

'4.2.7 Write Element Number Map

The function ex_put_elem_num_map (or EXPENM for Fortran) writes out the optional
element number map to the database. The function ex_put_init (EXPINI for Fortran)
must be invoked before this call is made.

In case of an error, ex_put_elem_ num_map returns a negative number; a warning will
return a positive number. EXPENM returns a nonzero error (negative) or warning (positive)
number in IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* data file opened for read only.
* data file not initialized properly with call to ex_put_init (EXPINT for Fortran).
* an element number map already exists in the file.

ex_put_elem_num_map: C Interface

int ex_put_elem num_map (exoid, elem_map):;

int exoid (R) .
EXODUS file ID returned from a previous call to ex_create or ex_open.

int* elem map (R)
The element number map.

The following code generates a default element number map and outputs it to an open
EXODUS II file. This is a trivial case and included just for illustration. Since this map is
optional, it should be written out only if it contains something other than the default map.

int *elem_map, error, exoid;
elem_map = (int *) calloc(num_elem, sizeof(int));

for (i=1; i<=num_elem; i++)
elem_mapl[i-1] = i;

error = ex_put_elem num map {(exoid, elem map);

EXPENM: Fbrtran Interface

SUBROUTINE EXPENM (IDEXO, MAPEL, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER MAPEL(*) (R)
The element number map.

59

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following code generates a default element number map and outputs it to an open
EXODUS II file. This is a trivial case and included just for illustration. Since this map is
optional, it should be written out only if it contains something other than the default map.

¢ NOTE: MAXELEM is the maximum number of elements
c
integer elem_map (MAXELEM)
c
¢ write element number .map
c

do 10 1 = 1, num_elem
elem_map(i) = 1
10 continue

call expenm (idexo, elem_map, ierr)

60

4.2.8 Read Element Number Map

The function ex_get_elem _num_map (or EXGENM for Fortran) reads the optional ele-
ment number map from the database. If an element number map is not stored in the data file, a
default array (1,2,3, . .. num_elem) is returned. Memory must be allocated for the element
number map array (num_elem in length) before this call is made.

In case of an error, ex_get_elem num_map returns a negative number; a warning will
return a positive number. EXGENM returns a nonzero error (negative) or warning (positive)
number in TERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* if an element number map is not stored, a default map and a warning value are
returned.

ex_get_elem_num_map: C Interface

int ex_get_el em_num__rhap (exoid, elem_map) ;
int exoid (R)

EXODUS file ID returned from a previous call to ex_create or ex_open.
int* elem_map (W)

Returned element number map.

The following code will read an element number map from an open EXODUS 1I file:

int *elem_map, error, exoid;

/* read element number map */
elem_map. = (int *) calloc(num_elem, sizeof (int));
error = ex_get_elem num map (exoid, elem map);

EXGENM: Fortran Interface

SUBROUTINE EXGENM (IDEXO, MAPEL, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER MAPEL(*) (W)
Returned element number map.

INTEGER IERR (W)
Returned error code. If no errors occurredoccurred, 0 is returned.

The following code will read an element number map from an open EXODUS 11 file:

integer elem_map (MAXELEM)
c
¢ read element number map
call exgenm (idexo, elem_map, ierr)

61

4.2.9 Write Element Order Map

The function ex_put_map (or EXPMAP for Fortran) writes out the optional element order
map to the database. The function ex_put_ 1n1t (EXPINTI for Fortran) must be invoked
before this call is made.

In case of an error, ex_put_map returns a negative number; a warning will return a positive
number. EXPMAP returns a nonzero error (negative) or warning (positive) number in TERR.
Possible causes of errors include:

» data file not properly opened with call t0 ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

» data file opened for read only.
* (data file not initialized properly with call to ex_put__ 1n1t (EXPINT for Fortran).
* an element map already exists in the file.

ex_put_map: C Interface

int ex_put_map (exoid, elem_map);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int* elem_map (R)
The element order map.

The following code generates a default element order map and outputs it to an open EXODUS
I file. This is a trivial case and inclided just for illustration. Since this map is optional, it
should be written out only if it contains something other than the default map.

int *elem_map, error, exoid;
elem _map = (int *) calloc(num_elem, sizeof(int));

for (i=1l; i<=num_elem; i++)
elem map[i-1] = 1i;

error = ex_put_map (exoid, elem_map);

EXPMAP: Fortran Interface

SUBROUTINE EXPMAP (IDEXO, MAPEL, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER MAPEL(*) (R)
The element order map.

62

INTEGER IERR (W) .
Returned error code. If no errors occurred, 0 is returned.

The following code generates a default element order map and outputs it to an open EXODUS
II file. This is a trivial case and included just for illustration. Since this map is optional, it
should be written out only if it contains something other than the default map.

¢ NOTE: MAXELEM is the maximum number of elements
c
integer elem_ map (MAXELEM)
c
c write element order map
c

do 10 i = 1, num_elem
elem_map(i) = i

10 continue

call expmap (idexo, elem_map, ierr)

63

4.2.10 Read Element Order Map

The function ex_get_map (or EXGMAP for Fortran) reads the element order map from the
database. If an element order map is not stored in the data file, a default array (1,2,3,. ..
num_elem) is returned. Memory must be allocated for the element map array (num_elemin
length) before this call is made.

In case of an error, ex_get_map returns a negative number; a warning will return a positive
number. EXGMAP returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* if an element order map is not stored, a default map and a warning value are returned.

ex_get_map: C Interface

int ex_get_map (exoid, elem_map) ;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int* elem map (W)
Returned element order map.

The following code will read an element order map from an open EXODUS II file:

int *elem_map, error, exoid;

/* read element order map */ -
elem _map = (int *) calloc(num_elem, sizeof(int));
error = ex_get_map (exoid, elem map);

EXGMAP: Fortran Interface

SUBROUTINE EXGMAP (IDEXO, MAPEL, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER MAPEL(*) (W)
Returned element order map.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following code will read an element order map from an open EXODUS II file:

integer elem_map (MAXELEM)
C
c read element order map
call exgmap (idexo, elem_map, ierr)

64

4.2.11 Write Element Block Parameters

The function ex_put_elem_block (or EXPELB for Fortran) writes the parameters used to
describe an element block.

In case of an error, ex_put_elem_block returns a negative number; a warning will return
a positive number. EXPELB returns a nonzero error (negative) or warning (positive) number
in IERR. Possible causes of errors include:
» data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).
e data file opened for read only.
* data file not initialized properly with call to ex_put_init (EXPINI for Fortran).
* an element block with the same ID has already been specified.
* the number of element blocks specified in the call to ex_put_init (EXPINI for
Fortran) has been exceeded.

ex_put_elem_block: C Interface

int ex_put_elem_block (exoid, elem _blk_id, elem_type,
num_elem_this_blk, num _nodes_per_elem, num_attr);

int exoid (R) ' :
EXODUS file ID returned from a previous call to ex_create or ex_open.

int elem_blk_id (R)
The element block ID.

char* elem_type (R)
The type of elements in the element block. The maximum length of this string is
MAX_STR_LENGTH. For historical reasons, this string should be all upper case.

int num_elem this_blk (R)
The number of elements in the element block.

int num_nodes_per_elem (R)
The number of nodes per element in the element block.

int num_attr (R)
The number of attributes per element in the element block.

For example, the following code segment will initialize an element block with an ID of 10,
write out the connectivity array, and write out the element attributes array:

int id, error, exoid, num_elem _in_blk, num_nodes_per_ elemn,
*connect, num_attr;

float *attrib;

/* write element block parameters */

id = 10;

num_elem_in_blk = 2;

65

num_nodes_per_elem = 4; /* elements are 4-node shells */
num_attr = 1; /* one attribute per element */

error = ex_put_elem block (exoid, id, *“SHEL”,
num_elem _in_blk, num_nodes_per_elem, num_attr);

/* write element connectivity */

connect = {int *)
calloc (num_elem in_klk*num_nodes_per_elem, sizeof(int));

/* £111 connect with node numbers; nodes for first element*/

connect[0] = 1; connect[l] = 2; connect{2] = 3; connect[3] = 4;
/* nodes for second element */
connect{4] = 5; connect[5] = 6; connect[6] = 7; connect[7] = 8;

error = ex_put_elem_ conn (exoid, id, connect);
/* write element block attributes */
attrib = (float *) calloc {(num_attr * num_elem in_blk, sizeof (float));

for (i=0, cnt=0; i<num_elem_in_blk; i++)
for (j=0; j<num_attr; j++, cnt++)
attribl{ent] = 1.0;

error = ex_put_elem_attr (exoid, id, attrib);

EXPELB: Fortran Interface

SUBROUTINE EXPELB (IDEXO, IDELB, NAMELB, NUMELB, NUMLNK,
NUMATR, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDELB (R)
The element block ID.

CHARACTER*MXSTLN NAMELB (R)
The type of elements in the element block. For historical reasons, this string should be all
upper case.

INTEGER NUMELE (R)
The number of elements in the element block.

INTEGER NUMLNK (R)
The number of nodes per element in the element block.

INTEGER NUMATR (R)
The number of attributes per element in the element block.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

66

For example, the following code segment will initialize an element block with an ID of 10,
write out the connectivity array, and write out the element attributes array:

¢ NOTE: MAXLNK is the maximum number of nodes per element

c MAXELB is the maximum number of elements per element block
c MAXATR is the maximum number of attributes per element

c

include ’exodusII.inc’

integer ebid, connect (MAXLNK * MAXELB)
real attrib(MAXATR * MAXELB)
character* (MXSTLN) cname

c
¢ write element block parameters
c

ebid = 10

cname = “SHEL”

numelb = 2

numlnk = 4

numatr = 1

call expelb (idexo, ebid, cname, numelb, numlnk, numatr, ierr)

Q

fill element connectivity and write it out;
nodes for first element

connect (1) =1

connect(2) = 2

connect(3) = 3

connect (4) = 4

[¢]

¢ nodes for second element
connect(5) = 5
connect (6)
connect (7)
connect (8)

6
7
8

call expelc (idexo, ebid, connect, ierr)

c
¢ write element block attributes
c
icnt = 0
do 20 i=1,numelb
do 10 j=1,numatr
icnt = icnt + 1
attrib(icnt) = 1.0
10 continue
20 continue

call expeat (idexo, ebid, attrib, ierr)

67

4.2.12 Read Element Block Parameters

The function ex_get_elem_block (or EXGELB for Fortran) reads the parameters used to
describe an element block. IDs of all element blocks stored can be determined by calling
ex_get_elem_blk_ids (EXGEBI for Fortran).

In case of an error, ex_get_elem_block returns a negative number; a warning will return
a positive number. EXGELB returns a nonzero error (negative) or warning (positive) number
in TERR. Possible causes of errors include:

* data file not properly opened with call t0 ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* clement block with specified ID is not stored in the data file.

ex_get_elem_block: C Interface

int ex_get_elem_block (exoid, elem_blk_id, elem_tyvpe,
num_elem_ this_blk, num _nodes_per_elem, num_attr);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int elem_blk_id (R)
The element block ID.

char* elem _type (W)
Returned type of elements in the element block. The maximum length of this string is
MAX_STR_LENGTH.

int* num_elem_this_blk (W)
Returned number of elements in the element block.

int* num nodes_per_elem (W)
Returned number of nodes per element in the element block.

int* num_attr (W)
Returned number of attributes per element in the element block.

As an example, the following code segment will read the parameters for the element block
with an ID of 10 and read the connectivity and element attributes arrays from an open EXO-
DUS 11 file:

#include *exodusII.h”

int id, error, exoid, num_el_in blk, num_nod_per_el, num_attr, *connect;
float *attrib;

char elem_type[MAX STR_LENGTH+1];

/* read element block parameters */
id = 10;
error = eX_get_elem_block (exoid, id, elem type,

&num_el_in_blk, &num_nod_per_elem, &num_attr);

/* read element connectivity */

68

connect = (int *) calloc(num_nod_per_el*num_el_in_blk, sizeof(int));
error = ex_get_elem_conn (exoid, id, connect);

/* read element block attributes */ '

attrib = (float *) calloc (num_attr * num_el_in_blk, sizeof(float)):
error = ex_get_elem_attr (exoid, id, attrib):

EXGELB: Fortran Interface

SUBROUTINE EXGELB (IDEXO, IDELB, NAMELB, NUMELB, NUMLNK,
NUMATR, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDELB (R)
The element block ID.

CHARACTER*MXSTLN NAMELB (W)
The type of elements in the element block.

INTEGER NUMELB (W)
Returned number of elements in the element block.

INTEGER NUMLNK (W)
Returned number of nodes per element in the element block.

INTEGER NUMATR (W)
Returned number of attributes per element in the element block.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

As an example, the following code segment will read the parameters for the element block
with an ID of 10 and the connectivity and element attributes arrays associated with that ele-

ment block:

c NOTE: MAXINK is the maximum number of nodes per element

c MAXELB is the maximum number of elements per element block
c MAXATR is the maximum number of attributes per element

include ‘exodusII.inc’

integer connect (MAXLNK * MAXELB)
real attrib(MAXATR * MAXELB)
character* (MXSTLN) typ

o]

read element block parameters
id = 10 ‘
call exgelb (idexo, id, typ, numelb, numlnk, numatt, ierr)

0

read element connectivity
call exgelc (idexo, id, connect, ierr)

¢ read element block attributes
call exgeat (idexo, id, attrib, ierr)

69

4.2.13 Read Element Blocks IDs

The function ex_get_elem_blk_ids (or EXGEBTI for Fortran) reads the IDs of all of the
element blocks. Memory must be allocated for the retuned array of (num_elem_blk) IDs
before this function is invoked. The required size (num_elem_blk) can be determined viaa
call to ex_inquire (or EXINQ for Fortran).

In case of an error, ex_get_elem blk_ids returns a negative number; a warning will
return a positive number. EXGEBT returns a nonzero error (negative) or warning (positive)
number in TERR. Possible causes of errors include:

¢ data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

ex_get_elem_blk_ids: C Interface
int ex_get_elem_blk_ids (exoid, elem blk_ids);
int exoid (R)

EXODUS file ID returned from a previous call to ex_create or ex_open.

int* elem blk_ids (W)
Returned array of the element blocks IDs. The order of the IDs in this array reflects the
sequence that the element blocks were introduced into the file.

The following code segment reads all the element block IDs:

int error, exoid, *idelbs, num_elem_blk;
idelbs = (int *) calloc(num_elem blk, sizeof (int));

error = ex_get_elem blk_ids (exoid, idelbs);

EXGEBI: Fortran Int»erface

SUBROUTINE EXGEBI (IDEXO, IDELBS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDELBS(*) (W)
Returned array of element blocks IDs. The order of the IDs in this array reflects the
sequence that the element blocks were introduced into the file.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following code segment reads all the element block IDs:

¢ NOTE: MAXEBL is the maximum number of element blocks
c

integer idelbs (MAXEBL)

call exgebi (idexo, idelbs, ierr)

70

4.2.14 Write Element Block Connectivity

The function ex_put_elem conn (or EXPELC for Fortran) writes the connectivity array
for an element block. The function ex_put_elem_block (EXPELB for Fortran) must be
invoked before this call is made.

In case of an error, ex_put_elem_conn returns a negative number; a warning will return a
positive number. EXPELC returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file opened for read only.

* data file not initialized properly with call to ex_put_init (EXPINT for Fortran).

* ex_put_elem_block was not called previously.

ex_put_elem_conn: C Interface
int ex_put_elem_conn (exoid, elem blk_id, connect);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int elem_blk_id (R)
The element block ID.

int connect[num_elem_this_blk,num _nodes_per_elem] (R)
The connectivity array; a list of nodes (internal node IDs; see Section 3.5 on page 7) that
define each element in the element block. The node index cycles faster than the element
index.)

Refer to the description of ex_put_elem_block (EXPELB for Fortran) for an example
of a code segment that writes out the connectivity array for an element block.

EXPELC: Fortran Interface

SUBROUTINE EXPELC (IDEXO, IDELB, LINK, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDELB (R)
The element block ID.
INTEGER LINK (NUMLNK,NUMELB) (R)
The connectivity array; alist of nodes (internal node IDs; see Section 3.5 on page 7) that
define each element. The node index cycles faster than the element index.
INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

Refer to the description of ex_put_elem block (EXPELB for Fortran) foran example
of a code segment that writes out the connectivity array for an element block.

71

4.2.15 Read Element Block Connectivity

The function ex_get_elem_conn (or EXGELC for Fortran) reads the connectivity array
for an element block. Memory must be allocated for the connectivity array
(num_elem_this_blk * num nodes_per_elemin length) before this routine is
called.

In case of an error, ex_get_elem_conn returns a negative number; a warning will return a
positive number. EXGELC returns a nonzero error (negative) or warning (positive) number
in IERR. Possible causes of errors include:

* an element block with the specified ID is not stored in the file.

ex_get_elem_conn: C Interface

int ex_get_elem_conn (exoid, elem_blk_id, connect);
int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int elem_blk_id (R)
The element block ID.

int connect [num _elem_this_blk, num_nodes_per_elem] (W)
Returned connectivity array; a list of nodes (internal node IDs; see Section 3.5 on page 7)
that define each element. The node index cycles faster than the element index.

For an example of a code segment that reads the connectivity for an element block, refer to the
description of ex_get_elem block.

EXGELC: Fortran Interface

SUBROUTINE EXGELC (IDEXO, IDELB, LINK, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN,

INTEGER IDELB (R)
The element block ID.

INTEGER LINK{(NUMLNK,NUMELB) (W)
Returned connectivity array; a list of nodes (internal node IDs; see Section 3.5 on page 7)
that define each element. The node index cycles faster than the element index.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is retumned.

For an example of a code segment that reads the connectivity for an element block, refer to the
- description of EXGELB.

72

4.2.16 Write Element Block Attributes

The function ex_put_elem_attr (or EXPEAT for Fortran) writes the attributes for an ele-
ment block. Each element in the element block must have the same number of attributes, so
there are (num_attr * num_elem_this_blk) attributes for each element block. The
function ex_put_elem_block (EXPELB for Fortran) must be invoked before this call is
made.

Because the attributes are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in For-
tran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or
ex_open (or EXOPEN for Fortran).

In case of an error, ex_put_elem atty returns a negative number; a warning will return a
positive number. EXPEAT returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not préperly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* data file opened for read only.

+ data file not initialized properly with call to ex_put_init (EXPINT for Fortran).

* ex_put_elem block was not called previously for specified element block ID.

* ex_put_elem block was called with 0 attributes specified. :

ex_put_elem_attr: C Interface
int ex;put_el em_attr (exoid, elem_blk_id, attrib);

int exoid (R) .
EXODUS file ID returned from a previous call to ex_create or ex_open.

int elem blk_id (R)
The element block ID.

void attrib[num_elefn_this_blk ,num_attr] (R)
The list of attributes for the element block. The num_at tr index cycles faster.

Refer to the description of ex_put_elem_block for an example of a code segment that
writes out the attributes array for an element block.

EXPEAT: Fortran Interface

SUBROUTINE EXPEAT (IDEXO, IDELB, ATRIB, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDELB (R)
The element block ID.

73

REAL ATRIB(NUMATR,NUMELB) (R)
The list of attributes for the element block. The NUMATR index cycles faster.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

Refer to the description of EXPELB for an example of a code segment that writes out the
attributes array for an element block.

74

4.2.17 Read Element Block Attributes

The function ex_get_elem_attr (or EXGEAT for Fortran) reads the attributes for an ele-
ment block. Memory must be allocated for (num_attr * num_elem this_blk)
attributes before this routine is called.

Because the attributes are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in For-
tran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or
ex_open (or EXOPEN for Fortran).

In case of an error, ex_get_elem attr returns a negative number; a warning will return a
positive number. EXGEAT returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
- EXOPEN for Fortran). :

* invalid element block ID.
* a warning value is returned if no attributes are stored in the file.

ex_get_elem_attr: C Interface
int ex_get_elem_attr (exoid, elem_blk_id, attrib);
int exoid (R)

EXODUS file ID returned from a previous call to ex_create or ex_open.

int elem blk_id (R)
The element block ID.

volid attrib[num elem_this_blk,num_attr] (W)
Returned list of (num_attr * num_elem_this_blk) attributes for the element block,
with the num_attr index cycling faster.

For an example of a code segment that reads the element attributes for an element block, refer
to the description of ex_get_elem block.

EXGEAT: Fortran Interface

SUBROUTINE EXGEAT (IDEXO, IDELB, ATRIB , IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDELRBR (R)
The element block ID.

REAL ATRIB(NUMATR,NUMELB) (W)
Returned list of (NUMATR*NUMELB) attributes for the element block, with the NUMATR
index cycling faster.

75

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

For an example of a code segment that reads the element attributes for an element block, refer
to the description of EXGELB.

76

4.2.18 Write Node Set Parameters

The function ex_put_node_set_param (or EXPNP for Fortran) writes the node set ID,
the number of nodes which describe a single node set, and the number of distribution factors
for the node set.

In case of an error, ex_put_node_set_paramreturns a negative number; a warning will
return a positive number. EXPNP returns a nonzero error (negative) or warning (positive)
number in TERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

» data file opened for read only.

» (data file not initialized properly with call to ex_put_init (EXPINTI for Fortran).

» the number of node sets specified in the call to ex_put_init (EXPINT for Fortran)
was zero or has been exceeded.

* anode set with the same ID has already been stored.
» the specified number of distribution factors is not zero and is not equal to the number
of nodes. :

ex_put_node_set_param: C Interface

int ex_put_node_set_param (exoid, node_set_id,
num_nodes_in_set, num_dist_in_set);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int node_set_id (R)
The node set ID.

int num_nodes_in_set (R)
The number of nodes in the node set.

int num_dist_in_set (R)
The number of distribution factors in the node set. This should be either O (zero) for no
factors, or should equal num_nodes_in_set.

The following code segment will write out a node set to an open EXODUS 1I file:

int id, num_nodes_in_set, num_dist_in_set, error, exoid, *node_list;
float *dist_fact;

/* write node set parameters */
id = 20; num_nodes_in_set = 5; num_dist_in set = 5;

error = exX_put_node_set_param (exoid, id, num_nodes_in_set,
num_dist_in_set); -

77

/* write node set node list */

node_list = (int *) calloc (num_nodes_in_set, sizeof (int));
node_1list[0] = 100; node_1list{l] = 101; node_list[2] = 102;
node_list[3] = 103; node_list[4] = 104;

error = exX_put_node_set (exoid, id, node_list);

/* write node set distribution factors */

dist_fact = (float *) calloc (num_dist_in_set, sizeof(float));
dist_fact[0] = 1.0; dist_fact[l] = 2.0; dist_fact[2] = 3.0;
dist_fact[3] = 4.0; dist_fact[4] = 5.0;

error = eX_put_node_set_dist_fact (exoid, id, dist_fact);

EXPNP: Fortran Interface

SUBROUTINE EXPNP (IDEXO, IDNPS, NNNPS, NDNPS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDNPS (R)
The node set ID.

INTEGER NNNPS (R)
The number of nodes in the node.set.

INTEGER NDNPS (R) '
The number of distribution factors in the node set. This should be either 0 (zero) for no
factors, or should equal NNNPS.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following code segment will write out a node set to an open EXODUS 1 file:

integer node_list(5)
real dist_fact(5)
c
¢ write a single node set
c
call expnp (idexo, 20, 4, 4, ierr)
node_list(1l) = 100
node_list(2) = 101
node_list (3) = 102
node_list(4) = 103

dist_fact (1)
dist_fact(2)
dist_fact(3)
dist_fact(4)

!
W N R
OO OO

call expns (idexo, 20, node_list, ierr)
call expnsd (idexo, 20, dist_fact, ierr)

78

4.2.19 Read Node Set Parameters

The function ex_get_node_set_param (or EXGNP for Fortran) reads the number of
nodes which describe a single node set and the number of distribution factors for the node set.

In case of an error, ex_get_node_set_paramreturns a negative number; a warning will
return a positive number. EXGNP returns a nonzero error (negative) or warning (positive)
number in TERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* a warning value is returned if no node sets are stored in the file.
* incorrect node set ID.

ex_get_node_set_param: C Interface

int ex_get_node_set_param (exoid, node_set_id,
num_nodes_in_set, num_dist_in_set);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int node_set_id (R)
The node set ID.

int* num_nodes_in_set (W)
Returned number of nodes in the node set.

int* num_dist_in_set (W)
Returned number of distribution factors in the node set.

The following code segment will read a node set from an open EXODUS 1I file:

int error, exoid, id, num_nodes_in_set, num_df_in_set, *node_list;
float *dist_fact;

/* read node set parameters */

id = 100;

error = ex_get_node_set_param (exoid, id,. &num_nodes_in_set,
&num_df_in_set);

/* read node set node list */

node_list = (int *) calloc(num_nodes_in_set, sizeof(int));
error = ex_get_node_set (exoid, id, node_list);

/* read node set distribution factors */
if (num_df_in_set > 0) {

dist_fact = (float *) calloc(num_nodes_in_set, sizeof(float));
error = ex_get_node_set_dist_fact (exoid, id, dist_fact); }

79

EXGNP: Fortran Interface
SUBROUTINE EXGNP (IDEXO, IDNPS, NNNPS, NDNPS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDNPS (R)
The node set ID.

INTEGER NNNPS (W)
Returned number of nodes in the node set.

INTEGER NDNPS (W)
Returned number of distribution factors in the node set.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following code segment will read all node sets from an open EXODUS II file:

¢ NOTE: MAXNS is the maximum number of node sets
c " MAXNOD is the maximum number of nodes in a node set
e

integer ids (MAXNS), node_list (MAXNOD)

real dist_fact (MAXNOD)'

Q

read individual node sets

if (num_node_sets .gt. 0) then
call exgnsi (idexo, ids, ierr)
endif

do 100 i = 1, num_node_sets
call exgnp (idexo, ids(i), nnnps, numdf, ierr)
call exgns (idexo, ids{i), node_1list, ierr)
call exgnsd (idexo, ids (i), dist_fact, ierr)
100 continue

80

4.2.20 Write Node Set

The function ex_put_node_set (or EXPNS for Fortran) writes the node list for a single
node set. The function ex_put_node_set_param (or EXPNP for Fortran) must be called
before this routine is invoked.

In case of an error, ex_put_node_set returns a negative number; a warning will return a
positive number. EXPNS retumns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

» data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran). :

* data file opened for read only.
* data file not initialized properly with call to ex_put_init (EXPINT for Fortran).
* ex_put_node_set_param (or EXPNP for Fortran) not called previously.

ex_put_node_set: C Interface

int ex_put_node_set (exoid, node_set_id,
node_set_node_list);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int node_set_id (R)
The node set ID.

int* node.set_node_list (R)
Array containing the node list for the node set. Internal node IDs are used in this list (see
Section 3.5 on page 7).

Refer to the description of ex_put_node_set_param for a sample code segment to write
out a node set. -

EXPNS: Fortran Interface

SUBROUTINE EXPNS (IDEXO, IDNPS, LTNNPS, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDNPS (R)
The node set ID.

INTEGER LTNNPS (*) (R)
Array containing the node list for the node set. Internal node IDs are used in this list (see
Section 3.5 on page 7).

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

Refer to the description of EXPNP for a sample code segment to write out a node set.

81

4.2.21 Read Node Set

The function ex_get_node_set (or EXGNS for Fortran) reads the node list for a single
node set. Memory must be allocated for the node list (num_nodes_in_set in length)
before this function is invoked.

In case of an error, ex_get_node_set returns a negative number; a warning will return a
positive number. EXGNS returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include: '

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* awarning value is returned if no node sets are stored in the file.
* incorrect node set ID.

ex_get_node_set: C Interface

int ex_get_node_set (exoid, node_set_id,
node_set_node_1list);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int node_set_id (R)
The node set ID.

int* node_set_node_list (W)
Returned array containing the node list for the node set. Internal node IDs are used in this
list (see Section 3.5 on page 7). '

Refer to the description of ex_get_node_set_param for a sample code segment to read
a node set.

EXGNS: Fortran Interface

SUBROUTINE EXGNS (IDEXO, IDNPS, LTNNPS, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDNPS (R)
The node set ID.

INTEGER LTNNPS(*) (W)
Returned array containing the node list for the node set. Internal node IDs are used in this
list (see Section 3.5 on page 7).

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

Refer to the description of EXGNP for a sample code segment to read a node set.

82

4.2.22 Write Node Set Distribution Factors

The function ex_put_node_set_dist_fact (or EXPNSD for Fortran) writes distribu-
tion factors for a single node set. The function ex_put_node_set_param (or EXPNP for
Fortran) must be called before this routine is invoked.

Because the distribution factors are floating point values, the application code must declare
the array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or
“REAL*8” in Fortran) to match the compute word size passed in ex_create (or EXCRE for
Fortran) or ex_open (or EXOPEN for Fortran).

In case of an error, ex_put_node_set_dist_fact returns a negative number; a warn-
ing will return a positive number. EXPNSD returns a nonzero error (negative) or warning
(positive) number in TERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* (data file opened for read only.
» data file not initialized properly with call to ex_put_init (EXPINI for Fortran).
* ex_put_node_set_param (or EXPNP for Fortran) not called previously.

¢ acallto ex_put_node_set_param (or EXPNP for Fortran) specified zero distri-
bution factors.

ex_put_node_set_dist_fact: C Interface

int ex_put_node_set_dist_fact (exoid, node_set_id,
node_set_dist_fact);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int node_set_id (R)
The node set ID.

void* node_set_dist_fact (R)
Array containing the distribution factors in the node set.

Refer to the description of ex_put_node_set_param for a sample code segment to write
out the distribution factors for a node set.

EXPNSD: Fortran Interface

SUBROUTINE EXPNSD (IDEXO, IDNPS, FACNPS, IERR)

INTEGER IDEXO (R)
EXODUS file ID retumned from a previous call to EXCRE or EXOPEN.

INTEGER IDNPS (R)
The node set ID.

83

REAL FACNPS(*} (R)
Array containing the distribution factors in the node set.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

Refer to the description of EXPNP for a sample code segment to write out the distribution
factors for a node set.

84

4.2.23 Read Node Set Distribution Factors

The function ex_get_node_set_dist_fact (or EXGNSD for Fortran) returns the dis-
tribution factors for a single node set. Memory must be allocated for the list of distribution
factors (num_dist_in_set in length) before this function is invoked.

Because the distribution factors are floating point values, the application code must declare
the array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or
“REAL*8” in Fortran) to match the compute word size passed in ex_create (or EXCRE for
Fortran) or ex_open (or EXOPEN for Fortran).

In case of an error, ex_get_node_set_dist_fact returns a negative number; a warn-
ing will return a positive number. EXGNSD returns a nonzero error (negative) or warning
(positive) number in TERR. Possible causes of errors include:

* a warning value is returned if no distribution factors were stored.

ex _get_node_sef_dist_fact: C Interface

int ex_get_node_set_dist_fact (exoid, node_set_id,
node_set_dist_fact) ;

int exoid (R) .
EXODUS file ID returned from a previous call to ex_create or ex_open.

int node_set_id (R)
The node set ID.

void* node_set_dist_fact (W)
Returned array containing the distribution factors in the node set.

Refer to the description of ex_get;_node_s et_param for a sample code segment to read
a node set’s distribution factors.

EXGNSD: Fortran Interface

SUBROUTINE EXGNSD (IDEXO, IDNPS, FACNPS, IERR)
INTEGER IDEXO (R) -
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDNPS (R)
The node set ID.

REAL FACNPS (*) (W)
Returned array containing the distribution factors in the node set.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

Refer to the description of EXGNP for a sample code segment to read a node set’s distribution
factors.

85

4.2.24 Read Node Sets IDs

The function ex_get_node_set_ids (or EXGNST for Fortran) reads the IDs of all of the
node sets. Memory must be allocated for the returned array of (num_node_sets) IDs
before this function is invoked.

In case of an error, ex_get_node_set_ids returns a negative number; a warning will
return a positive number. EXGNSTI returns a nonzero error (negative) or warning (positive)
number in TERR. Possible causes of errors include:
* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* a warning value is returned if no node sets are stored in the file.

ex_get_node_set_ids: C Interface
int ex_get_node_set_ids (exoid, node_set_ids);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.
int* node_set_ids (W)

Returned array of the node sets IDs. The order of the IDs in this array reflects the sequence
the node sets were introduced into the file. '

As an example, the following code will read all of the node set IDs from an open data file:

int *ids, num_node_sets, error, exoid;

/* read node sets IDs */

ids = (int *) calloc(num_node_sets, sizeof(int));
error = ex_dget_node_set_ids (exoid, ids);

EXGNSI: Fortran Interface

SUBROUTINE EXGNSI (IDEXO, IDNPSS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDNPSS(*) (W)
Returned array of node sets IDs. The order of the IDs in this array reflects the sequence the
node sets were introduced into the file.

- INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

As an example, the following code will read all of the node set IDs from an open EXODUS I
file:

integer ids (MAXNS)

if (num_node_sets .gt. 0) then

call exgnsi (idexo, ids, ierr)
endif

86

4.2.25 Write Concatenated Node Sets

The function ex_put_concat_node_sets (or EXPCNS for Fortran) writes the node set
ID’s, node sets node count array, node sets distribution factor count array, node sets node list
pointers array, node sets distribution factor pointer, node set node list, and node set distribu-
tion factors for all of the node sets. “Concatenated node sets” refers to the arrays required to
define all of the node sets (ID array, counts arrays, pointers arrays, node list array, and distri-
bution factors array) as described in Section 3.10 on page 11. Writing concatenated node sets
is more efficient than writing individual node sets. See Appendix A for a discussion of effi-
ciency issues.

Because the distribution factors are floating point values, the application code must declare
the array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or
“REAL*8” in Fortran) to match the compute word size passed in ex_create (or EXCRE for
Fortran) or ex_open (or EXOPEN for Fortran).

In case of an error, ex_put_concat_node_sets returns a negative number; a warning
will return a positive number. EXPCNS returns a nonzero error (negative) or warning (posi-
tive) number in ITERR. Possible causes of errors include:
» data file not properly opened with call to ex_create or ex_open (EXCRE oOr
EXOPEN for Fortran).
¢ (data file opened for read only. .
* data file not initialized properly with call to ex_put_init (EXPINTI for Fortran)
+ the number of node sets specified in a call to ex_put_init (EXPINTI for Fortran)
was zero or has been exceeded.
* anode set with the same ID has already been stored.

+ the number of distribution factors specified for one of the node sets is not zero and is
not equal to the-number of nodes in the same node set.

ex_put_concat_node_sets: C Interface

int ex_put_concat_node_sets (exoid, node_set_ids,
num_nodes_per_set, num_dist_per_set,
node_sets_node_index, node_sets_dist_index,
node_sets_node_list, node_sets_dist_fact);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int* node_set_ids (R)
Array containing the node set ID for each set.

int* num_nodes_per_set (R)
Array containing the number of nodes for each set.

int* num_dist_per_set (R)
Array containing the number of distribution factors for each set.

87

int* node_sets_node_index (R)
Array containing the indices into the node_set_node_1ist which are the locations of
the first node for each set. These indices are 0-based.

int* node_sets_dist_index (R)
Array containing the indices into the node_set_dist_1ist which are the locations of
the first distribution factor for each set. These indices are O-based.

int* node_sets_node_list (R) _
Array containing the nodes for all sets. Internal node IDs are used in this list (see Section
3.5 on page 7).

void* node_sets_dist_fact (R)
Array containing the distribution factors for all sets.

For example, the following code will write out two node sets in a concatenated format:

int ids[2], num_nodes_per_set[2], node_ind[2], node_list[8],
num_df_per_set[2], df_ind[2}, error, exoid;

float dist_fa;t[8];

1ds[0] = 20; ids[1l] = 21;

num_nodes_per_set[0] = 5; num_nodes_per_ set[l] = 3;

node_ind[0] = 0; node_ind[l}] = 5;

100; node_list(1l]

103; node_list[4]
200; node_1list[6]

node_list[0]
node_list[3]
node_list[5]

101; node_1list[2] = 102;
104;
201; node_list[7] = 202;

I onon
noton

num_df_per_set[0]

5; num_df_per set{l] = 3;

df_ind[0] = 0; df_ind[1l] = 5;

dist_fact[0] = 1.0; dist_fact[l] = 2.0; dist_fact[2] = 3.0;
dist_fact[3] = 4.0; dist_fact[4] = 5.0;
dist_fact[5] = 1.1; dist_fact[6] = 2.1; dist_fact{7] = 3.1;

error = ex_put_concat_node_sets (exoid, ids, num_nodes_per_set,
num_df_per_ set, node_ind, df_ind, node_list, dist_fact);

EXPCNS: Fortran Interface

SUBROUTINE EXPCNS (IDEXO, IDNPSS, NNNPS, NDNPS, IXNNPS,
IXDNPS, LTNNPS, FACNPS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDNPSS(*) (R)
Array containing the node set ID for each set.

88

INTEGER NNNPS(*) (R)
Array containing the number of nodes for each set.

INTEGER NDNPS (*) (R) |
Array containing the number of distribution factors for each set.

INTEGER IXNNPS(*) (R)
Array containing the indices into the LTNNPS array which are the locations of the first
node for each set. These indices are 1-based.

INTEGER IXDNPS(*) (R)
Array containing the indices into the FACNPS array which are the locations of the first
distribution factor for each set. These indices are 1-based.

INTEGER LTNNPS(*) (R) v
Array containing the nodes for all sets. Internal node IDs are used in this list (see Section
3.5 on page 7).

REAL FACNPS(*) (R)
Array containing the distribution factors for all sets.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

For example, the following code writes out two node sets in a concatenated format:

integer ids(2), nnnps(2), ndnps(2), nodeind(2), factind(2)
integer nodelist(8), distfact(8) :

20
21

ids (1)
ids (2)

nnnps (1)
nnnps (2)

(2}

ndnps (1)
ndnps (2)

i
w

nodeind (1)
nodeind(2)

non
[y

factind (1)
factind(2)

1n
[

100
101
102
103
104
200
201
202

nodelist (1)
nodelist (2)
nodelist(3)
nodelist (4)
nodelist (5)
nodelist (6)
nodelist (7)
nodelist (8)

LI | T | T N F R [N [

89

distfact(l) =
distfact(2) =
distfact(3) =
distfact(4) =
distfact(5) =
distfact(6) =
distfact (7)
distfact (8)

W N U W
PR EPOOOOO

call expcns (idexo, ids, nnnps, ndnps, nodeind, factind, nodelist,
1 distfact, ierr)

90

4.2.26 Read Concatenated Node Sets

The function ex_get_concat_node_sets (or EXGCNS for Fortran) reads the node set
ID’s, node set node count array, node set distribution factors count array, node set node point-
ers array, node set distribution factors pointer array, node set node list, and node set distribu-
tion factors for all of the node sets. “Concatenated node sets” refers to the arrays required to
define all of the node sets (ID array, counts arrays, pointers arrays, node list array, and distri-
bution factors array) as described in Section 3.10 on page 11.

Because the distribution factors are floating point values, the application code must declare
the array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or
“REAL*8” in Fortran) to match the compute word size passed in ex_create (or EXCRE for
Fortran) or ex_open (or EXOPEN for Fortran).

The length of each of the returned ari‘ays can be determined by invoking ex_inquire (or
EXINQ for Fortran). See Section 4.1.11 on page 41.

In case of an error, ex_get_concat_node_sets returns a negative number; a warning
will return a positive number. EXGCNS returns a nonzero error (negative) or warning (posi-
tive) number in TERR. Possible causes of errors include:
» data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).
» a warning value is returned if no node sets are stored in the file.

ex_get_concat_node_sets: C Interface

int ex_get_concat_;node_sets (exoid, node_set_ids,
num_nodes_per_set, num_dist_per_set,
node_sets_node_index, node_sets_dist_index,
node_sets_node_list, node_sets_dist_fact);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int* node_set_ids (W)
Returned array containing the node set ID for each set.

int* num_nodes_per_set (W)
Returned array containing the number of nodes for each set.

int* num_dist_per_set (W)
Returned array containing the number of distribution factors for each set.

. int* node_sets_node index (W)
Returned array containing the indices into the node_set_node_list wh1¢h are the
locations of the first node for each set. These indices are 0-based.

int* node_sets_dist_index (W) ‘
Returned array containing the indices into the node_set_dist_fact which are the
locations of the first distribution factor for each set. These indices are O-based.

91

int* node_sets_node_list (W)
Returned array containing the nodes for all sets. Internal node IDs are used in this list (see
Section 3.5 on page 7).

void* node_sets_dist_fact (W)
Returned array containing the distribution factors for all sets.

As an example, the following code segment will read concatenated node sets:

#include “exodusII.h”

int error, exoid, num_node_sets, list_len, *ids, *num_nodes_per_set,
*num_df_per set, *node_ind, *df_ind, *node_list;
float *dist_fact

/* read concatenated node sets */

error = ex_inquire (exoid, EX_INQ_NODE_SETS, &num_node_sets, &fdum,
cdum) ;

ids = (int *) calloc(num_node_sets, sizeof (int));
num_nodes_per_set = (int *) calloc(num_node_sets, sizeof(int)):;
num_df_per_set = (int *) calloc(num_node_sets, sizeof(int));
node_ind = (int *) calloc(num_node_sets, sizeof(int));

df_ind = (int *) calloc(num node_sets, sizeof(int));

error = ex_inquire (exoid, EX_INQ_NS_NODE_LEN, &list_len, &fdum, cdum);
node_list = (int *) calloc(list_len, sizeof(int));

error = eX_lnquire (exoid, EX_INQ_NS_DF_LEN, &list_len, &fdum, c<dum);
dist_fact = (float *) calloc{list_len, sizeof(float));

error = ex_get_concat_node_sets (exoid, ids, num _nodes_per_set,
num_df_per_set, node_ind, df_ind, node_list, dist_fact);

EXGCNS: Fortran Interface

SUBROUTINE EXGCNS (IDEXO, IDNPSS, NNNPS, NDNPS, IXNNPS,
IXDNPS, LTNNPS, FACNPS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDNPSS(*) (W)
Returned array containing the node set ID for each set.

INTEGER NNNPS({*) (W)
Returned array containing the number of nodes for each set.

INTEGER NDNPS(*) (W)
Returned array containing the number of distribution factors for each set.

92

INTEGER IXNNPS(*) (W)
Returned array containing the indices into the LTNNPS array which are the locations of
the first node for each set. These indices are 1-based.

INTEGER IXDNPS(*) (W)
Returned array containing the indices into the FACNPS array which are the locations of
the first distribution factor for each set. These indices are 1-based.

INTEGER LTNNPS (*) (W)
Returned array containing the nodes for all sets. Internal node IDs are used in this list (see
Section 3.5 on page 7). '

REAL FACNPS (*) (W)
Returned array containing the distribution factors for all sets.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

As an example, the following code segment will read concatenated node sets:

¢ NOTE: MAXNS is the maximum number of node sets
c ‘MAXNOD is the maximum number of nodes in a node set
c
integer ids (MAXNS), numnodes (MAXNS), num_df(MAXNS), node_ind (MAXNS),
1 df_ind (MAXNS)V, node_list (MAXNOD*MAXNS), dist_fact (MAXNOD*MAXNS)

read concatenated node sets

o]

call exing (idexo, EXNODS, num node_sets, fdum, cdum, ierr)
if (num node_sets .gt. 0) then

use the next calls if you can dynamically allocate arrays

0

call exing (idexo, EXNSNL, list_len, fdum, cdum, ierr)
call exing (idexo, EXNSDF, list_len, fdum, cdum, ierr)

call exgcns (idexo, ids, numnodes, num_df,

1 node_ind, df_ind, node_list, dist_fact, ierr)
endif '

93

4.2.27 Write Side Set Parameters

The function ex_put_side_set_param (or EXPSP for Fortran) writes the side set ID
and the number of sides (faces on 3-d element types; edges on 2-d element types) which
describe a single side set, and the number of distribution factors on the side set. Because each
side of a side set is completely defined by an element and a local side number, the number of
sides is equal to the number of elements in a side set.

In case of an error, ex_put_side_set_paramreturns a negative number; a warning will
return a positive number. EXPSP returns a nonzero error (negative) or warning (positive)
number in IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

+ data file opened for read only.

* data file not initialized properly with call to ex_put_init (EXPINT for Fortran).

» the number of side sets specified in the call to ex__put init (EXPINTI for Fortran)
was zero or has been exceeded.

» aside set with the same ID has already been stored.

ex_put_side_set_param: C Interface

int ex_put_side_set_param (exoid, side_set_id,
num_side_in_set, num_dist_fact_in_set);

int exoid (R) .
EXODUS file ID returned from a previous call to ex_create or ex_open.

int side_set_id (R)
The side set ID.

int num_side_in_set (R)
The number of sides (faces or edges) in the side set.

int num_dist_fact_in_set (R)
The number of distribution factors on the side set.

The following code segment will write a side set to an open EXODUS II file:

int error, exoid, id, num_sides, num_df, elem_list([2], side_list[2];
float dist_fact[4];

/* write side set parameters */
id = 30;

num_sides = 2;

num_df = 4;

error = ex_put_side_set_param (exoid, id, num_sides, num_df);

/* write side set element and side lists */
elem_list[0] = 1; elem_list[l] = 2;

94

side_list[0] = 1; side_list{1l] = 1;
error = ex_put_side_set (exoid, id, elem list, side_list);
/* write side set distribution factors */

dist_fact{0]
dist_fact[2]

30.0; dist_fact[1l]
30.2; dist_fact[3]

nn
w
[}
'
w
-

error = ex_put_side_set_dist_fact (exoid, id, dist_fact);

EXPSP: Fortran Interface

SUBROUTINE EXPSP (IDEXO, IDESS, NSESS, NDESS, IERR)
INTEGER IDEXO (R) :
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDESS (R)
The side set ID.

INTEGER NSESS (R)
The number of sides (faces or edges) in the side set.

INTEGER NDESS (R) .
The number of distribution factors on the side set.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following code segment will write a side set to an open EXODUS 1I file:

integer elem_list(2), side_list(2)
real dist_fact (4)

“id = 31
numsid = 2
numdf = 4
elem_list(l) = 13
elem_list(2) = 14
side_list(l) = 3
side_list(2) = 4
dist_fact(l) = 31.0
dist_fact(2) = 31.1
dist_fact(3) = 31.2
dist_fact(4) = 31.3

call expsp (idexe, id, numsid, numdf, ierr)
call expss (idexo, id; elem_list, side_list, ierr)
call expssd (idexo, id, dist_fact, ierr)

95

4.2.28 Read Side Set Parameters

The function ex_get_side_set_param (or EXGSP for Fortran) reads the number of
sides (faces on 3-d element types; edges on 2-d element types) which describe a single side
set, and the number of distribution factors on the side set.

In case of an error, ex_get_side_set_paramreturns a negative number; a warning will
return a positive number. EXGSP returns a nonzero error (negative) or warning (positive)
number in IERR. Possible causes of errors include:
* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).
* a warning value is returned if no side sets are stored in the file.
* incorrect side set ID.

ex_get_side_set_param: C Interface

int ex_get_side_set_param (exoid, side_set_id,
num_side_in_set, num_dist_fact_in_set);

int exoid (R)

EXODUS file ID returned from a previous call to ex_create or ex_open.
int side_set_id (R)

The side set ID.
int* num side_in_set (W)

Returned number of sides (faces or edges) in the side set.

int* num_dist_fact_in_set (W)
Returned number of distribution factors on the side set.

The following coding will read all of the side sets from an open EXODUS 1I file:

int num_side_sets, error, exoid, num_sides_in_set, num_df_in_set,
num_elem_in_set, *ids, *elem_list, *side_list, *ctr_list, *node_list;
float *dist_fact;

error = ex_ing (exoid, EX_INQ_SIDE_SETS, &num_side_sets, &fdum, cdum) ;

ids = (int *) calloc(num_side_sets, sizeof(int));
error = ex_get_side_set_ids (exoid, ids);

for (i=0; i<num_side_sets; i++)
{
error = ex_get_side_set_param (exoid, ids[i], &num_sides_in_set,
&num df_in_set);

num_elem _in_set = num_sides_in_set;
elem_list = (int *) calloc(num_elem in_set, sizeof(int));
side_list = (int *) calloc(num_sides_in_set, sizeof(int)):;

error = ex_get_side_set (exoid, ids[i], elem_list, side_list);

96

if (num_df_in_set > 0)

{

/* get side set node list to correlate to dist factors */
ctr_list = (int *) calloc{num_elem_in_set, sizeof (int));
node_list = (int *) calloc(num_df_in_set, sizeof (int));
dist_fact = (float *) calloc(num_df_in_set, sizeof (float));

error = ex_get_side_set_node_list (exoid, ids[i], ctr_list,
node_1list);
error = ex_get_side_set_dist_fact (excid, ids[i], dist_fact);

)

EXGSP: Fortran Interface

SUBROUTINE EXGSP (IDEXQ, IDESS, NSESS, NDESS, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDESS (R)
The side set ID.

INTEGER NSESS (W)
Returned number of sides (faces or edges) in the side set.

INTEGER NDESS (W)
Returned number of distribution factors on the side set.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following coding will read all of the side sets from an open EXODUS I file:

¢ NOTE: MAXSS is the maximum number of side sets
c MAXSID is the maximum number of sides in a side set
c ' MAXNOD is the maximum number of nodes on a side set

integer ids(MAXSS), numsid, numdf, elemlst (MAXSID), sidelst (MAXSID),
1 incnt (MAXSID), nodelst (MAXNOD)
real distfact (MAXNOD)

if (num_side_sets .gt. 0} then
call exgssi (idexo, ids, ierr)
endif

do 10 i = 1, num_side_sets
call exgsp (idexo, ids (i), numsid, numdf, ierr)
call exgss (idexo, ids(i), elemlst, sidelst, ierr)
call exgssn (idexo, ids(i), incnt, nodelst, ierr)
call exgssd (idexo, ids (i), distfact, ierr)
10 continue

97

4.2.29 Write Side Set

The function ex_put_side_set (or EXPSS for Fortran) writes the side set element list
and side set side (face on 3-d element types; edge on 2-d element types) list for a single side
set. The routine ex_put_side_set_param (EXPSP for Fortran) must be called before
this function is invoked.

In case of an error, ex_put_side_set returns a negative number; a warning will return a
positive number. EXPSS returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
 EXOPEN for Fortran).

* data file opened for read only.
* data file not initialized properly with call to ex_put_init (EXPINT for Fortran).
* ex_put_side_set_param (or EXPSP for Fortran) not called previously.

ex_put_side_set: C Interface

int ex_put_side_set (exoid, side_set_id, side_set_elem list,
side_set_side_list);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.
int side_set_id (R)
The side set ID.
int* side_set_elem list (R)
Array containing the elements in the side set. Internal element IDs are used in this List (see
Section 3.5 on page 7).

int* side_set_side_list (R)
Array containing the sides (faces or edges) in the side set.

For an example of a code segment to write a side set, refer to the description for
ex_put_side_set_param

EXPSS: Fortran Interface

SUBROUTINE EXPSS (IDEXO, IDESS, LTEESS, LTSESS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDESS (R)
The side set ID.

INTEGER LTEESS(*) (R)
Array containing the elements in the side set. Internal element IDs are used in this list (see
Section 3.5 on page 7).

98

INTEGER LTSESS(*) (R)
Array containing the sides (faces or edges) in the side set.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

For an example of a code segment to write a side set, refer to the description for EXPSP.

99

4.2.30 Read Side Set

The function ex_get_side_set (or EXGSS for Fortran) reads the side set element list and
side set side (face for 3-d element types; edge for 2-d element types) list for a single side set.
Memory must be allocated for the element list and side list (both are num_side_in_set in
length) before this function is invoked.

In case of an error, ex_get_side_set returns a negative number; a warning will return a
positive number. EXGSS returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* awarning value is returned if no side sets are stored in the file.
* incorrect side set ID.

ex_get_side_set: C Interface

int ex_get_side_set (exoid, side_set_id, side_set_elem_list,
side_set_side_list):; :

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int side_set_id (R)
The side set ID.

int* side_set_elem list (W)
Returned array containing the elements in the side set. Internal element IDs are used in
this list (see Section 3.5 on page 7).

int* side_set_side_list (W)
Returned array containing the sides (faces or edges) in the side set.

For an example of code to read a side set from an EXODUS II file, refer to the description for
ex_get_side_set_param

EXGSS: Fortran Interface

SUBROUTINE EXGSS (IDEXO, IDESS, LTEESS, LTSESS, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDESS (R)
The side set ID.

INTEGER LTEESS(*) (W)
Returned array containing the elements in the side set. Internal element IDs are used in
this list (see Section 3.5 on page 7).

100

INTEGER LTSESS(*) (W)
Returned array containing the faces (or edges) in the side set.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

For an example of code to read a side set from an EXODUS II file, refer to the description for
EXGSPE)

101

4.2.31 Write Side Set Distribution Factors

The function ex_put_side_set_dist_fact (or EXPSSD for Fortran) writes distribu-
tion factors for a single side set. The routine ex_put_side_set_param (or EXPSP for
Fortran) must be called before this function is invoked. :

Because the distribution factors are floating point values, the application code must declare
the array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or
“REAL*8” in Fortran) to match the compute word size passed in ex_create (or EXCRE for
Fortran) or ex_open (or EXOPEN for Fortran).

In case of an error, ex_put_side_set_dist_£fact returns a negative number; a warn-
ing will return a positive number. EXPSSD returns a nonzero error {negative) or warning
(positive) number in TERR. Possible causes of errors include:

* - data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* data file opened for read only. »
» data file not initialized properly with call to ex_put_init (EXPINI for Fortran).
* ex_put_side_set_param (or EXPSP for Fortran) not called previously.

* acallto ex_put_side_set_param (or EXPSP for Fortran) specified zero
distribution factors.

ex_put_side_set_dist_fact: C Interface

int ex_put_side_set_dist_fact (exoid, side_set_id,
side_set_dist_fact);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int side_set_id (R)
The side set ID.

void* side_set_dist_fact (R)
Array containing the distribution factors in the side set.

For an example of a code segment to write side set distribution factors, refer to the description
for ex_put_side_set_param

EXPSSD: Fortran Interface

SUBROUTINE EXPSSD (IDEXO, IDESS, FACESS, TIERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDESS (R)
The side set ID.

102

REAL FACESS(*) (R)
Array containing the distribution factors in the side set.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

For an example of a code segment to write side set distribution factors, refer to the description
for EXPSP.

103

4.2.32 Read Side Set Distribution Factors

The function ex_get_side_set_dist_fact (or EXGSSD for Fortran) returns the
distribution factors for a single side set. Memory must be allocated for the list of distribution
factors (num_dist_fact_in_set in length) before this function is invoked.

Because the distribution factors are floating point values, the application code must declare
the array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or
“REAL*8” in Fortran) to match the compute word size passed in ex_create (or EXCRE for
Fortran) or ex_open (or EXOPEN for Fortran).

In case of an error, ex_get_side_set_dist_fact returns a negative number; a warn-
ing will return a positive number. EXGSSD returns a nonzero error (negative) or warning
(positive) number in IERR. Possible causes of errors include:

* a warning value is returned if no distribution factors were stored.

ex_get_side_set_dist_fact: C Interface

int ex_get_side_set_dist_fact (exoid, side_set_id,
side_set_dist_fact);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int side_set_id (R)
The side set ID.

void* side_set_dist_fact (W)

Returned array containing the distribution factors in the side set.

For an example of code to read side set distribution factors from an EXODUS II file, refer to
the description for ex_get_side_set_param

EXGSSD: Fortran Interface

SUBROUTINE EXGSSD (IDEXO, IDESS, FACESS, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDESS (R)
The side set ID.

REAL FACESS(*) (W)
Returned array containing the distribution factors in the side set.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

For an example of code to read side set distribution factors from an EXODUS II file, refer to
the description for EXGSP.

104

4.2.33 Read Side Sets IDs

The function ex_get_side_set_ids (or EXGSSI for Fortran) reads the IDs of all of the
side sets. Memory must be allocated for the returned array of (num_side_sets) IDs
before this function is invoked. :

In case of an error, ex_get_side_set_ids returns a negative number; a warning will
return a positive number. EXGSST returns a nonzero error (negative) or warning (positive)
number in IERR. Possible causes of errors include:

» data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* a warning value is returned if no side sets are stored in the file.

ex_get_side_set_ids: C Interface
int ex_get_side_set_ids (exoid, side_set_ids);

int exoid (R) _
EXODUS file ID returned from a previous call to ex_create or ex_open.

int* side_set_ ids (W)
Returned array of the side sets IDs. The order of the IDs in this array reflects the sequencc
the side sets were introduced into the file.

For an example of code to read side set IDs from an EXODUS 1I file, refer to the description
for ex_get_side_set_param

EXGSSI: Fortran Interface
SUBRQUTINE EXGSSI (IDEXO, IDESSS, IERR)
INTEGER IDEXO (R)

EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDESSS({(*) (W)
Returned array of side sets IDs. The order of the IDs in this array reflects the sequence the
side sets were introduced into the file.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

For an example of code to read side set IDs from an EXODUS 11 file, refer to the description
for EXGSP.

105

4.2.34 Read Side Set Node List

The function ex_get_s ide_set_node_list (or EXGSSN for Fortran) returns a node
count array and a list of nodes on a single side set. With the 2.0 and later versions of the data-
base, this node list isn’t stored directly but can be derived from the element number in the side
set element list, local side number in the side set side list, and the element connectivity array.
The application program must allocate memory for the node count array and node list.

There is a one-to-one mapping (i.e., same order -- as shown in Table 2, “Side Set Node Order-
ing,” on page 16 -- and same number) between the nodes in the side set node list and the side
set distribution factors. Thus, if distribution factors are stored for the side set of interest, the
required size for the node list is the number of distribution factors returned by
ex_get_side_set_param (or EXGSP for Fortran). If distribution factors are not stored
for the side set, the application program must allocate a maximum size anticipated for the
node list. This would be the product of the number of elements in the side set and the maxi-
mum number of nodes per side for all types of elements in the model, since side sets can span
across different element types.

The length of the node count array is the length of the side set element list. For each entry in
the side set element list, there is an entry in the side set side list, designating a local side
number. The corresponding entry in the node count array is the number of nodes which define
the particular side. In conjunction with the side set node list, this node count array gives an
unambiguous nodal description of the side set.)

In case of an error, ex_get_side_set_node_list returnsa negative number; a warn-
ing will return a positive number. EXGSSN returns a nonzero error (negative) or warning
(positive) number in TERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* a warning value is returned if no side sets are stored in the file.
* incorrect side set ID.

ex_get_side_set_node_list: C Interface

int ex_get_side_set_node_list (exoid, side_set_id,
side_set_node_cnt_list, side_set_node_list);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int side_set_id (R)
The side set ID.

int* side_set_node_cnt_list (W)
Returned array containing the number of nodes for each side (face in 3-d, edge in 2-d) in
the side set.

106

int* side_set_node_list (W)
Returned array containing a list of nodes on the side set. Internal node IDs are used in this
list (see Section 3.5 on page 7).

For an example of code to read a side set node list from an EXODUS 1I file, refer to the
description for ex_get_side_set_param

EXGSSN: Fortran Interface

SUBROUTINE EXGSSN (IDEXO, IDESS, INCNT, LTNESS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDESS (R)
The side set ID.

INCNT(*) (W)
Returned array containing the number of nodes for each side (face in 3-d, edge in 2-d) in
the side set.

INTEGER LTNESS(*) (W)
Returned array containing a list of nodes on the side set. Internal node IDs are used in this
list (see Section 3.5 on page 7).

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

For an example of code to read a side set node list from an EXODUS 1I file, refer to the
description for EXGSP.

107

4.2.35 Write Concatenated Side Sets

The function ex_put_concat_side_sets (or EXPCSS for Fortran) writes the side set
IDs, side set element count array, side set distribution factor count array, side set element
pointers array, side set distribution factors pointers array, side set element list, side set side
list, and side set distribution factors. “Concatenated side sets” refers to the arrays needed to
define all of the side sets (ID array, side counts array, node counts array, element pointer array,
node pointer array, element list, node list, and distribution factors array) as described in Sec-
tion 3.12 on page 15. Writing concatenated side sets is more efficient than writing individual
side sets. See Appendix A for a discussion of efficiency issues.

Because the distribution factors are floating point values, the application code must declare
the array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or
“REAL*8” in Fortran) to match the compute word size passed in ex_create (or EXCRE for
Fortran) or ex_open (or EXOPEN for Fortran).

In case of an error, ex_put_concat_side_sets returns a negative number; a warning
will return a positive number. EXPCSS returns a nonzero error (negative) or warning (posi-
tive) number in TERR. Possible causes of errors include:
 data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).
* data file opened for read only.
* data file not initialized properly with call to ex_put_init (EXPINI for Fortran).
* the number of side sets specified in a call to ex_put_init (EXPINTI for Fortran)
was zero or has been exceeded.
* aside set with the same ID has already been stored.

ex_put_concat_side_sets: C Interface

int ex_put_concat_side_sets (exoid, side_sets_ids,
num_gide per_set, num_dist_per_set,
side_sets_elem_index, side_sets_dist_index,
side_sets_elem_list, side_sets_side_list,
side_sets_dist_fact);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int* side_sets_ids (R)
Array containing the side set ID for each set.

int* num_side_per_set (R)
Array containing the number of sides for each set.

int* num_dist_per_set (R)
Array containing the number of distribution factors for each set.

108

int* side_sets_elem _index (R)
Array containing the indices into the side_sets_elem list which are the locations
of the first element for each set. These indices are 0-based.

int* side_sets_dist_index (R)
Array containing the indices into the side_sets_dist_fact which are the locations
of the first distribution factor for each set. These indices are 0-based.

int* side_sets_elem_list (R) :
Array containing the elements for all side sets. Internal element IDs are used in this list
(see Section 3.5 on page 7).

int* side_sets_side_list (R)
Array containing the sides for all side sets.
void* side_sets_dist_fact (R)
Array containing the distribution factors for all side sets.

The following coding will write out two side sets in a concatenated format:

int error, exoid, ids[2], num_side_per_set[2], elem_ind[2],
num_df_per_set[2], Af_ind{2], elem_list[4], side_list[4];
float dist_fact(8];

/* write concatenated side sets */
ids[0] = 30;

ids[1l] = 31;
bnum_side_per_set[O] = 2;
num_side_per_set{l] = 2;
elem_ind[0] = 0;
elem_ind[1l] = 2;
num_df_per_set[0] = 4;
num_df_per_set[1l] = 4;
Af_ind[0] = 0;

df_ind[1] = 4;

/* side set #1 */

elem_1ist{0] 2; elem_list[1] 2;
side_list[0] 2; side_1list{[1l] = 1;
dist_fact[0] 30.0; dist_fact[l] = 30.1;

dist_fact[2] = 30.2; dist_fact[3] = 30.3;
/* side set #2 */

elem list{2] = 1; elem_list[3] = 2;
side_list{2] = 4; side_1list{3] = 3;
dist_fact[4] = 31.0; dist_fact{5] = 31.1;
dist_fact[6] = = 31.3;

31.2; dist_fact[7]

error = ex_put_concat_side_sets (exoid, ids, num_side_per_set,
num_df_per_set, elem ind, df_ind, elem_list, side_list, dist_fact);

109

EXPCSS: Fortran Interface

SUBROUTINE EXPCSS (IDEXO, IDESSS, NSESS, NDESS, IXEESS,
IXDESS, LTEESS, LTSESS, FACESS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IDESSS(*) (R)
Array containing the side set ID for each set.

INTEGER NSESS(*) (R)
Array containing the number of sides for each set.

INTEGER NDESS(*) (R) :
Array containing the number of distribution factors for each set.

INTEGER IXEESS(*) (R)
Array containing the indices into the LTEESS array which are the locations of the first
element for each set. These indices are 1-based.

INTEGER IXDESS(*) (R)
Array containing the indices into the FACESS array which are the locations of the first
distribution factor for each set. These indices are 1-based.

INTEGER LTEESS(*) (R)
Array containing the elements for all side sets. Internal element IDs are used in this list
(see Section 3.5 on page 7).

INTEGER LTSESS(*) (R)
Array containing the sides for all side sets.

REAL FACESS(*) (R)
Array containing the distribution factors for all side sets.

INTEGER IERR (R)
Returned error code. If no errors occurred, O is returned.

The following coding will write out two side sets in a concatenated format:

integer ids(2), num_side_per_set(2), num_df_per_set(2),
1 elem_ind(2), df_ind(2), elem_list(4), side_list (4)
real dist_fact(8) :

c

c write concatenated side sets

c

ids (1) = 30
ids(2) = 31
num_side_per_set(l) = 2
num_side_per_set(2) = 2

num_df_per_set(l) = 4

110

c side

¢ side

num_df_per_set(2) =

elem_ind (1)

1

elem_ind(2)

df__ind (1)
df_ind(2) .

1
= 3

set #1 (ID of 30)

elem_list (1)
elem_list(2)

side_list(1)
side_list(2)

dist_fact (1)
dist_fact (2)
dist_fact (3)
dist_fact (4)

=11
= 12

= 30.
= 30.
= 30.
= 30.

W N - o

set #2 (ID of 31)

elem_list (3)
elem_list(4)

side_list(3)
side_list(4)

dist_fact (5)
dist_fact(6)
dist_fact(7)
dist_fact(8)

call expcss

= 13
= 14

= 3
= 4

= 31.
= 31-
= 31.
= 31-

(idexo,

WK o

4

ids, num_side_per_set,

elem_ind, df_ind, elem_list,

111

side_list, dist_fact,

num_df_per_set,

ierr)

4.2.36 Read Concatenated Side Sets

The function ex_get_concat_side_sets (or EXGCSS for Fortran) reads the side set
IDs, side set element count array, side set distribution factors count array, side set element
pointers array, side set distribution factors pointers array, side set element list, side set side
list, and side set distribution factors. “Concatenated side sets” refers to the arrays needed to
define all of the side sets (ID array, side counts array, node counts array, element pointer array,
node pointer array, element list, node list, and distribution factors array) as described in Sec-
tion 3.12 on page 15.

Because the distribution factors are floating point values, the application code must declare
the array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or ,
“REAL*8” in Fortran) to match the compute word size passed in ex_create (or EXCRE for
Fortran) or ex_open (or EXOPEN for Fortran).

The length of each of the returned arrays can be determined by invoking ex_inguire (or
EXINQ for Fortran). See Section 4.1.11 on page 41.

In case of an error, ex_get_concat_side_sets returns a negative number; a warning
will return a positive number. EXGCSS returns a nonzero error (negative) or wammg (posi-
tive) number in IERR. Possible causes of errors include:

» data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).
* a warning value is returned if no side sets are stored in the file.

ex_get_concat_side_sets: C Interface

int ex_get_concat_side_sets (exoid, side_set_ids,
num_side_per_set, num_dist_per_set,
side_sets_elem_index, side_sets_dist_index,
side_sets_elem list, side_sets_side list,
side_sets_dist_fact); '

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int* side_set_ids (W)
Returned array containing the side set ID for each set.

int* num_side_per_set (W)
Returned array containing the number of sides for each set.
int* num_dist_per_set (W)
Returned array containing the number of distribution factors for each set.
int* side_sets_elem index (W)
Returned array containing the indices into the side_sets_elem_list which are the
locations of the first element for each set. These indices are (-based.

112

int* side_sets_dist_index (W)
Returned array containing the indices into the side_sets_dist_fact array which
are the locations of the first distribution factor for each set. These indices are 0-based.

int*k side_sets_elem list (W)
Returned array containing the elements for all side sets. Internal element IDs are used in
this list (see Section 3.5 on page 7).

int* side_sets_side_list (W)
Returned array containing the sides for all side sets.

void* side_sets_dist_fact (W)
Returned array containing the distribution factors for all side sets.

The following code segment will return in concatenated format all the side sets stored in an
EXODUS II file:
#include “exodusII.h”
int error, exoid, num_ss, elem list_len, df_list_len, *ids, *side_list,
*num_side_per_set, *num_df_per_set, *elem_ind, *df_ind, *elem_list;
float *dist_fact;

error = ex_inquire (exoid, EX_INQ_SIDE_SETS, &num_ss, &fdum, cdum);
if {(num_ss > 0) {
error = ex_inquire(exoid, EX_INQ_SS_ELEM LEN, &elem list_len, &fdum,
cdum) ;

error = ex_inquire({exoid, EX_INQ SS _DF_LEN, &df_list_len, &fdum,
cdum) ; .

/* read concatenated side sets */

ids = (int *) calloc{num_ss, sizeof(int));
num_side_per_set = (int *) calloc{num_ss, sizeof(int));
num_df_per_set = (int *) calloc(num_ss, sizeof(int));
elem_ind = (int *) calloc(num_ss, sizeof(int));

df_ind = (int *) calloc(num_ss, sizeof(int));

elem_list = (int *) calloc(elem_list_len, sizeof(int));
side_list = (int *) calloc(elem list_len, sizeof(int));
dist_fact = (float *) calloc(df_list_len, sizeof(float));

error = ex_get_concat_side_sets (exoid, ids, num_side_per_set,
num_df_per set, elem ind, df_ind, elem_list, side_list,dist_fact);

EXGCSS: Fortran Interface

SUBROUTINE EXGCSS (IDEXO, IDESSS, NSESS, NDESS, IXEESS,
IXDESS, LTEESS, LTSESS, FACESS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

113

INTEGER IDESSS{*) (W)
Returned array containing the side set ID for each set.

INTEGER NSESS(*) (W)
Returned array containing the number of sides for each set.

INTEGER NDESS(*) (W)
Returned array containing the number of distribution factors for each set.

INTEGER IXEESS(*) (W)
Returned array containing the indices into the LTEESS array which are the locations of
the first element for each set. These indices are 1-based.

INTEGER IXDESS(*) (W)
Returned array containing the indices into the FACESS array which are the locations of
the first distribution factor for each set. These indices are 1-based.

INTEGER LTEESS (*) (W)
Returned array containing the elements for all side sets. Internal element IDs are used in
this list (see Section 3.5 on page 7).

INTEGER LTSESS(*) (W)
Returned array containing the sides for all side sets.

REAL FACESS(*) (W)
Returned array containing the distribution factors for all side sets.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following code segment will return in concatenated format all the side sets stored in an
EXODUS I file:

¢ NOTE: MAXSS is the maximum number of side sets
c MAXSID is the maximum number of sides in a side set
c MAXDF is the max number of distribution factors in a side set

integer elemlen, nodelen, dflen, ids(MAXSS), num_side (MAXSS),
1 num_df (MAXSS), elem ind(MAXSS), d4df_ind{(MAXSS),
2 elem_list (MAXSID*MAXSS), side_list (MAXSID*MAXSS)

real dist_fact (MAXDF*MAXSS)

call exing (idexo, EXSIDS, num_side_sets, fdum, cdum, ierr)

if (num_side_sets .gt. 0) then

[0}

use the following inquiries if dynamic allocation is available
call exing (idexo, EXSSEL, elemlen, fdum, cdum, ierr)
call exing (idexo, EXSSNL, nodelen, fdum, cdum, ierr)
call exing (idexo, EXSSDF, dflen, fdum, cdum, ierr)

read concatenated side sets
call exgcss (idexo, ids, num_side, num_df, elem_ind, df_ind,
elem_list, side_list, dist_fact, ierr)
endif

o}

114

4.2.37 Convert Side Set Nodes to Sides

The function ex_cvt_nodes_to_sides (or EXCN2S for Fortran) is used to convert a
side set node list to a side set side list. This routine is provided for application programs that
utilize side sets defined by nodes (as was done previous to release 2.0) rather than local faces
or edges. The application program must allocate memory for the returned array of sides. The
length of this array is the same as the length of the concatenated side sets element list, which
can be determined with a call to ex_inquire (or EXINQ for Fortran).

In case of an error, ex_cvt_nodes_to_sides returns a negative number; a warning will
return a positive number. EXCN2 S returns a nonzero error (negative) or warning (positive)
number in IERR. Possible causes of errors include:

* a warning value is returned if no side sets are stored in the file.

* because the faces of a wedge require a different number of nodes to describe them
(quadrilateral vs. triangular faces), the function will abort with a fatal return code if a
wedge is encountered in the side set element List.

ex_cvt_nodes_to_sides: C Interface

int ex_cvt_nodes_to_sides (exoid, num_side_per_set,
num_nodes_per_set, side_sets_elem index,
side_sets_node_index, side_sets_elem list,
side_sets_node_list, side_sets_side_1list);

int exoid (R) :
EXODUS file ID returned from a previous call to ex_create or ex_open.

int* num_side_per_set (R)
Array containing the number of sides for each set. The number of sides is equal to the
number of elements for each set.

int* num_nodes_per_set (R)
Array containing the number of nodes for each set.

int* side_sets_elem_index (R)
Array containing indices into the side_sets_elem_1list which are the locations of
the first element for each set. These indices are 0-based.

int* side_sets_node_index (R)
Array containing indices into the side_sets_node_1list which are the locations of
the first node for each set. These indices are 0-based.

int* side_sets_elem_list (R)
Array containing the elements for all side sets. Internal element IDs are used in this list
(see Section 3.5 on page 7).

int* side_sets_node_list (R)
Array containing the nodes for all side sets. Internal node IDs are used in this list (see
Section 3.5 on page 7).

115

int* side_sets_side_list (W)
Returned array containing the sides for all side sets.

The following code segment will convert side sets described by nodes to side sets described
by local side numbers:

int error, excid, ids[2], num_side_per_set[2], num_nodes_per_set[2],
elem_ind[2], node_ind[2], elem_list[4], node_list{[8], el_lst_len,
*side_list;

ids{[0} = 30; ids[1] = 31;

num_side_per_set[0] = 2; num_side_per_set[1l] = 2;

num_nodes_per_set[0] = 4; num_nodes_per_set[l] = 4;

elem_ind([0] = 0; elem_ind[1l] = 2;

node_ind[0] = 0; node_ind[1l] = 4;

/* side set #1 */

elem_list{0] = 2; elem_list[1l] = 2; ‘
node_list[0] = 8; node_list{l] = 5; node_list[2] = 6; node_list[3] = 7;
/* side set #2 */

elem_list[2] = 1; elem_list[3] = 2;

node_list([4] = 2; node_list[S] = 3; node_1list[6] = 7; node_list[7] = 8;

error = eX_inquire (exoid, EX_INQ_SS ELEM LEN, &el_1lst_len, &fdum,cdum);

/* side set element list is same length as side list */
side_list = (int *) calloc (el_lst_len, sizeof(int));

ex_cvt_nodes_to_sides (exold, num_side_per_set, num_nodes_per set,
elem_ind, node_ind, elem_list, node_list, side_list);

EXCN2S: Fortran Interface

SUBROUTINE EXCNZS (IDEXO, NSESS, NDESS, IXEESS, IXNESS,
LTEESS, LTINESS, LTSESS, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER NSESS(*) (R)
Array containing the number of sides for each set. The number of sides is equal to the
number of elements for each set.

INTEGER NDESS(*) (R)
Array containing the number of nodes for each set.

INTEGER IXEESS(*) (R)
Array containing indices into the LTEESS array which are the locations of the first
element for each set. These indices are 1-based.

116

INTEGER IXNESS(*) (R)
Array containing indices into the LTNESS array which are the locations of the first node
for each set. These indices are 1-based.

INTEGER LTEESS(*) (R)
Array containing the elements for all side sets. Internal element IDs are used in this list
(see Section 3.5 on page 7).

INTEGER LTNESS(*) (R) |
Array containing the nodes for all side sets. Internal node IDs are used in this list (see
Section 3.5 on page 7). :

INTEGER LTSESS (*) (W)
Returned array containing the sides for all side sets.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following code segment will convert side sets described by nodes to side sets described
by local side numbers:

INCLUDE ‘exodusII.inc’)

integer ids(2), num_side_per_set(2), num_nodes_per_set (2},
1 elem_ind(2), node_ind(2), node_list(8), elem_list(4),
2 side_list(4)

ids (1) = 30
ldS(Z) = 31
num_side_per_set(l) = 2
num_side_per_set(2) = 2
num_nodes_per_set (1)
num_nodes_per_set (2)
elem _ind (1) 1

elem ind(2)
node_ind (1)
node_ind(2)

=

3
1
5

side set #1
node_list (1)
node_list (2)
node_list (3)
node_list (4)
elem_list (1)
elem_list(2)

Q
i nu
NN oy U

side set #2
node_list (5)
node_list (6)
node_list(7)
node_list (8)
elem_list(3)
elem_list (4) 2
call excn2s(idexo, num_side_per set, num_nodes_per_set, elem_ind,

1 node_ind, elem_list, node_list, side_list, ierr)

o}

=00 N W

[I N | N | B

117

4.2.38 Write Property Arrays Names

The function ex_put_prop_names (or EXPPN for Fortran) writes property names and
allocates space for property arrays used to assign integer properties to element blocks, node
sets, or side sets. The property arrays are initialized to zero (0). Although this function is
optional, since ex_put_prop will allocate space within the data file if it hasn’t been previ-
ously allocated, it is more efficient to use ex_put_prop_names if there is more than one
property to store. See Appendix A for a discussion of efficiency issues.

In case of an error, ex_put_prop_names returns a negative number; a warning will return
a positive number. EXPPN returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* data file opened for read only.

* data file not initialized properly with call to ex_put_init (EXPINI for Fortran).

* invalid object type specified.

* o object of the specified type is stored in the file.

ex_put_prop_names: C Interface

int ex_put_prop_names (exoid, obj_type, num_props,
prop_names) ;

int exoid (R) _ ,
EXODUS file ID returned from a previous call to ex_create or ex_open.

int obj_typ (R)
Type of object; use one of the following options:

e EX_ELEM BLOCK To designate an element block.
e EX NODE_SET To designate a node set.
¢ EX SIDE_SET To designate a side set.

int num props (R)
The number of integer properties to be assigned to all of the objects of the type specified
(element blocks, node sets, or side sets).

char** prop_names (R)
Array containing num_props names (of maximum length of MAX_ STR_LENGTH) of
properties to be stored.

For instance, suppose a user wanted to assign the 1st, 3rd, and 5th element blocks (those ele-
ment blocks stored 1st, 3rd, and 5th, regardless of their ID) to a group (property) called
“TOP”, and the 2nd, 3rd, and 4th element blocks to a group called “LSIDE”. This could be
accomplished with the following code:

#include “exodusII.h”;

char* prop_names[2];

int top_part{] = {1,0,1,0,1};

int lside_part{] = {0,1,1,1,0};

118

int id{] = {10, 20, 30, 40, 50};

prop_names[0] = “TOP”;

prop_names[l] = “LSIDE”;

/* This call to ex_put_prop_names is optional, but more efficient */
ex_put_prop_names (exoid, EX_ELEM_BLOCK, 2, prop_names);

/* The property values can be output individually thus */
for (i=0; i<5; i++){ '
ex_put_prop (exoid, EX_ELEM _BLOCK, id[i], prop_names[0},
top_part[il);
ex_put_prop (exoid, EX_ELEM BLOCK, id[i], prop_names{l],
lside_part[i]); }

/* Alternatively, the values can be output as an array thus*/
ex_put_prop_array (exoid, EX_ELEM BLOCK, prop_names[0], top_part);
ex_put_prop_array (exoid, EX_ELEM_BLOCK, prop_names[l], lside_part);

EXPPN: Fortran Interface

SUBROUTINE EXPPN (IDEXO, ITYPE, NPROPS, NAMEPR, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER ITYPE (R)
Type of object; use one of the following options:

* EXEBLK To designate an element block.
¢ EXNSET To designate a node set.
* EXSSET To designate a side set.

INTEGER NPROPS (R)
The number of integer properties to be assigned to all of the objects of the type specified
(element blocks, node sets, or side sets).

CHARACTER*MXSTLN NAMEPR(*) (R)
Array containing NPROPS names of properties to be stored.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

The following example assigns a property “STEEL” to the first and third element blocks with
ID’s 10 and 30, respectively.

include ‘exodusII.inc’
integer ival(3)
data ival/1,0,1/
C This call to EXPPN in optional, but more efficient
call exppn (idexo, exeblk, 1, “STEEL”, ierr)

C The property values can be written individually thus
call expp (idexo, EXEBLK, 10, *STEEL”, 1, ierr)
call expp (idexo, EXEBLK, 30, “STEEL”, 1, ierr)

¢ Alternatively, the values can be written as an array thus
call exppa (idexo, EXEBLK, “STEEL”, ival, ierr)

119

4.2.39 Read Property Arrays Names

The function ex_get_prop_names (or EXGPN for Fortran) returns names of integer prop-
erties stored for an element block, node set, or side set. The number of properties (needed to
allocate space for the property names) can be obtained via a call to ex_ingquire (EXINQ
for Fortran). See Section 4.1.11 on page 41.

In case of an error, ex_get_prop_names returns a negative number; a warning will return
a positive number. EXGPN returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

 invalid object type specified.

ex_get_prop_names: C Interface

int ex_get_prop_names (exoid, obj_type, prop_names);
int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int obj_type (R)
Type of object; use one of the following options:

* EX_ELEM_BLOCK To designate an element block.
¢ EX_NODE_SET To designate a node set.
* EX_SIDE_SET To designate a side set.

char** prop_names (W)
Returned array containing num_props (obtained from call to ex_ingquire) names (of
maximum length MAX_ STR_ LENGTH) of properties to be stored. “ID”, a reserved
property name, will be the first name in the array.

As an example, the following code segment reads in properties assigned to node sets:
#include “exodusII.h”; ’
int error, exoid, num_props, *prop_values;
char *prop_names [MAX PROPS] ;

/* read node set properties */
error = ex_inquire (exoid, EX_INQ_NS_PROP, &num props, &fdum, cdum);

for (i=0; i<num props; i++){
prop_names[i] = (char *) malloc ((MAX_STR_LENGTH+1), sizeof(char));}
prop_values = (int *) malloc (num_node_sets, sizeof(int)):

error = exX_dget_prop_names (exoid, EX_NODE_SET, prop_names) ;
for (i=0; i<num_props; i++){

error = ex_get_prop_array(exoid, EX_NODE_SET, prop_namesf[il],
prop_values) ;

120

EXGPN: Fortran Interface

SUBROUTINE EXGPN (IDEXO, ITYPE, NAMEPR, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER ITYPE (R)
Type of object; use one of the following options:

* EXEBLK To designate an element block.
¢ EXNSET To designate a node set.
* EXSSET To designate a side set.

CHARACTER*MXSTLN NAMEPR (*) (W)
Returned array containing NPROPS (obtained from call to EXINQ) names of properties to
be stored. “ID”, a reserved property name, will be the first name in the array.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

As an example, the following will read the side set property values from an EXODUS II file:

NOTE: MAXSS is the maximum number of side sets
c MXSSPR is the maximum number of side set properties

Q

include ‘exodusIl.inc’
integer ids(MAXSS), ivals(MAXSS, MXSSPR)
character* (MXSTLN) prop_names (MXSSPR)

¢ determine number of side sets and side set properties
call exing (idexo, EXSIDS, num_side_éets(fdum, cdum, ierr)
call exing (idexo, EXNSSP, num_props, fdum, cdum, ierr)

¢ get the side set property names
call exgpn(idexo, EXSSET, prop_names, lerr)

¢ get the side set ids
call exgssi (idexo, ids, ierr)

c get the side set property values individually
do 20 1 = 1, num_props

do 10 j = 1, num_side_sets
call exgp{idexo, EXSSET,ids(j),prop_names(i),ivals(j,i),ierr)
10 continue
20 continue

¢ alternatively, the property values can be read in together as follows
do 30 i = 1, num_props
call exgpa (idexo, EXSSET, prop_names (i), ivals(l,i), ierr)
30 continue

121

4.2.40 Write Object Property

The function ex_put_prop (or EXPP for Fortran) stores an integer property value to a
single element block, node set, or side set. Although it is not necessary to invoke
ex_put_prop_names (EXPPN for Fortran), since ex_put_prop will allocate space
within the data file if it hasn’t been previously allocated, it is more efficient to use
ex_put_prop_names if there is more than one property to store. See Appendix A for a
discussion of efficiency issues.

It should be noted that the interpretation of the values of the integers stored as properties is left
to the application code. In general, a zero (0) means the object does not have the specified
property (or is not in the specified group); a nonzero value means the object does have the
specified property. When space is allocated for the properties using ex_put_prop_names
or ex_put_prop, the properties are initialized to zero (0).

Because the ID of an element block, node set, or side set is just another property (named
“ID”), this routine can be used to change the value of an ID. This feature must be used with
caution, though, because changing the ID of an object to the ID of another object of the same
type (element block, node set, or side set) would cause two objects to have the same ID, and
thus only the first would be accessible. Therefore, ex_put_prop issues a warning if a user
attempts to give two objects the same ID.

In case of an error, ex_put_prop returns a negative number; a warning will return a posi-
tive number. EXPP returns a nonzero error (negative) or warning (positive) number in IERR.
Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* data file opened for read only.

* data file not initialized properly with call to ex_put_init (EXPINI for Fortran).

 invalid object type specified.

* awarning is issued if a user attempts to change the ID of an object to the ID of an
existing object of the same type.

ex_put_prop: C Interface
int ex_put_prop (exoid, obj_type, obj_id, prop_name, value);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int obj_type (R)
Type of object; use one of the following options:

* EX_ELEM_BLOCK To designate an element block.
* EX_NODE_SET To designate a node set.
* EX_SIDE_SET To designate a side set.

int obj_id (R)
The element block, node set, or side set ID.

122

char* prop_name (R) _
The name of the property for which the value will be stored. Maximum length of this
string is MAX__STR_LENGTH.

int value (R)
The value of the property.

For an example of code to write out an object property, refer to the description for
ex_put_prop_names.

EXPP: Fortran Iriterface
SUBROUTINE EXPP (IDEXO, ITYPE, ID, NAMEPR, IVAL, IERR)

INTEGER IDEXO (R) ,
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER ITYPE (R)
Type of object; use one of the following options:

* EXEBLK To chignate an element block.
-+ EXNSET To designate a node set.
* EXSSET To designate a side set.

INTEGER ID (R) .
The element block, node set, or side set ID.

CHARACTER*MXSTLN NAMEPR (R)
The name of the property for which a value will be stored.

INTEGER IVAL (R)
The value of the property.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

For an example of code to write out an object property, refer to the description for EXPPN.

123

4.2.41 Read Object Property

The function ex_get_prop (or EXGP for Fortran) reads an integer property value stored for
a single element block, node set, or side set.

In case of an error, ex_get_prop returns a negative number; a warning will return a posi-
tive number. EXGP returns a nonzero error (negative) or warning (positive) number in TERR.
Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* invalid object type specified.
* a warning value is returned if a property with the specified name is not found.

ex_get_prop: C Interface
int ex_get_prop (exoid, obj_type, obj_id, prop_name, value);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.
int obj_type (R) '
Type of object; use one of the following options:

e EX_ELEM_BLOCK To designate an element block.
* EX_NODE_SET To designate a node set.
* EX_SIDE_SET To designate a side set.

int obj_id (R)
The element block, node set, or side set ID.

char* prop_name (R) _
The name of the property (maximum length is MAX_STR_LENGTH) for which the value
is desired.

int* value (W)
Returned value of the property.

For an example of code to read an object property, refer to the description for
ex_get_prop_names.

EXGP: Fortran Interface

SUBROUTINE EXGP (IDEXO, ITYPE, ID, NAMEPR, IVAL, IERR)

INTEGER IDEXO (R)‘
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

124

INTEGER ITYPE (R)
Type of object; use one of the following options:

s EXEBLK To designate an element block.
* EXNSET To designate a node set.
* EXSSET To designate a side set.

INTEGER ID (R)
The element block, node set, or side set ID.

CHARACTER*MXSTLN NAMEPR (R)
The name of the property for which the value is desired.

INTEGER IVAL (W)
Returned value of the property.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

For an example of code to read an object property, refer to the description for EXGPN.

125

4.2.42 Write Object Property Array

The function ex_put_prop_array (or EXPPA for Fortran) stores an array of
(num_elem_blk,num node_sets, or num_side_sets)integer property values for all
element blocks, node sets, or side sets. The order of the values in the array must correspond to
the order in which the element blocks, node sets, or side sets were introduced into the file. For
instance, if the parameters for element block with ID 20 were written to a file (via
ex_put_elem_block; or EXPELB for Fortran), and then parameters for element block
with ID 10, followed by the parameters for element block with ID 30, the first, second, and
third elements in the property array would correspond to element block 20, element block 10,
and element block 30, respectively. ’

One should note that this same functionality (writing properties to multiple objects) can be
accomplished with multiple calls to ex_put_prop (or EXPP in Fortran).

Although it is not necessary to invoke ex_put_prop_names (EXPPN for Fortran), since
ex_put_prop_array will allocate space within the data file if it hasn’t been previously
allocated, it is more efficient to use ex_put_prop_names if there is more than one
property to store. See Appendix A for a discussion of efficiency issues.

In case of an error, ex_put_prop_array returns a negative number; a warning will return
a positive number. EXPPA returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* data file opened for read only.
* data file not initialized properly with call to ex_put_init (EXPINI for Fortran).
* invalid object type specified.

ex_put_prop_array: C Interface
int ex_put_prop_array (exoid, obj_type, prop_name, values):;

int exoid (R)

EXODUS file ID returned from a previous call to ex_create or ex_open.
int obj_type (R)

Type of object; use one of the following options:

* EX_ELEM_BLOCK To designate an element block.
* EX_NODE_SET - To designate a node set.
* EX _SIDE_SET To designate a side set.

char* prop_name (R)
The name of the property for which the values will be stored. Maximum length of this
string is MAX_STR_LENGTH.

int* values (R)
An array of property values.

126

For an example of code to write an array of object properties, refer to the description for
ex_put_prop_names.

EXPPA: Fortran Interface

SUBROUTINE EXPPA (IDEXO, ITYPE, NAMEPR, IVALS, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER ITYPE (R)
Type of object; use one of the following options:

* EXEBLK To designate an element block.
* EXNSET To designate a node set.
* EXSSET To designate a side set.

CHARACTER*MXSTLN NAMEPR (R)
The name of the property for which the values will be stored.

INTEGER IVAL(*) (R)
An array of property values.

INTEGER IERR (W) :
Returned error code. If no errors occurred, O is returned.

For an example of code to write an array of object properties, refer to the description for
EXPPN.

127

4.2.43 Read Object Property Array

The function ex_get_prop_array (or EXGPA for Fortran) reads an array of integer prop-
erty values for all element blocks, node sets, or side sets. The order of the values in the array
correspond to the order in which the element blocks, node sets, or side sets were introduced
into the file. Before this function is invoked, memory must be allocated for the returned array
of (num_elem_blk, num_node_sets, or num_side_sets) integer values.

This function can be used in place of ex_get_elem_blk_ids (EXGEBI for Fortran),
ex_get_node_set_ids (EXGNSI for Fortran), and ex_get_side_set_ids
(EXGSST for Fortran) to get element block, node set, and side set IDs, respectively, by
requesting the property name “ID.” One should also note that this same function can be
accomplished with multiple calls to ex_get_prop (or EXGP in Fortran).

In case of an error, ex_get_prop_array returns a negative number; a warning will return
a positive number. EXGPA returns a nonzero error (negative) or warning (positive) number in
TERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* invalid object type specified.
¢ awarning value is returned if a property with the specified name is not found.

ex_get_prop_array: C Interface
int ex_get_prop_array (exoid, obj_type, prop_name, values):;

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int obj_type
Type of object; use one of the following options:

¢ EX_ELEM_BLOCK To designate an element block.
* EX_NODE_SET To designate a node set.
* EX_SIDE_SET To designate a side set.

char* prop_name (R)
The name of the property (maximum length of MAX_ STR_LENGTH) for which the values
are desired.

int* values (W)
Returned array of property values.

For an example of code to read an array of object properties, refer to the description for
ex_get_prop_names.

128

EXGPA: Fortran Interface

SUBROUTINE EXGPA (IDEXO, ITYPE, NAMEPR, IVALS, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER ITYPE (R)
Type of object; use one of the following options:

* EXEBLK To designate an element block.
¢ EXNSET To designate a node set.
* EXSSET To designate a side set.

CHARACTER*MXSTLN NAMEPR (R)
The name of the property for which the values are desired.

INTEGER IVAL({(*) (W)
Returned array of property values.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

For an example of code to read an array of object properties, refer to the description for
EXGPN.

129

4.3 Results Data

This section describes functions which read and write analysis results data and related entities.

These include results variables (global, elemental, and nodal), element variable truth table,
and simulation times.

130

4,.3.1 Write Results Variables Parameters

The function ex_put_var_param (or EXPVP for Fortran) writes the number of global,
nodal, or element variables that will be written to the database.

In case of an error, ex_put_var_paramreturns a negative number; a warning will return a
positive number. EXPVP returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or

EXOPEN for Fortran).

» (data file opened for read only.

* invalid variable type specified (must be “g”, “G”, “n”, “N”, “¢”, or “E”).

 data file not initialized properly with call to ex_put_init (EXPINI for Fortran).

* this routine has already been called with the same variable type; redefining the number
of variables is not allowed.

* awarning value is returned if the number of variables is specified as zero.

ex_put_var_param: C Interface

int ex_put_var_param (exoid, var_type, num vars);
int exoid (R)

EXODUS file ID returned from a previous call to ex_create or ex_open.

char* var_type (R)
Character indicating the type of variable which is described. Use one of the following
options: : .

e “g”(or“G”) For global variables.
e “n” (or“N”) For nodal variables.
e “e”(or“E”) For element variables.
int num_vars (R)
The number of var_type variables that will be written to the database.

For example, the following code segment initializes the data file to store global variables:
int num glo_vars, error, exoid;

/* write results variables parameters */

nunm_glo_vars = 3;
error = ex_put_var_param (exoid, “g”, num_glo_vars);

131

EXPVP: Fortran Interface

SUBROUTINE EXPVP (IDEXO, VARTYP, NVAR, IERR)

INTEGER IDEXQO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

CHARACTER*1 VARTYP (R)
Character indicating the type of variable which is described. Use one of the following
options: _
* “g” (or“GQ”) For global variables.
* “n” (or“N”) For nodal variables.

e “e”(or “E™) For element variables.
INTEGER NVAR (R)

The number of VARTYP variables that will be written to the database.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

For example, the following code segment initializes the data file to store global variables:

num_glo_vars = 1
call expvp (idexo, “g”, num _glo_vars, ierr)

132

4.3.2 Read Results Variables Parameters

The function ex_get_var_param (or EXGVP for Fortran) reads the number of global,
nodal, or element variables stored in the database.

In case of an error, ex_get_var_paramreturns a negative number; a warning will returmn a
positive number. EXGVP returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

» data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).
» invalid variable type specified (must be “g”, “G”, “n”, “N”, “e”, or “E”).

ex_get_var_param: C Interface

int ex_get_var_param {(exoid, var_type, num_vars);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

char* var_type (R)
Character 1nd1cat1ng the type of variable which is described. Use one of the following

options: |
* “ »” (or “G,,) For global variables‘
. “ ”(or “N”) For nodal variables.
o “e”(or “E”) For element variables.

int* num_vars (W) _
Returned number of var_type variables that are stored in the database.

As an example, the following coding will determine thc number of global variables stored in
the data file:

int num_glo_vars, error, exoid;
/* read global variables parameters */

error = ex_get_var_param (exoid, “g”, &num_glo_vars);

EXGVP: Fortran Interface

SUBROUTINE EXGVP (IDEXO, VARTYP, NVAR, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

133

CHARACTER*1 VARTYP (R)
Character indicating the type of variable which is described. Use one of the following

options:
¢ “g”(or“G”) For global variables.

e “n” (or “N”) For nodal variables.
e “e”(or “E”) For element variables.

INTEGER NVAR (W)
Returned number of VARTYP variables that are stored in the database.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

As an example, the following coding will determine the number of global variables stored in
the data file:

call exgvp (idexo, “g”, num_glo_vars, ierr)

134

4.3.3 Write Results Variables Names

The function ex_put_var_names or (EXPVAN for Fortran) writes the names of the
results variables to the database. The names are MAX_STR_LENGTH-characters in length.
The function ex_put_var_param (EXPVP for Fortran) must be called before this function
is invoked.

In case of an error, ex_put_var_names returns a negative number; a warning will return a
positive number. EXPVAN returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:
¢ data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).
+ data file not initialized properly with call to ex_put_init (EXPINI for Fortran).)
 invalid variable type specified (must be “g”, “G”, “n”, “N”, “e”, or “E”).
* ex_put_var_param (EXPVP for Fortran) was not called previously or was called
with zero variables of the specified type.
e ex_put_var_names or (EXPVAN for Fortran) has been called previously for the
specified variable type.

ex_put_var_names: C Interface

int ex_put_var_names (exoid, var_type, num_vars,
“var_names|[]);

int exoid (R) :
EXODUS file ID returned from a previous call to ex_create or ex_open.

char* var_type (R)
Character indicating the type of variable which is described. Use one of the following
options:

e “g”(or “G”) For global variables.
e “n” (or “N”) For nodal variables.
e “e”(or“E) For element variables.
int num_vars (R)
The number of var_type variables that will be written to the database.

char** var_names (R)
Array of pointers to num_vars variable names.

The following coding will write out the names associated with the nodal variables:

int num_nod_vars, error, exoid;
char *var_names([2];

/* write results variables parameters and names */

num_nod_vars = 2;

135

“disx”;
“disy”;

var_names[0]
vay_names[1]

error = exX_put_var_param {(exoid, “n”, num_nod_vars);
error = exX_put_var_names {exoid, “n”, num_nod_vars, var_names);

EXPVAN: Fortran Interface

SUBROUTINE EXPVAN (IDEXO, VARTYP, NVAR, NAMES, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

CHARACTER*1 VARTYP (R)
Character indicating the type of variable which is described. Use one of the following
options: '
e “g”(or “G”) For global variables.
* “n” (or “N”) For nodal variables.
e “e” (or “E”) For element variables.
INTEGER NVAR (R)
The number of VARTYP variables that will be written to the database.

CHARACTER*MXSTLN NAMES (*)
Array containing NVAR variable names.

INTEGER IERR (W)
Returned error code. If no errors occurred, (is returned.

The following coding will write out the names associated with the nodal variables:

include ‘exodusII.inc’
character* (MXSTLN)var_names (1)

var_names{l) = “glo_vars”
call expvan (idexo, “g”, num_glo_vars, var_names, ilerr)

136

4.3.4 Read Results Variables Names

The function ex_get_var_names or (EXGVAN for Fortran) reads the names of the results
variables from the database. Memory must be allocated for the name array before this func-
tion is invoked. The names are MAX_STR__LENGTH-characters in length.

In case of an error, ex_get_var_names returns a negative number; a warning will return a
positive number. EXGVAN returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:
» data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran). ' '
 invalid variable type specified (must be “g”, “G”, “n”, “N”, “e”, or “E”).
» a warning value is returned if no variables of the specified type are stored in the file.

ex_get_var_names: C Interface

int ex_get_var_names (exoid, var_type, num_vars,
var_names|[]);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

char* var_type :
Character indicating the type of variable which is described. Use one of the following

options:
e “g”(or“G”) For global variables.
e “n” (or “N”) For nodal variables.
e “e”(or “E”) For element variables.
int num vars (R)
The number of var_type variables that will be read from the database.

char** var_names (W)
Returned array of pointers to num_vars variable names.

As an example, the following code segment will read the names of the nodal variables stored
in the data file:

#include “exodusII.h”

int error, exoid, num_nod_vars;

char *var_names[10];

/* read nodal variables parameters and names */
error = eX_get_var_param (excid, “n”, &num_nod_vars);
for (i=0; i<num_nod_vars; i++)

var_names|[i] = (char *) calloc ({MAX_STR_LENGTH+l1l), sizeof(char));
error = eX_get_var_names (exoid, “n”, num_nod_vars, var_names);

137

EXGVAN: Fortran Interface

SUBROUTINE EXGVAN (IDEXO, VARTYP, NVAR, NAMES, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

CHARACTER*1 VARTYP (R)
Character indicating the type of variable which is described. Use one of the following
options:
e “g’(or“G”) For global variables.
e “n” (or “N”) For nodal variables.
o “e” (or “E”) For element variables:
INTEGER NVAR (R)
The number of VARTYP variables that will be read from the database.

CHARACTER*MXSTLN NAMES(*) (W)
Returned array containing NVAR (returned from a call to EXGVP) variable names.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

As an example, the following code segment will read the names of the global variables stored
in the data file:

¢ NOTE: MAXVARS is the maximum number of global variables
c

include ‘exodusII.inc’

character* (MXSTLN) var_names (MAXVARS)
c

¢ read global variables parameters and names
c

call exgvp (idexo, "g", num_glo_vars, ierr)

call exgvan (idexo, "g”, num_glo_vars, var_names, ierr)

138

4.3.5 Write Time Value for a Time Step

The function ex_put_time (or EXPTIM for Fortran) writes the time value for a specified
time step. ' :

Because time values are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in For-
tran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or
ex_open (or EXOPEN for Fortran).

In case of an error, ex_put_t ime returns a negative number; a warning will return a posi-
tive number. EXPTIM returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).
* data file opened for read only.

ex_put_time: C Interface
int ex_put_time (exoid, time_step, time_value);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int time_step (R) -
The time step number. This is essentially a counter that is incremented only when results
variables are output to the data file. The first time step is 1.

void* time_value (R)
The time at the specified time step.

The following code segment will write out the simulation time value at simulation time step n:

int error, exoid, n;
float time_value;

/* write time value */

error = ex_put_time (exoid, n, &time_value);

EXPTIM: Fortran Interface
SUBROUTINE EXPTIM (IDEXO, NSTEP, TIME, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER NSTEP (R)
The time step number. This essentially a counter that is incremented only when results
variables are output to the data file. The first time step is 1.

139

REAL TIME (R)
The time at the specified time step.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following code segment will write out the simulation time value at simulation time step n:
C .
c write time value to file

C

call exptim (idexo, n, time_value, ierr)

140

4.3.6 Read Time Value for a Time Step

The function ex_get_time (or EXGTIM for Fortran) reads the time value for a specified
time step. '

Because time values are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in For-
tran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or
ex_open (or EXOPEN for Fortran).

In case of an error, ex_get_t ime returns a negative number; a warning will return a posi-
tive number. EXGTIM returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

» data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).
* no time steps have been stored in the file.

ex_get_time: C Intérface

int ex_get_time (exoid, time_step, time_value);

~int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int time_step (R)
The time step number. This is essentially an index (in the time dimension) into the global,
nodal, and element variables arrays stored in the database. The first time step is 1.

void* time_value (W)
Returned time at the specified time step.

As an example, the following coding will read the time value stored in the data file for time
step n:

int n, error, exoid;
float time_value;

/* read time value at time step 3 */

n = 3;
error = ex_get_time (exoid, n, &time_value);

EXGTIM: Fortran Interface
SUBROUTINE EXGTIM (IDEXO, NSTEP, TIME, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

141

INTEGER NSTEP (R)
The time step number. This is essentially an index (in the time dimension) into the global,
nodal, and element variables arrays stored in the database. The first time step is 1.

REAL TIME (W)
Returned time at the specified time step.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

As an example, the following coding will read the time value stored in the data file for time
step n:
C
¢ read time value at time step 3
C
n =3
call exgtim (idexo, n, time_value, ierr)

142

4.3.7 Read All Time Values

The function ex_get_all_times (or EXGATM for Fortran) reads the time values for all
time steps. Memory must be allocated for the time values array before this function is
invoked. The storage requirements (equal to the number of time steps) can be determined by
using the ex_inquire (or EXINQ in Fortran) routine. See Section 4.1.11 on page 41.

Because time values are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in For-
tran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or
ex_open (or EXOPEN for Fortran).

In case of an'error, ex_get_all_times returns a negative number; a warning will return a
positive number. EXGATM returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:

» (data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* no time steps have been stored in the file.

ex_get_all_times: C Interface
int ex_get_all_times (exoid, time_values);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

void* time_values (W)
Returned array of times. These are the timie values at all time steps.

The following code segment will read the time values for all time steps stored in the data file:

#include “exodusII.h”

int error, exoid, num_time_steps;
float *time_values;

/* determine how many time steps are stored */

error = ex_inquire (exoid, EX_INQ TIME, &num_time_steps,
&fdum, cdum);

/* read time values at all time steps */
time_values = (flocat *) calloc (num_time_steps, sizeof(flocat));

error = exX_get_all_times (exoid, time_values);

143

EXGATM: Fortran Interface

SUBROUTINE EXGATM (IDEXO, TIME, IERR)
INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

REAL TIME(*) (W)
Returned array of times. These are the time values at all time steps.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following code segment will read the time values for all time steps stored in the data file:

¢ NOTE: MAXTIM is the maximum number of time steps
c
include 'exodusII.inc’

real time_values (MAXTIM)

determine how many time steps are stored; this can be used if dynamic
memory allocation is available

a0 00

call exing (idexo, EXTIMS, num_time_ steps, fdum, cdum, ierr)

O 0

read time values at all time steps

call exgatm (idexo, time_values, ierr)

144

4.3.8 Write Element Variable Truth Table

The function ex_put_elem_var_tab (or EXPVTT for Fortran) writes the EXODUS II
element variable truth table to the database. The element variable truth table indicates
whether a particular element result is written for the elements in a particular element block. A
0 (zero) entry indicates that no results will be output for that element variable for that element
block. A non-zero entry indicates that the appropriate results will be output.

Although writing the element variable truth table is optional, it is encouraged because it cre-
ates at one time all the necessary netCDF variables in which to hold the EXODUS element
variable values. This results in significant time savings. See Appendix A for a discussion of
efficiency issues.

The function ex_put_var_param (or EXPVP for Fortran) must be called before this
routine in order to define the number of element variables.

In case of an error, ex_put_elem_var_tab returns a negative number; a warning will
return a positive number. EXPVTT returns a nonzero error (negative) or warning (positive)
number in TERR. Possible causes of errors include:

+ data file not properly opened with call to0 ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

¢ data file opened for read only.

 data file not initialized properly with call to ex_put_init (EXPINI for Fortran).

-+ the specified number of element blocks is different than the number specified in a call
to ex_put_init (EXPINI for Fortran). '

» ex_put_elem block (or EXPELB for Fortran) not called previously to specify
element block parameters.

*» ex_put_var_param (or EXPVP for Fortran) not called previously to specify the
number of element variables or was called but with a different number of element vari-
ables.

* ex_put_elem var previously called.

ex_put_elem_var_tab: C Interface

int ex_put_elem_var_tab (exoid, num_elem_ blk, num_elem_var,
elem var_tab);

int exoid (R) .
EXODUS file ID retumed from a previous call to ex_create or ex_open.

int num_elem _blk (R)
The number of element blocks.

int num_elem_wvar (R)
The number of element variables.

145

int elem_var_tab[num _elem_blk,num_elem_var] (R) :
A 2-dimensional array (with the num_elem_var index cycling faster) containing the
element variable truth table.

The following coding will create, populate, and write an element variable truth table to an
opened EXODUS II file (NOTE: all element variables are valid for all element blocks in this
example.): '

int *truth_tab, num_elem_blk, num_ele_vars, error, exolid;

/* write element variable truth table */
truth_tab = (int *) calloc ((num_elem blk*num_ele_vars), sizeof(int)});

for (1i=0, k=0; i<num_elem_blk; i++)
for (3=0; j<num_ele_vars; j++)
truth_tablk++] = 1;

error = ex_put_elem var_tab (exoid, num_elem blk, num_ele_vars,
truth_tab);

EXPVTT: Fortran Interface

SUBROUTINE EXPVTT (IDEXO, NELBLK, NVAREL, ISEVOK, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER NELBLK (R)
The number of element blocks.

INTEGER NVAREL (R)
The number of element variables.

INTEGER ISEVOK(NVAREL,NELBLK) (R)
A 2-dimensional array (with the NVAREL index cycling faster) containing the element
variable truth table.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is retumed.

The following coding will create, populate, and write an element variable truth table to an
opened EXODUS II file. (NOTE: all element variables are valid for all element blocks in this
example.):

integer truth_tab(num_ele_vars,num_elem blk)

c
¢ write element wvariable truth table

icnt = 0
do 30 1 = 1,num_elem_blk
do 20 j = 1,num_ele_vars
truth_tab(j,i) = 1
20 continue
30 continue

call expvtt (idexo, num_elem_blk, num_ele_vars, truth_tab, ierr)

146

4.3.9 Read Element Variable Truth Table

The function ex_get_elem_var_tab (or EXGVTT for Fortran) reads the EXODUS II
element variable truth table from the database. For a description of the truth table, see the
usage of the function ex_put_elem var_tab. Memory must be allocated for the truth
table (num_elem_blk * num_ elem_ var in length) before this function is invoked. If the
truth table is not stored in the file, it will be created based on information in the file and then
returned.

In case of an error, ex_get_elem_var_tab returns a negative number; a warning will
return a positive number. EXGVTT returns a nonzero error (negative) or warning (positive)
number in TERR. Possible causes of errors include:
* data file not properly opened w1th callto ex_create or ex_open (EXCRE or
EXOPEN for Fortran).
* data file not initialized properly with call to ex_put_init (EXPINI for Fortran).
* the specified number of element blocks is dlffcrcnt than the number specified in a call
to ex_put_init (EXPINT for Fortran).

» there are no element variables stored in the file or the specified number of element
variables doesn’t match the number specified in a call to ex_put —var_param (or
EXPVP for Fortran).

ex_get_elem_var_tab: C Interface

int ex_get_elem var_tab (exoid, num_elem_blk, num_elem var,
elem var_tab); '

int exoid ({R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int num_elem _blk (R)
The number of element blocks.

int num_elem_var (R)
The number of element variables.

int élem__var__t ab[num_elem_blk,num_elem_var] (W)
Returned 2-dimensional array (with the num_elem_var index cycling faster) containing
the element variable truth table.

As an example, the following coding will read the element variable truth table from an opened
EXODUS II file:

int *truth_tab, num_elem _blk, num_ele_vars, error, exoid;
truth_tab = (int *) calloc ((num_elem_blk*num_ele vars), sizeof(int));

error = ex_get_elem var_tab (exoid, num_elem_blk, num_ele_vars,
truth_tab);

147

EXGVTT: Fortran Interface

SUBROUTINE EXGVTT (IDEXO, NELBLK, NVAREL, ISEVOK, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER NELBLK (R)
The number of element blocks.

INTEGER NVAREL (R)
The number of element variables.

INTEGER ISEVOK (NVAREL, NELBLK) (W)
Returned 2-dimensional array (with the NVAREL index cycling faster) containing the
element variable truth table.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

As an example, the following coding will read the element variable truth table from an opened
EXODUSII file: ‘

integer truth tab(num ele_vars,num_elem_blk)
c
¢ read element wvariable truth table
< .
call exgvtt (idexo, num_elem_blk, num_ele_vars, truth_tab, ierr)

148

4.3.10 Write Element Variable Values at a Time Step

The function ex_put_elem_var (or EXPEV for Fortran) writes the values of a single ele-
ment variable for one element block at one time step. It is recommended, but not required, to
write the element variable truth table (with ex_put_elem_var_tab for C; EXPVTT for
Fortran) before this function is invoked for better efficiency. See Appendix A for a discussion
of efficiency issues.

Because element variables are floating point values, the application code must declare the
array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or
ex_open (or EXOPEN for Fortran).

In case of an error, ex_put_elem_var returns a negative number; a warning will return a
positive number. EXPEV returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:
* data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).
* data file opened for read only.
« data file not initialized properly with call to ex_put_init (EXPINT for Fortran).
* invalid element block ID.
¢+ ex_put_elem block (or EXPELB for Fortran) not called previously to specify
parameters for this element block.
¢ ex_put_var_param (or EXPVP for Fortran) not called previously specifying the
number of element variables.
» an element variable truth table was stored in the file but contains a zero (indicating no
valid element variable) for the specified element block and element variable.

ex_put_elem_var: C Interface

int ex_put_elem_var (exoid, time_step, elem_var_index,
elem blk_id, num_elem this_blk, elem_var_vals);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int time_step (R)
The time step number, as described under ex_put_time. This is essentially a counter
that is incremented-only when results variables are output. The first time step is 1.

int elem var_index (R)
The index of the element variable. The first variable has an index of 1.

int elem blk_id (R)
The element block ID.

int num_elem_this_blk (R)
The number of elements in the given element block.

149

void* elem var_vals (R)
Array of num_elem this_blk values of the elem_var_indexth element variable
for the élement block with ID of elem_blk_1id at the time_stepth time step.

The following coding will write out all of the element variables for a single time step n to an
open EXODUS 1I file:

int num_ele_vars, num_elem blk, *num_elem_in block, error, exoid, n,
*ebids;
float *elem_var_vals;

/* write element wvariables */

for (k=1; k<=znum_ele_vars; X++)
{
for (j=0; j<num_elem blk; j++)
{
elem_var_vals = (float *)
calloc (num_elem_in_blocklj], sizecof(float));

for (m=0; m<num_elem_in_block[j]; m++)

{
/* simulation code fills this in */
elem_var_vals[m] = 10.0;

}

error = ex_put_elem var (exoid, n, k, ebids[j],
num_elem_in_block[j], elem_var_vals);

free (elem_var_vals):

3

EXPEYV: Fortran Interface

SUBROUTINE EXPEV (IDEXO, ISTEP, IXELEV, IDELB, NUMELE,
VALEV, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.
INTEGER ISTEP (R)

The time step number, as described under EXPTIM. This is essentially a counter that is
incremented only when results variables are output. The first time step is 1.

INTEGER IXELEV (R)
The index of the element variable. The first variable has an index of 1.

INTEGER IDELB (R)
The element block ID.

INTEGER NUMELB (R)
The number of elements in the given element block.

150

REAL VALEV(*) (R)
Array of NUMELB values of the IXELEVth element variable for the element block with ID
of IDELB at the ISTEPth time step.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following coding will write out all of the element variables for a single time step . to an
open EXODUS II file:

»
c NOTE: MAXEBK is maximum number of element blocks

c MAXELB is maximum number of elements per block
c

integer num_elem_in_block (MAXERK)
real elem_var_vals (MAXELB)

write element variables

e}

do 100 k = 1, num_ele_vars
do 90 j = 1, num_elem_blk
do 80 m = 1, num_elem_in_block(3)

0

analysis code fills this array
elem_var_vals(m) = lb.O
80 continue

call expev (idexo, n, k, num_elem in_block(]j),
1 elem _var_vals, ilerr)

90 continue
100 continue

151

4.3.11 Read Element Variable Values at a Time Step

The function ex_get_elem var (or EXGEV for Fortran) reads the values of a single
element variable for one element block at one time step. Memory must be allocated for the
element variable values array before this function is invoked.

Because element variables are floating point values, the application code must declare the
array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_ create (or EXCRE for Fortran) or
ex_open (or EXOPEN for Fortran).

In case of an error, ex_get_elem_var returns a negative number; a warning will return a
positive number. EXGEV returns a nonzero error (negative) or warning (posmve) number in
IERR. Possible causes of errors include:

» data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

» variable does not exist for the desired element block.

» invalid element block.

ex _get;_elem_var: C Interface

int ex_get_elem_var (exoid, time_step, elem_var_index,
elem blk_id, num_elem_this_blk, elem_var_vals);

int exoid (R)
EXODUS file ID returned from.a previous call to ex_create or ex_open.

int time_step (R)
The time step number, as described under ex_put_time, at which the element variable
values are desired. This is essentially an index (in the time dimension) into the element
variable values array stored in the database. The first time step is 1.

int elem var_index (R)
The index of the desired element variable. The first variable has an index of 1.

int elem_blk_id (R)
The desired element block ID.

int num_elem_this_blk (R)
'The number of elements in this element block.

void* elem_var_vals (W)
Returned array of num_elem this_blk values of the elem var_indexth element
variable for the element block with ID of elem_blk_id at the time_stepth time step.

As an example, the following code segment will read the var_indexth element variable at
one time step stored in an EXODUS I file:

int *ids, num_elem_blk, error, exoid, *num_elem_in_block, step, var_ind;
float *var_wvals;

152

ids = (int *) calloc(num_elem blk, sizeof(int));
error = ex_get_elem blk_ids (exoid, ids);

step = 1; /* read at the first time step */
for (i=0; i<num_ elem_blk; i++) {
var_vals = (float *) calloc (num_elem_in_block{i], sizeof(float));
error = ex_get_elem_var (exoid, step, var_ind, ids[i},
num_elem_in_block[i], var_wvals);
free (var_values); }

EXGEYV: Fortran Interface

SUBROUTINE EXGEV (IDEXO, ISTEP, IXELEV, IDELB, NUMELB,
VALEV, IERR)

INTEGER IDEXO (R) _
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER ISTEP (R)
The time step number, as described under EXPTIN, at which the element variable is
desired. This is essentially an index (in the time dimension) into the element variable
values array stored in the database. The first time step is 1.

INTEGER IXELEV (R) :
The index of the desired element variable. The first variable has an index of 1.

INTEGER IDELB (R)
The desired element block ID.

INTEGER NUMELB (R)
The number of elements in this element block.

REAL VALEV(*) (W)
Returned array of NUMELB values of the IXELEVth element variable for the element
block with ID of IDELB at the ISTEPth time step. '

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

As an example, the following code segment will read the var__indexth element variable at
one time step stored in an EXODUS 11 file:
¢ NOTE: MAXEBK is maximum number of element blocks
c MAXELB is maximum number of elements per block
integer ids(MAXEBK), var_index, num _elem_in_block (MAXEBK)
real var_values (MAXELR)

call exgebi (idexo, ids, ierr)
do 10 i = 1, num_elem_blk
call exgev (idexo, istep, var_index, ids(i),

1 num_elem_in_block (i), var_values, ierr)
10 continue

153

4.3.12 Read Element Variable Values through Time

The function ex_get_elem_var_time (or EXGEVT for Fortran) reads the values of an
element variable for a single element through a specified number of time steps. Memory must
be allocated for the element variable values array before this function is invoked.

Because element variables are floating point values, the application code must declare the
array passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in
Fortran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or
ex_open (or EXOPEN for Fortran).

In case of an error, ex_get_elem_var_time returns a negative number; a warning will
return a positive number. EXGEVT returns a nonzero error (negative) or warning (positive)
number in IERR. Possible causes of errors include:

 data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

* data file not initialized properly with call to ex_put_init (EXPINI for Fortran).

* ex_put_elem_block (or EXPELB for Fortran) not called previously to specify
parameters for all element blocks.

* variable does not exist for the desired element or results haven’t been written.

ex_get_elem_var_time: C Interface

int ex_get_elem_var_time (exoid, int elem_var_index, int
elem_number, int beg time_step, int end_time_step,
elem_var_vals);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int elem var_index (R)
The index of the desired element variable. The first variable has an index of 1.

int elem_number (R)
The internal ID (see Section 3.5 on page 7) of the desired element. The first element is 1.

int beg_time_step (R)
The beginning time step for which an element variable value is desired. This is not a time
value but rather a time step number, as described under ex_put_time. The first time
stepis 1.

int end_time_step (R)
The last time step for which an element variable value is desired. If negative, the last time
step in the database will be used. The first time step is 1. '

void* elem_var_vals (W) .
Returned array of (end_time_step - beg_time_step + 1) values of the
elem_numberth element for the el em_var_indexth element variable.

154

For example, the following coding will read the values of the var_indexth element variable
for element number 2 from the first time step to the last time step:

#include “exodusII.h”

int error, exoid, num_time_steps, var_index, elem_num, beg_time,
end_time;

flecat *var_values;

/* determine how many time steps are stored */

error = ex_inquire (exoid, EX_INQ_TIME, &num _time_steps, &fdum, cdum);

/% read-an element variable through time */

var_values = (float *) calloc (num_time_steps, sizeof(float));

var_index = 2;

elem_num = 2;
beg_time = 1;
end_time = -1;

error = ex_get_elem_ var_time (exoid, var_index, elem_num,
beg_time, end time, var_values);

EXGEVT: Fortran Interface

SUBROUTINE EXGEVT (IDEXO, IXELEV, IELNUM, ISTPB, ISTPE,
VALEV, IERR) :

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IXELEV (R)
The index of the desired element variable. The first variable has an index of 1.

INTEGER IELNUM (R)
The internal ID (see Section 3.5 on page 7) of the desired element. The first element is 1.

INTEGER ISTPB (R)
The beginning time step for which an element variable value is desired. This is not a time
value but rather a time step number, as described under EXPTIM. The first time step is 1.

INTEGER ISTPE (R)
The last time step for which an element variable value is desired. If negative, the last time
step in the database will be used. The first time step is 1.

REAL VALEV(*) (W)
Returned array of (ISTPE - ISTPB + 1) values of the IELNUMth element for the
IXELEVth element variable.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

155

For example, the following coding will read the values of the var_indexth element variable
for element number 2 from the first time step to the last time step:

¢ NOTE: MAXVAL is the maximum number of values to be read
c .
integer var_index, elem_num, beg_time, end_time
real var_values (MAXVAL)

c
c read an element variable through time
c

var_index = 2

elem num = 2

beg_time = 1

end_time = -1

call exgevt (idexo, var_index, elem_num, beg_time, end_time,
1 wvar_values, ierr)

156

4.3.13 Write Global Variables Values at a Time Step

The function ex_put_glob_vars (or EXPGV for Fortran) writes the values of all the glo-
bal variables for a single time step. The function ex_put_var_param (EXPVP for For-
tran) must be invoked before this call is made.

Because global variables are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in For-
tran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or
ex_open (or EXOPEN for Fortran).

In case of an error, ex_put_glob_vars returns a negative number; a warning will return a
positive number. EXPGV returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:
» data file not properly opened with call to ex_createor ex_open (EXCRE or
EXOPEN for Fortran).
* data file opened for read only.
* ex_put_var_param (or EXPVP for Fortran) not called previously specifying the
number of global variables.

ex_put_glob_vars: C Interface

int ex_put_glob_vars (exoid, time_step, num_glob_vars,
glob_var_vals) ;

int exoid (R) ,
EXODUS file ID returned from a previous-call to ex_create or ex_open.

int time_step (R)
The time step number, as described under ex_put_time. This is essentially a counter
that is incremented when results variables are output. The first time step is 1.

int num_glob_vars (R)
The number of global variables to be written to the database.

void* glob_var_vals (R)
Array of num_glob_vars global variable values for the t ime_stepth time step.

As an example, the following coding will write the values of all the global variables at one
time step to an open EXODUS 1I file:

int num_glo_vars, error, exoid, time_step;
float *glob_var_vals

/* write glokbal variables */

for (j=0; j<num_glo_vars; j++)
/* application code fills this array */
glob_var_vals[j] = 10.0;

error = ex_put_glob_vars (exoid, time_step, num_glo_vars,
glob_var_vals);

157

EXPGYV: Fortran Interface ‘_

SUBROUTINE EXPGV (IDEXO, ISTEP, NVARGL, VALGV, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER ISTEP (R)
The time step number, as described under EXPTIM. This is essentially a counter that is
incremented only when results variables are output. The first time step is 1.

INTEGER NVARGL (R)
The number of global variables to be written to the database.

REAL VALGV(*) (R)
Array of NVARGL global variable values for the ISTEPth time step.

INTEGER IERR (W)
Returned error code. If no errors occurred, O is returned.

As an example, the following coding will write the values of all the global variables at one
time step to an open EXODUS I file:

¢ NOTE: MAXGVAR is the maximum number of global variables
c

integer num_glo_vars

real glob_var_ wvals (MAXGVAR)

¢ write all global variables for time step istep

do 50 3 = 1, num _glo_vars

Q

application code fills in this array

glob_var_wvals(j) = 10.0
50 continue

call expgv {idexo, istep, num_glo_vars, glob_var_vals, ierr)

158

4.3.14 Read Global Variables Values at a Time Step

The function ex_get_glob_vars (or EXGGV for Fortran) reads the values of all the global
variables for a single time step. Memory must be allocated for the global variables values
array before this function is invoked.

Because global variables are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in For-
tran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or
ex_open (or EXOPEN for Fortran).

In case of an error, ex_get_glob_vars returns a negative number; a warning will return a
positive number. EXGGV returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:
» data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).
* no global variables stored in the file.
* a warning value is returned if no global variables are stored in the file.

ex_get_glob_vars: C Interface

int ex_get_glob_vars (exoid, time_step, num glob_vars,
. glob_var_vals);

int exoid (R) ‘
EXODUS file ID returned from a previous call to ex_create or ex_open.

int time_step (R)
The time step, as described under ex_put_ t ime, at which the global variable values are
desired. This is essentially an index (in the time dimension) into the global variable
values array stored in the database. The first time step is 1.

int num_glob_vars (R)
The number of global variables stored in the database.

void* glob_wvar_vals (W)
Returned array of num_glob_vars global variable values for the t ime_stepth time
step.

The following is an example code segment that reads all the global variables at one time step:

int num_glo_vars, error, time_step;
float *var_values;

error = exX_get_var_param (idexo, “g”, &num_glo_vars);

var_values = (float *) calloc (num glo_vars, sizeof(float));
error = ex_get_glob_vars (idexo, time_step, num_glo_vars, var_values);

159

EXGGYV: Fortran Interface

SUBROUTINE EXGGV (IDEXO, ISTEP, NVARGL, VALGV, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER ISTEP (R).
The time step number, as described under EXPTIM, at which global variables are desired.
This is essentially an index (in the time dimension) into the global variable values array
stored in the database. The first time step is 1.

INTEGER NVARGL (R)
The number of global variables stored in the database.

REAL VALGV(*) (W)
Returned array of NVARGL global variable values for the ISTEPth time step.

INTEGER IERR (W) :
Returned error code. If no errors occurred, 0 is returned.

The following is an example code segment that reads all the global variables at one time step:

¢ NOTE: MAXGVAR is the maximum number of global variables
c .
real var_values (MAXGVAR)
c
¢ read all global variables at one time step
c
call exggv (idexo, istep, num_glo_vars, var_values, ierr)

160

4.3.15 Read Global Variable Values through Time

The function ex_get_glob_var_time (or EXGGVT for Fortran) reads the values of a sin-
gle global variable through a specified number of time steps. Memory must be allocated for
the global variable values array before this function is invoked.

Because global variables are floating point values, the application code must declare the array
passed to be the appropriate type (“fioat” or “double” in C; “REAL*4” or “REAL*8” in For-
tran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or
ex_open (or EXOPEN for Fortran).

In case of an error, ex_get_glob_var_time returns a negative number; a warning will
return a positive number. EXGGVT returns a nonzero error (negative) or warning (positive)
number in IERR. Possible causes of errors include:

» data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).

» specified global variable does not exist.

* a warning value is returned if no global variables are stored in the file.

ex_get_glob_var_time: C Interface

int ex_get_glob var_time (exoid, glob_var_index,
beg _time_step, end_time_step, glob_var_vals);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int glob_var_index (R)
The index of the desired global variable. The first variable has an index of 1.

int beg_time_step (R)
The beginning time step for which a global variable value is desired. This is not a time
value but rather a time step number, as described under ex_put_time. The first time
step is 1. '

int end_timé_step (R)
The last time step for which a global variable value is desired. If negative, the last time
step in the database will be used. The first time step is 1.

void* glob_var_vals (W) .
Returned array of (end_time_step-beg_time_step + 1) values for the
glob_var_indexth global variable.

The following is an example of using this function:

#include “exodusII.h”
int error, exoid, num_time_steps, var_index, beg_time, end_time;
float *var_values; '

/* determine how many time steps are stored */
error = ex_inquire (exoid, EX_INQ_TIME, &num_time_steps, &fdum, cdum);

161

/* read the first global variable for all time steps */

var_index = 1;
beg_time 1;
end_time -1;

(L

var_values = (float *) calloc (num_timé_steps, sizeof (float));

error = ex_get_glob_var_time (exoid, var_index, beg time, end_time,
var_values) ;

EXGGVT: Fortran Interface

SUBROUTINE EXGGVT (IDEXO, IXGLOV, ISTPB, ISTPE, VALGV, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IXGLOV (R)
The index of the desired global variable. The first variable has an index of 1.

INTEGER ISTPB (R)
The beginning time step for which a global variable value is desired. This i$ not a time
value but rather a time step number, as described under EXPTIM. The first time step is 1.

INTEGER ISTPE (R)
The last time step for which a global variable value is desired. If negative, the last time
step in the database will be used. The first time step is 1.

REAL VALGV(*) (W)
Returned array of (ISTPE - ISTPB + 1) values for the IXGLOVth global variable.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

The following is an example of using this function:

¢ NOTE: MAXVAL is the maximum number of values to be read
e

integer var_index, beg time, end_time

real var_values (MAXVAL)

¢ read a single global variable for all time steps
var_index = 1
beg_time = 1

end_time = -1
call exggvt (idexo, var_index, beg_time, end_time, var_values, ierr)

162

4.3.16 Write Nodal Variable Values at a Time Step

The function ex_put_nodal_var (or EXPNV for Fortran) writes the values of a single
nodal variable for a single time step. The function ex_put_var_param (EXPVP for For-
tran) must be invoked before this call is made.

Because nodal variables are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in For-
tran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or ‘
ex_open (or EXOPEN for Fortran).

In case of an error, ex_put_nodal_var returns a negative number; a warning will return a
positive number. EXPNV returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:
¢ data file not properly opened with call to ex_create or ex_open (EXCRE or
EXOPEN for Fortran).
» data file opened for read only.
 data file not initialized properly with call to ex_put_init (EXPINI for Fortran).
*+ ex_put_var_param (or EXPVP for Fortran) not called previously specifying the
number of nodal variables.

ex_put_nodal_var: C Interface

int ex_put_nodal_var (exoid, time_step, nodal_var_index,
num_nodes, nodal_var_vals);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int time_step (R)
The time step number, as described under ex_put_time. This is essentially a counter
that is incremented when results variables are output. The first time step is 1.

int nodal_var_index (R)
The index of the nodal variable. The first variable has an index of 1.

int num_nodes (R)
The number of nodal points.

void* nodal_var_vals (R)
Array of num_nodes values of the nodal_var_indexth nodal variable for the
time_stepth time step. ’

As an example, the following code segment writes all the nodal variables for a single time
step:

int num_nod_vars, num_nodes, error, exoid, time_step;
float *nodal_var_vals;

163

/* write nodal variables */
nodal_war_vals = (float *) calloc (num_nodes, sizeof(float));

for (k=1; k<=num nod_vars; k++)
{
for (j=0; j<num_nodes; Jj++)
/* application code fills in this array */
nodal_var_vals[j] = 10.0;

error = ex_put_nodal_var {(exoid, time_step, k, num_nodes,
nodal_var_vals);

EXPNV: Fortran Interface

SUBROUTINE EXPNV (IDEXO, ISTEP, IXNODV, NUMNP, VALNV, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER ISTEP (R)
The time step number, as described under EXPTIM. This is essentially a counter that is
incremented when results variables are output. The first time step is 1.

INTEGER IXNODV (R)
The index of the nodal variable. The first variable has an index of 1.

INTEGER NUMNP (R)
The number of nodal points.

REAL VALNV(*) (R)
Array of NUMNP values of the IXNODVth nodal variable for the ISTEPth time step.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

As an example, the following code segment writes all the nodal variables for a single time
step: '

real nodal_var_vals (MAXNOD)

do 70 k = 1, num_nod_vars

do 60 j = 1, num_nodes
c simulation code fills in this array
nodal_var_vals(j) = 10.0
60 continue

call expnv (idexo, istep, k, num nodes, nodal_var_vals, ierr)
70 continue

164

4.3.17 Read Nodal Variable Values at a Time Step

The function ex_get_nodal_var (or EXGNV for Fortran) reads the values of a single
nodal variable for a single time step. Memory must be allocated for the nodal variable values
array before this function is invoked.

Because nodal variables are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in For-
tran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or
ex_open (or EXOPEN for Fortran).

In case of an error, ex_get_nodal_var returns a negative number; a warning will return a
positive number. EXGNV returns a nonzero error (negative) or warning (positive) number in
IERR. Possible causes of errors include:
* data file not properly opened with call to ex_create or ex open (EXCRE or
EXOPEN for Fortran).
» specified nodal variable does not exist.
* a warning value is returned if no nodal variables are stored in the file.

ex_get_nodal_var: C Interface

int ex_get_nodal_var (exoid, int time_step, nodal_var_index,
num_nodes, nodal_var_vals);

int exoid (R)
EXODUS file ID returned from a previous call to ex__ create or ex_open.

int time_step (R)
The time step, as described under ex_put_time, at which the nodal variable values are
desired. This is essentially an index (in the time dimension) into the nodal variable values
array stored in the database. The first time step is 1.

int nodal_var_index (R)
The index of the desired nodal variable. The first variable has an index of 1.

int num _nodes (R)
The number of nodal points.

void* nodal_var_ vals (W)
Returned array of num_nodes values of the nodal_var_indexth nodal variable for
the t ime_stepth time step.

For example, the following demonstrates how this function would be used:

int num_nodes, time_step, var_index;
float *var_values;

/* read the second nodal variable at the first time step */
time_step 1;
var_index 2;

165

var_values = (float *) calloc (num_nodes, sizeof(float));

error = ex_get_nodal_var (exoid, time_step, var_index, num_nodes,
var_values) ;

EXGNYV: Fortran Interface

SUBROUTINE EXGNV (IDEXO, ISTEP, IXNODV, NUMNP, VALNV, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER ISTEP (R)
The time step number, as described under EXPTIM, at which the nodal variable is desired.
This is essentially an index (in the time dimension) into the nodal variable values array
stored in the database. The first time step is 1.

INTEGER IXNODV (R)
The index of the desired nodal variable. The first variable has an index of 1.

INTEGER NUMNP (R)
The number of nodal points.

REAL VALNV(*) (W)
Returned array of NUMNP values of the IXNODVth nodal variable for the ISTEPth time
step.

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

For example, the following demonstrates how this function would be used:

¢ NOTE: MAXNOD is the maximum number of nodes for the model
. .

integer wvar_index

real var_values (MAXNOD)

¢ read a nodal variable at one time step
istep = 10

var_index

= 2
num_nodes = 1

000

call exgnv (idexc, istep, var_index, num_nodes, var_values, lerr)

166

4.3.18 Read Nodal Variable Values through Time

The function ex_get_nodal_var_time (or EXGNVT for Fortran) reads the values of a
nodal variable for a single node through a specified number of time steps. Memory must be
allocated for the nodal variable values array before this function is invoked.

Because nodal variables are floating point values, the application code must declare the array
passed to be the appropriate type (“float” or “double” in C; “REAL*4” or “REAL*8” in For-
tran) to match the compute word size passed in ex_create (or EXCRE for Fortran) or
ex_open (or EXOPEN for Fortran). :

In case of an error, ex_get_nodal_var_time returns a negative number; a warning will
return a positive number. EXGNV'T returns a nonzero error (negative) or warning (positive)
number in IERR. Possible causes of errors include:

» specified nodal variable does not exist.
e a warning value is returned if no nodal variables are stored in the file.

ex_get_nodal_var_time: C Interface

int ex_get_nodal_var_time (exoid, nodal_var_index,
node_number, beg_time_step, end_time_step,
nodal_var_vals);

int exoid (R)
EXODUS file ID returned from a previous call to ex_create or ex_open.

int nodal_var_index (R)
The index of the desired nodal variable. The first variable has an index of 1.

int node_number (R)
The internal ID (see Section 3.5 on page 7) of the desired node. The first node is 1.

int beg_time_step (R)
The beginning time step for which a nodal variable value is desired. This is not a time
value but rather a time step number, as described under ex_put_time. The first time
step is 1.

int end_time_step (R)
- The last time step for which a nodal variable value is desired. If negative, the last time
step in the database will be used. The first time step is 1.

void* nodal_var_vals (W)
Returned array of (end_time_step - beg_time_step + 1) values of the
node_numberth node for the nodal_var_indexth nodal variable.

For example, the following code segment will read the values of the first nodal variable for
node number one for all time steps stored in the data file: '

#include “exodusII.h”
int num_time_steps, var_index, node_num, beg_time, end_time, error,
exoid;

167

float *var_values;

/* determine how many time steps are stored */
error = exX_inquire (exoid, EX_INQ_TIME, &num time_steps, &fdum, cdum);

/* read a nodal wvariable through time */
var_values = (float *) calloc (num_time_steps, sizeof (float));

var_index = 1; node_num = 1; beg_time = 1; end_time = -1;
error = ex_dget_nodal_var_time (exoid, var_index, node_num, beg_time,
end_time, var_values);

EXGNVT: Fortran Interface

SUBROUTINE EXGNVT (IDEXO, IXNODV, NODNUM, ISTPB, ISTPE,
VALNV, IERR)

INTEGER IDEXO (R)
EXODUS file ID returned from a previous call to EXCRE or EXOPEN.

INTEGER IXNODV (R)
The index of the desired nodal variable. The first variable has an index of 1.

INTEGER NODNUM (R)
The internal ID (see Section 3.5 on page 7) of the desired node. The first node is 1.

INTEGER ISTPB (R) _
The beginning time step for which a nodal variable value is desired. This is not a time
value but rather a time step number, as described under EXPTIM. The first time step is 1.

INTEGER ISTPE (R)
The last time step for which a nodal variable value is desired. If negative, the last time
step in the database will be used. The first time step is 1.

REAL VALNV(*) (W)
Returned array of (ISTPE - ISTPB + 1) values of the NODNUMth node for the IXNODVth
nodal variable. '

INTEGER IERR (W)
Returned error code. If no errors occurred, 0 is returned.

For example, the following code segment will read the values of the first nodal variable for
node number one for all time steps stored in the data file:

integer var_ind, btime, etime
real var_vals (MAXVAL)

¢ read a nodal variable through time

var_ind = 1

node_num = 1

btime = 1

etime = -1

call exgnvt (idexo, var_ind, node_num, btime, etime, var_vals, ierr)

168

5 References

[1]

[2]

(3]

[4]

[5]

‘'W. C. Mills-Curran, A. P. Gilkey, and D. P. Flanégan, “EXODUS: A Finite Element
File Format for Pre- and Post-processing,” Technical Report SAND87-2977, Sandia
National Laboratories, Albuquerque, New Mexico, September 1988.

G. D. Sjaardema, “Overview of the Sandia National Laboratories Engineering Analy-
sis Code Access System,” Technical Report SAND92-2292, Sandia National Labora-
tories, Albuquerque, New Mexico, January 1993.

R. K. Rew, G. P. Davis, and S. Emmerson, “NetCDF User’s Guide: An Interface for
Data Access,” Version 2.3, University Corporation for Atmospheric Research, Boul-
der, Colorado, April 1993.

Sun Microsystems, “External Data Representation Standard: Protocol Specification,”
RFC 1014; Information Sciences Institute, May 1988.

PDA Engineering, “PATRAN Plus User Manual,” Publication No. 2191024, Costa
Mesa, California, January 1990. :

169

Intentionally Left Blank

170

Appendix A
Implementation of EXODUS II with netCDF

Description

The netCDF software is an I/O library, callable from C or Fortran, which stores and
retrieves scientific data structures in self-describing, machine-independent files. “Self-
describing” means that a file includes information defining the data it contains. “Machine-
independent” means that a file is represented in a form that can be accessed by computers
with different ways of storing integers, characters, and floating-point numbers. It is
available via anonymous FTP from unidata.ucar.edu in the file pub/netcdf/netcdf.tar.Z.

For the EXODUS 1II implementation, the standard netCDF distribution is used except that
the following defined constants in the include file net cdf . h are modified to the values
shown: '

#define MAX_NC_DIMS 8192
#define MAX_NC_ATTRS 1024 i
#define MAX_NC_VARS 8192
#define MAX_NC_NAME 256

Efficiency Issues

There are some efficiency concerns with using netCDF as the low level data handler. The
main one is that whenever a new object is introduced, the file is put into “define” mode, the
new object is defined, and then the file is taken out of “define” mode. A result of going in
and out of “define” mode is that all of the data that was output previous to the introduction
of the new object is copied to a new file. Obviously, this copying of data to a new file is
very inefficient. We have attempted to minimize the number of times the data file is put
into “define” mode by accumulating objects within a single EXODUS II API function.
Thus using optional features such as the element variable truth table, concatenated node
and side sets, and writing all property array names with ex_put_prop_names (EXPPN
for Fortran) will increase efficiency significantly.

netCDF Data Objects

This section describes how EXODUS II data are mapped to netCDF entities. This
information is needed only for those individuals who desire to access an EXODUS II

A-1

database via netCDF calls directly or desire to modify the routines that comprise the
Application Programming Interface (API).

The following is a list of the names of the data entities found in an EXODUS II file and a
description of each entity. The names are constants predefined in the include file
exodusII_int .hforCor exodusII_int.inc for Fortran. They are grouped into
three netCDF categories: attributes, dimensions, and variables.

Attributes

An attribute is used to describe data entities. It can be global (describe entire file) or
attached to a dimension or variable.

1 title the database title; character global attribute
2) version the EXODUS II file version number; float global attribute
3)api wversion the EXODUS II API version number; float global attribute

4) floating point word size
word size of floating point numbers in the file; int global
attribute

5)elem_type element type names for each element block; character variable
attribute attached to connect variable

6) name name of element block, node set, or side set property; character
variable attribute attached to specific property

Dimensions

A dimension is an integer scalar value that is used to define the size of variables.

1) num_nodes number of nodes

2) num_dim number of dimensions of the finite element model; 1-, 2-, or 3-d
3)num_elem number of elements

4)num_el_blk number of element blocks

5)num_el_in_blk# number of elements in element block #
6) num_nod_per_el# number of nodes per element in element block #

7)num_att_in_blk# number of attributes per element in element block #

A-2

8) num_side_sets
9) num_side_ss#

10) num_df_ss#

11) num_node_sets

12) num_nod_ns#
13) num_df_ns#
14) num_ga_rec
15) num_info

16) num_glo_var
17) num_nod_var
18) num_elem_var
19) time_step

20) len_string
21) len_line

22) four

number of side sets

number of sides (also the number of elements) in side set #
number of distribution factors in side set #
number of node sets

number of nodes in node set #

number of distribution factors in node set #
number of QA records

number of information records

number of global variables

number of nodal variables

number of element variables

unlimited (expandable) dimension for time steps

length of a string; currently set to allow 32 characters (plus
NULL character for C interface)

~ length of a line; currently set to allow 80 characters (plus NULL

character for C interface)

number of strings in a single QA record

Variables

A variable is an entity that contains data. Its size and shape are specified by dimensions.
Note that the order of the dimensions is “row order” as implemented in the C language, so
the last dimension specified varies fastest, the first dimension varies slowest. For multi-
dimension variables, illustrations are included in the descriptions below for ease of under-

standing. For variables that are dimensioned through time, ellipses (. . .) are used to show
that the variable can expand in that dimension.

1) coord (num_dim, num_nodes)
nodal coordinates; float or double

num_dim

num_nodes

2) coor_names (num_dim, len_string)
names of coordinates; character

num_dim

len_string

3) connect# (num_el_in_blk#, num_nod_per_el#)
element connectivity for element block #; integer

num_el_in_blk#

num_nod_per_el#

4) attrib# (num_el_in_blk#, num_att_in_blk#)
list of attributes for element block #; float or double

num_el_in_blk#

num_att_in_blk#

5) eb_prop# (num_el_blk)
list of the #th property for all element blocks; integer

6) elem_map (num;_elem)
element order map; integer

7)dist_fact_ss# (num_df_ss#)
distribution factors for each node in side set #; float or double

8) elem ss# (nﬁm_side_ss#)
list of elements in side set #; integer

9) side_ss# (num_side_ss#)
list of sides in side set #; integer

10) ss_prop# (num_side_sets)
list of the #th property for all side sets; integer

11) node_ns# (num_nod_ns#)
list of nodes in node set #; integer

12) dist_fact_ns# (num_nod_ns#)
list of distribution factors in node set #; float or double

13) ns_prop# (num_node_sets)
list of the #th property for all node sets; integer

A-5

14) ga_records (num_ga_rec, 4, len_string)
QA records; character

4 records

| T num_ga_rec

len_string

15) info_records (num_info, len_line)
information records; character

num_info

len_line

16) time_whole (time_step)
simulation times for time steps; float or double

17) elem_var_tab (num_el_blk, num elem_var)
element variable truth table; integer

num_el_blk

num_elem_var

18) name_glo_var (num_glo_var, len_string)
names of global variables; character

num_glo_var

len_string

19)vals_glo_var (time_step, num glo_var)
values of global variables; float or double

time_step

[

num_glo_var

20) name_nod_var (num_nod_var, len_string)
names of nodal variables; character

num_nod_var

len_string

21) vals_nod_var (time_step, num_nod_var, num nodes)
values of nodal variables; float or double

num_node_var

—E ime_step

num_nodes

22) name_elem_var (num_elem_var, len_string)
names of element variables; character

num_elem _var

len_string

23) vals_elem_var#leb#2 (time_step, num_el_in blk#2)
values of element variable #1 in element block #2; for each
element block, there is one of these for each element variable
that is valid for that element block: float or double

time_step

num_elem_in_blk#2

Appendix B

Function Call Summary

This appendix includes an alphabetized list of EXODUS II functions, passed arguments,
and page number where their descriptions are located in the manual. The C interface
routines are listed first followed by the FORTRAN binding routines.

C binding routines

int ex;close (
int exoid);) page 27

int ex_create (

char* path,

int cmode,

int* comp_ws,

int* io_ws); page 23

int ex _cvt_nodes_to_sides (
int exoid,
int* num_side_per_set,
int* num_nodes_per_set,
int* side_sets_elem_index,
int* side_sets_node_ index,
int* side_sets_elem_list,
int* side_sets_node_list,
int* side_sets_side_list); page 115

void ex_err (

char* module_name,
char* message,
int err_num) ; page 45

int ex_get_all_times (
int exoid,
void* time_values); page 143

int ex_get_concat_node_sets (
int exoid,
int* node_set_ids,
int* num_nodes_per set,
int* num_dist_per_set,
int* node_sets_node index,
int* node_sets_dist_index,
int* node_sets_node_list,
void* node_sets_dist_fact); page 91

B-1

int ex_get_concat_side_sets (

int exoid,

int* side_set_ids,

int* num_side_per_set,

int* num_dist_per_set,

int* side_sets_elem_index,

int* side_sets_dist_index,

int* side_sets_elem_list,

int* side_sets_side_list,

volid* side_sets_dist_fact); page 112

int ex_get_coord (
int exoid,
void* xX_coor,
void* y_coor,
void* z_coor):; page S1

int ex_get_coord_names (
int exoid,
char** coord_names) ; page 55

int ex_get_elem_attr (
int exoid,
int elem_blk_id,)
void* attrib); page 75

int ex_get_elem_blk ids (
int exoid,
int* elem blk_ids); page 70

int ex_get_elem _block (
int exoid,
int elem_blk_id,
char* elem_type, »
int* num_elem_this_blk,
int* num_nodes_per elem,
int* num_attr); page 68

int ex_get_elem_conn (
int exoid,
int elem_blk_id,
int* connect); page 72

int ex_get_elem num map (
int exoid,
int* elem_map) ; page 61

int ex_get_elem var (
int exoid,
int time_step,
int elem_var_index,
int elem_blk_id,
int num_elem_this_blk,
void* elem_var_vals); page 152

B-2

int ex_get_elem_var_tab (
int exoid,
int num_elem_blk,
int num_elem_var,
int* elem_var_tab); page 147

int ex_get_elem var_time (
int exoid,
int elem_var_index,
int elem_number,
int beg_time_step,
int end_time_step,
void* elem_var_vals); page 154

int ex_get_glob_vars (
- int exoid,
int time_step,
int num glob_vars,
void* glob_var_vals); page 159

int ex_get_glob_var_time (
int exoid,
int glob var_index,
int beg_time_step,
int end_time_step,
void* glob_var_ vals); page 161

int ex_get_info (
int exoid,
char** info); page 39

int ex_get_init ¢
int exoid,
char* title,
int* num_dim,
int* num_nodes,
int* num_elem,
int* num_elem_blk,
int* num_node_sets,
int* num_side_sets); page 31

int ex_get_map (
int exoid,
int* elem_map); page 64

int ex_get_nodal_var (
int exoid,
int time_step,
int nodal_var_index,
int num_nodes,
void* nodal_var_vals); page 165

int ex_get_nodal_var_time (
int exoid,
int nodal_var_index,
int node_number,
int beg_time_step,
int end_time_step,
void* nodal_var_vals); page 167

B-3

int

int

int

int

int

int

int

int

int

int

int

int

ex_get_node_num_map (

int exoid,

int* node_map);
ex_get_node_set (

int exoid,

int node_set_id,

int* node_set_node_list);

ex_get_node_set_dist_fact (
int exoid,
int node_set_id,
void* node_set_dist_fact);

ex_get_node_set_ids (
int exoid,
int* node_set_ids);

ex_get_node_set_param (
int exoid,
int node_set_id,
int* num_nodes_in_set,
int* num dist_in_set);

ex_get_prop (
int exoid,
int obj_type,
int obj_id,
char* prop_name,
int* value);

ex_get_prop_array (
int exoid,
int cbj_type,
char* prop_name,
int* values);

ex_get_prop_names
int exoid,
int obj_type,
char** prop_names);

ex_get_ga (
int excid,
char* ga_record);

ex_get_side_set (
int exoid,
int side_set_id,
int* side_set_elem_list,
int* side_set_side_list);

ex_get_side_set_dist_fact (
int exoid,
int side_set_id,
void* side_set_dist_fact);

ex_get_side_set_ids (
int exoid
int* side_set_ids);

page

page

page

page

page

page

page

page

page

page

page

page

58

82

85

86

79

124

128

120

35

100

104

105

int ex_get_side_set_node_list (
int exoid,
int side_set_id,
- int* side_set_node_cnt_list,
int* side_set_node_list); page 106

int ex_get_side_set_param (
int exoid,
int side_set_id,
int* num_side_in_set,
int* num_dist_fact_in_set); page 96

int ex_get_time (
int exoid,
int time_step,
void* time_value); _ page 141

int ex_get_var_names (
int exoid,
char* var_type,
int num_vars,
char** wvar_names); page 137

int ex_get_var_param
int exoid,
char* var_type,
int* num_vars); page 133

int ex_inguire
int exoid,
int reqg info,
int* ret_int,
float* ret_float,
char* ret_char); page 41

int ex_open (
char* path,
int mode,
int* comp_ws,
int* io_ws,
float* version); page 25

int ex_opts (
int option_val); page 47

int ex. put_concat_node_sets (
int exoid,
int* node_set_ids,
int* num_nodes_per_set,
int* num_dist_per_set,
int* node_sets_node_index,
int* node_sets_dist_index,
int* node_sets_node_list,
void* node_sets_dist_fact); page 87

B-5

int ex_put_concat_side_sets (

int exoid,
int* side_sets_ids,

- int* num_side_per_set,
int* num_dist_per_set,
int* side_sets_elem_index,
int* side_sets_dist_index,
int* side_sets_elem_list,
int* side_sets_side_list,
vold* gide_sets_dist_fact); page 108

int ex_put_coord (
int exoid,
void* x_coor,
void* y_coor
void* z_coor); page 49

int ex_put_coord_names (

int exoid,
char** coord_names) ; page 53

int ex_put_elem_attr (
int exoid,
int elem_ blk_id,
void* attrib); page 73

int ex_put_elem_block (
int exoid,
int elem_blk_id,
char* elem type,
int num_.elem_this_blk,
int num_nodes_per_ élem,
int num_attr); page 65

int ex_put_elem conn (
int exoid, .
int elem_blk_id,
int* connect); page 71

int ex_put_elem num map (
int exoid,
int* elem map); page 59

int ex_put_elem_var (
int exoid,
int time_step,
int elem_var_index,
int elem_blk_id,
int num_elem this_blk,
volid* elem_var_vals); page 149

int ex_put_elem_wvar_tab (
int exoid,
int num_elen_blk,
int num_elem_var,
int* elem_var_tab); page 145

int ex_put_glob_wvars (
int exoid,
int time_step,
int num_glob_vars,
void* glob_var_wals); page 157

B-6

int ex_put_info (
int exoid,
int num_info,
- char* info); page 37

int ex_put_init (
int exoid,
char* title,
int num_dim,
int num_nodes,
int num_elem,
int num_elem_blk,
int num_node_sets,
int num _side_sets); page 29

int ex_put_map (
int exoid,
int* elem_map); page 62

int ex_put_nodal_var (
int exoid,
int time_step
int nodal_var_index,
int num_nodes,
void* nodal_var_vals); page 163

int ex_put_node_num_map (
int exoid,
int* node_map) page 56

int ex_put_node_set (
int exoid,
int node_set_id,
int* node_set_node_list); page 81

int ex_put_node_set_dist_fact (
int exoid,
int neode_set_id,
void* node_set_dist_fact); page 83

int ex_put_node_set_param (
int exoid,
int node_set_id,
int num_nodes_in_set,
int num_dist_in_set); page 77

int ex_put_prop (
int exoid,
int obj_type,
int obj_id,
char* prop_name, -
int value); page 122

int ex_put_prop_array (
int exoid,
int obj_type,
char* prop_name,
int* values); page 126

int

int

int

int

int

int

int

int

int

ex_put_prop_names {
int exoid,
. int obj_type,
int num_props,
char** prop_names);

ex_put_ga (
int exoid,
int num_ga_records,

char* ga_recoxrd);

ex_put_side_set (
int exoid,
int side_set_id
int* side_set_elem_list,
int* side_set_side_list);

ex_put_side_set_dist_fact (
int exoid,
int side_set_id,

void* side_set_dist_fact);

ex_put_side_set_param (
int exoid,
int side_set_id,
int num_side_in_set,

int num_dist_fact_in_set);

ex_put_var_ names (

int exoid,

char* var_type,
int num_vars,
char** var_names);

ex_put_var_param (
int exoid,
char* var_type,

int num_vars);

ex_put_time (
int exoid,
int time_step,

void* time_value);

ex_update (

int exoid);

B-8

page

page

page

page

page

page

page

page

page

118

33

98

102

94

135

131

139

28

FORTRAN binding routines

SUBROUTINE EXCLOS (IDEXO, IERR) page 27

INTEGER IDEXO
INTEGER IERR

SUBROUTINE EXCN2S(IDEXO, NSESS, NDESS, IXEESS, IXNESS, LTEESS,
LTNESS, LTSESS, IERR) : page 115

INTEGER IDEXO
INTEGER NSESS(*)

- INTEGER NDESS (*)
INTEGER IXEESS(*)
INTEGER IXNESS(*)
INTEGER LTEESS(*)
INTEGER LTNESS(*)
INTEGER LTSESS(*)
INTEGER IERR

INTEGER FUNCTION EXCRE (PATH, ICMODE, ICOMPWS, IOWS, IERR)page 23

CHARACTER* (*} PATH
INTEGER ICMODE
INTEGER ICOMPWS
INTEGER IOWS
INTEGER IERR

SUBROUTINE EXERR (MODNAM, MSG, ERRNUM) page 45

CHARACTER*MXSTLN MODNAM
CHARACTER*MXLNLN MSG,
INTEGER ERRNUM

SUBROUTINE EXGATM (IDEXO, TIME, IERR) page 143

INTEGER IDEXO
REAL TIME (*)
INTEGER IERR

SUBROUTINE EXGCNS (IDEXO, IDNPSS, NNNPS, NDNPS, IXNNPS, IXDNPS,
LTNNPS, FACNPS, IERR) ' page 91
INTEGER IDEXO
INTEGER IDNPSS(*)
INTEGER NNNPS(*)
INTEGER NDNPS(*)
INTEGER IXNNPS (*)
INTEGER IXDNPS (*)
INTEGER LTNNPS (*)
REAL FACNPS (*)
INTEGER IERR

SUBROUTINE EXGCON (IDEXO, NAMECO, IERR) page 55
INTEGER IDEXO
CHARACTER*MXSTLN NAMECO (*)
INTEGER IERR

SUBROUTINE EXGCOR (IDEXO, XN, YN, ZN, IERR) page 51
INTEGER IDEXO
REAL XN(*)
REAL YN(*)
REAL ZN(*)

INTEGER IERR

B-9

SUBROUTINE EXGCSS (IDEXO, IDESSS, NSESS, NDESS, IXEESS, IXDESS,
LTEESS, LTSESS, FACESS, IERR) page 112

INTEGER IDEXO

- INTEGER IDESSS(*)
INTEGER NSESS (*)
INTEGER NDESS (*)
INTEGER IXEESS(*)
INTEGER IXDESS(*)
INTEGER LTEESS(*)
INTEGER LTSESS(*)
REAL FACESS(*)
INTEGER IERR

SUBROUTINE EXGEAT (IDEXO, IDELB, ATRIB, IERR) page 75

INTEGER IDEXO
INTEGER IDELB
REAL ATRIB(*)
INTEGER IERR

SUBROUTINE EXGEBI (IDEXC, IDELBS, IERR) page 70

INTEGER IDEXO
INTEGER IDELBS(*)
INTEGER IERR

SUBROUTINE EXGELB (IDEXO, IDELB, NAMELB, NUMELEB, NUMLNK, NUMATR,
IERR) .) page 68
INTEGER IDEXO
INTEGER IDELEB
CHARACTER*MXSTLN NAMELB
INTEGER NUMELB
INTEGER NUMLNK
INTEGER NUMATR
INTEGER IERR

SUBROUTINE EXGELC (IDEXO, IDELB, LINK, IERR) page 72

INTEGER IDEXO
INTEGER IDELB
INTEGER LINK(*)
INTEGER IERR

SUBROUTINE EXGENM (IDEXO, MAPEL, IERR) page 61

INTEGER IDEXO
INTEGER MAPEL (*)
INTEGER IERR

SUBROUTINE EXGEV (IDEXO, ISTEP, IXELEV, IDELB, NUMELB, VALEV, IERR)
page 152
INTEGER IDEXO
INTEGER ISTEP
INTEGER IXELEV
INTEGER IDELB
INTEGER NUMELB
REAL VALEV(*)
INTEGER IERR

B-10

SUBROUTINE EXGEVT (IDEXO, IXELEV, IELNUM, ISTPB, ISTPE, VALEV, IERR)
page 154

INTEGER IDEXO
- INTEGER IXELEV
INTEGER IELNUM
INTEGER ISTPB
INTEGER ISTPE
REAL VALEV(*)
INTEGER IERR

SUBROUTINE EXGGV (IDEXO, ISTEP, NVARGL, VALGV, IERR) page 159

INTEGER IDEXO
INTEGER ISTEP
INTEGER NVARGL
REAL VALGV(*)
INTEGER IERR

SUBROUTINE EXGGVT (IDEXO, IXGLOV, ISTPB, ISTPE, VALGV, IERR)
page 161

INTEGER IDEXO
INTEGER IXGLOV
INTEGER ISTPB
INTEGER ISTPE
REAL VALGV(*)
INTEGER IERR

SUBROUTINE EXGINF (IDEXO, INFO, IERR) page 39

INTEGER IDEXO
CHARACTER*MXLNLN INFO(*)
INTEGER IERR

SUBROUTINE EXGINI (IDEXO, TITLE, NDIM, NUMNP, NUMEL, NELBLK, NUMNPS,
NUMESS, IERR) page 31

INTEGER IDEXO

CHARACTER*MXLNLN TITLE

INTEGER NDIM

INTEGER NUMNP

INTEGER NUMEL

INTEGER NELBLK

INTEGER NUMNPS

INTEGER NUMESS

INTEGER IERR

SUBROUTINE EXGMAP (IDEXO, MAPEL, IERR) page 64
INTEGER IDEXO
INTEGER MAPEL(™*)
INTEGER IERR

SUBROUTINE EXGNNM (IDEXO, MAPNOD, IERR} pagev58

INTEGER IDEXO
INTEGER MAPNOD (*)
INTEGER IERR

SUBROUTINE EXGNP (IDEXO, IDNPS, NNNPS, NDNPS, IERR) page 79

INTEGER IDEXO
INTEGER IDNPS
INTEGER NNNPS
INTEGER NDNPS
INTEGER IERR

B-11

SUBROUTINE EXGNS (IDEXO, IDNPS, LTNNPS, IERR) page

INTEGER IDEXO
INTEGER IDNPS

- INTEGER LTNNPS(*)
INTEGER IERR

SUBROUTINE EXGNSD (IDEXO, IDNPS, FACNPS, IERR) page

INTEGER IDEXO:
INTEGER IDNPS
REAL FACNPS(*)
INTEGER IERR

SUBROUTINE EXGNSI (IDEXO, IDNPSS, IERR) page

INTEGER IDEXO
INTEGER IDNPSS(*)
INTEGER IERR

SUBROUTINE EXGNV (IDEXO, ISTEP, IXNODV, NUMNP, VALNV, IERR)

page
INTEGER IDEXO
INTEGER ISTEP
INTEGER IXNODV
INTEGER NUMNP
REAL VALNV (*)
INTEGER IERR

82

85

86

165

SUBROUTINE EXGNVT (IDEXO, IXNODV, NODNUM, ISTPB, ISTPE, VALNV, IERR)

page
INTEGER IDEXO
INTEGER IXNODV
INTEGER NODNUM
INTEGER ISTPB
INTEGER ISTPE
REAL VALNV(*)
INTEGER IERR

SUBROUTINE EXGP (IDEXO, ITYPE, ID, NAMEPR, IVAL, IERR) page

INTEGER IDEXO

INTEGER ITYPE

INTEGER ID
CHARACTER*MXSTLN NAMEPR
INTEGER IVAL

INTEGER IERR

SUBROUTINE EXGPA (IDEXO, ITYPE, NAMEPR, IVALS, IERR). page
INTEGER IDEXO
INTEGER ITYPE
CHARACTER*MXSTLN NAMEPR
INTEGER IVAL(*)
INTEGER IERR

SUBROUTINE EXGPN (IDEXO, ITYPE, NaAMEPR, IERR) page
INTEGER IDEXO
INTEGER ITYPE
CHARACTER*MXSTLN NAMEPR(*)
INTEGER IERR

SUBROUTINE EXGQA (IDEXO, QAREC, IERR) page

INTEGER IDEXO
CHARACTER*MXSTLN QAREC (4, *)
INTEGER IERR

B-12

167

124

128

120

35

SUBROUTINE EXGSP (IDEXO, IDESS, NSESS, NDESS, IERR) page 96

INTEGER IDEXO
INTEGER IDESS
INTEGER NSESS
INTEGER NDESS
INTEGER IERR

SUBROUTINE EXGSS (IDEXO, IDESS, LTEESS, LTSESS, IERR) page 100

INTEGER IDEXO
INTEGER IDESS
INTEGER LTEESS(*)
INTEGER LTSESS(*)
INTEGER IERR

SUBROUTINE EXGSSD (IDEXO, IDESS, FACESS, IERR) page 104

INTEGER IDEXO
INTEGER IDESS
REAL FACESS(*)
INTEGER IERR

SUBROUTINE EXGSSI (IDEXO, IDESSS, IERR) page 105

INTEGER IDEXO
INTEGER IDESSS(*)
. INTEGER IERR

SUBROUTINE EXGSSN (IDEXO, IDESS, INCNT, LTNESS, IERR) page 106

INTEGER IDEXO
INTEGER IDESS
INCNT(*)

INTEGER LTNESS(*)
INTEGER IERR

SUBROUTINE EXGTIM (IDEXO, NSTEP, TIME, IERR) page 141

INTEGER IDEXO
INTEGER NSTEP
REAL, TIME |

INTEGER IERR

SUBROUTINE EXGVAN (IDEXO, VARTYP, NVAR, NAMES, IERR) page 137
INTEGER IDEXO
CHARACTER*1 VARTYP
INTEGER NVAR
CHARACTER*MXSTLN NAMES (*)
INTEGER IERR

SUBROUTINE EXGVP (IDEXO, VARTYP, NVAR, IERR) page 133
INTEGER IDEXO
CHARACTER*1 VARTYP
INTEGER NVAR
INTEGER IERR

SUBROUTINE EXGVTT (IDEXO, NELBLK, NVAREL, ISEVOK, IERR) page 147

INTEGER IDEXO

INTEGER NELBLK

INTEGER NVAREL

INTEGER ISEVOK (NVAREL, NELBLK)
INTEGER IERR

B-13

SUBROUTINE EXINQ (IDEXO, INFREQ, INTRET, RELRET, CHRRET, IERR)
page 41

INTEGER IDEXO

- INTEGER INFREQ
INTEGER INTRET
REAL RELRET
CHARACTER* (*) CHRRET
INTEGER IERR

INTEGER FUNCTION EXOPEN (PATH, IMODE, ICOMPWS, IOWS, VERS, IERR)
page 25
CHARACTER* (*) PATH
INTEGER IMODE
INTEGER ICOMPWS
INTEGER IOWS
REAL VERS
INTEGER IERR

SUBROUTINE EXOPTS (OPTVAL, IERR) ' page 47

INTEGER OPTVAL
INTEGER IERR

SUBROUTINE EXPCNS (IDEXO, IDNPSS, NNNPS, NDNPS, IXNNPS, IXDNPS,
LTNNPS, FACNPS, IERR) page 87
INTEGER IDEXO
INTEGER IDNPSS (*)
INTEGER NNNPS (*)
INTEGER NDNPS (*) -
INTEGER IXNNPS (*)
INTEGER IXDNPS (*)
INTEGER LTNNPS (*)
REAL FACNPS (*)
INTEGER IERR

SUBROUTINE EXPCON (IDEXO, NAMECO, IERR) page 53

INTEGER IDEXO
CHARACTER*MXSTLN NAMECO (*)
INTEGER IERR

SUBROUTINE EXPCOR (IDEXO, XN, YN, ZN, IERR) page 49

INTEGER IDEXO
REAL XN(*)
REAL YN(*)
REAL ZN(*)

INTEGER IERR

SUBROUTINE EXPCSS (IDEXO, IDESSS, NSESS, NDESS, IXEESS, IXDESS,
LTEESS, LTSESS, FACESS, IERR) page 108

INTEGER IDEXO
INTEGER IDESSS(*)
INTEGER NSESS (*)
INTEGER NDESS (*)
INTEGER IXEESS(*
INTEGER IXDESS(*
INTEGER LTEESS (*
INTEGER LTSESS(*
REAL FACESS(*)
INTEGER IERR

— e e e

B-14

SUBROUTINE EXPEAT (IDEXO, IDELB, ATRIB, IERR) page 73

INTEGER IDEXO
INTEGER IDELB
REAL ATRIB(*)
INTEGER IERR

SUBROUTINE EXPELB (IDEXO, IDELB, NAMELB, NUMELB, NUMLNK, NUMATR,
IERR) page 65
INTEGER IDEXO ‘
INTEGER IDELB
CHARACTER*MXSTLN NAMELB
INTEGER NUMELB
INTEGER NUMLNK
INTEGER NUMATR
INTEGER IERR

SUBROUTINE EXPENM (IDEXO, MAPEL, IERR) page 59

INTEGER IDEXO
INTEGER MAPEL(*)
INTEGER IERR

SUBROUTINE EXPELC (IDEXO, IDELB, LINK, IERR) page 71

INTEGER IDEXO
INTEGER IDELB
INTEGER LINK(*)
INTEGER IERR

SUBROUTINE EXPEV (IDEXO, ISTEP, IXELEV, IDELB, NUMELB, VALEV, IERR)
page. 149

INTEGER IDEXO
INTEGER ISTEP
INTEGER IXELEV
INTEGER IDELB
INTEGER NUMELB
REAL VALEV(*)
INTEGER IERR

SUBROUTINE EXPGV (IDEXO, ISTEP, NVARGL, VALGV, IERR) page 157

INTEGER IDEXO
INTEGER ISTEP
INTEGER NVARGL
REAL VALGV(*)
INTEGER IERR

SUBROUTINE EXPINF (IDEXO, NINFO, INFO, IERR) page 37

INTEGER IDEXO
INTEGER NINFO
CHARACTER*MXLNLN INFO(*)
INTEGER IERR

SUBROUTINE EXPINI (IDEXO, TITLE, NDIM, NUMNP, NUMEL, NELBLK, NUMNPS,
. NUMESS, IERR) page 29

INTEGER IDEXO

CHARACTER*MXLNLN TITLE

INTEGER NDIM

INTEGER NUMNP

INTEGER NUMEL

INTEGER NELBLK

INTEGER NUMNPS

INTEGER NUMESS

INTEGER IERR

B-15

SUBROUTINE EXPMAP (IDEXO, MAPEL, IERR) page 62

INTEGER IDEXO
INTEGER MAPEL(*)
INTEGER IERR

SUBROUTINE EXPNNM (IDEXO, MAPNOD, IERR) page 56

INTEGER IDEXO
INTEGER MAPNOD (*)
INTEGER IERR

SUBROUTINE EXPNP (IDEXO, IDNPS, NNNPS, NDNPS, IERR) page 77

INTEGER IDEXO
INTEGER IDNPS
INTEGER NNNPS
INTEGER NDNPS
INTEGER IERR

SUBROUTINE EXPNS (IDEXO, IDNPS, LTNNPS, IERR) page 81

INTEGER IDEXO
INTEGER IDNPS
INTEGER LTNNPS(*)
INTEGER IERR

SUBROUTINE EXPNSD (IDEXO, IDNPS, FACNPS, IERR) page 83

INTEGER IDEXO
INTEGER IDNPS
REAL FACNPS(*)
INTEGER IERR

SUBROUTINE EXPNV (IDEXO, ISTEP, IXNODV, NUMNP, VALNV, IERR)
page 163
INTEGER IDEXO
INTEGER ISTEP
INTEGER IXNODV
INTEGER NUMNP
REAL VALNV(*)
INTEGER IERR

SUBROUTINE EXPP (IDEXO, ITYPE, ID, NAMEPR, IVAL, IERR) page 122

INTEGER IDEXO

INTEGER ITYPE

INTEGER ID
CHARACTER*MXSTLN NAMEPR
INTEGER IVAL

INTEGER IERR

SUBROUTINE EXPPA (IDEXO, ITYPE, NAMEPR, IVALS, IERR) page 126

INTEGER IDEXO

INTEGER ITYPE
CHARACTER*MXSTLN NAMEPR
INTEGER IVAL(*)

INTEGER IERR

B-16

SUBROUTINE EXPPN (IDEXO, ITYPE, NPROPS, NAMEPR, IERR) page 118

INTEGER IDEXO

INTEGER ITYPE

INTEGER NPROPS
CHARACTER*MXSTLN NAMEPR (*)
INTEGER IERR

SUBROUTINE EXPQA (IDEXO, NOAREC, QAREC, IERR) page 33

INTEGER IDEXO

INTEGER NQAREC
CHARACTER*MXSTLN QAREC (4,*)
INTEGER IERR

SUBROUTINE EXPSP (IDEXO, IDESS, NSESS, NDESS, IERR) page 94

INTEGER IDEXO
INTEGER IDESS
INTEGER NSESS
INTEGER NDESS
INTEGER IERR

SUBROUTINE EXPSS (IDEXO, IDESS, LTEESS, LTSESS, IERR) page 98

INTEGER IDEXO
INTEGER IDESS
INTEGER LTEESS(*)
INTEGER LTSESS(*)
INTEGER IERR

SUBROUTINE EXPSSD (IDEXO, -IDESS, FACESS, IERR) page 102
INTEGER IDEXO
INTEGER IDESS
REAL FACESS(*)
INTEGER IERR

SUBROUTINE EXPTIM (IDEXO, NSTEP, TIME, IERR) page 139
INTEGER IDEXO
INTEGER NSTEP
REAL TIME
INTEGER IERR

SUBROUTINE EXPVAN (IDEXO, VARTYP, NVAR, NAMES, IERR) page 135
INTEGER IDEXO :
CHARACTER*1 VARTYP
INTEGER NVAR
CHARACTER*MXSTLN NAMES (*)

INTEGER IERR

SUBROUTINE EXPVP (IDEXO, VARTYP, NVAR, IERR) page 131
INTEGER IDEXO
CHARACTER*1 VARTYP
INTEGER NVAR
INTEGER IERR

SUBROUTINE EXPVTT (IDEXO, NELBLK, NVAREL, ISEVOK, IERR) page 145
INTEGER IDEXO
INTEGER NELBLK
INTEGER NVAREL
INTEGER ISEVOK (NVAREL, NELBLK)
INTEGER IERR

SUBROUTINE EXUPDA (IDEXO, IERR) page 28

INTEGER IDEXO
INTEGER IERR

B-17

Intentionally Left Blank

B-18

Appendix C

Error Messages

This appendix contains descriptions of error codes that are returned by the EXODUS Il
library routines. '

The following are return codes that are specific to EXODUS Il routines. The error names
are defined constants (in exodusII.hfor C and exodusII.inc for Fortran) currently
assigned the specified values. A 0 (zero) means no error; a positive number is a warning;

a negative number is a fatal error.

Error Name (C) Error Name (Fortran) Value Description
EX_FATAL EXFATL -1 fatal error flag
EX_OK EXOK 0 mnoerror flag
EX_WARN EXWARN 1 warning flag
EX_MEMFAIL EXMEMF —100 memory allocation failure flag
EX_BADFILEMODE EXBFMD -101 bad file mode
EX_BADFILEID EXBFID A -102 bad file id; usually an unopened file
EX_WRONGFILETYPE -103 wrong file type for function
EX_LOOKUPFAIL EXBTID -104 property table lookup failed »
EX_BADPARAM EXBPRM -105 bad parameter passed
EX_MSG _ EXPMSG 100 user-defined message
EX_PRTLASTMSG EXIMSG 101 print last error message msg code

C-1

The following are codes returned by netCDF functions. The error names are defined
constants (in netcdf . h) currently set to the specified values.

Error Name Value Description

NC_NOERR 0 Noerror
NC_EBADID 1 Not a netedf id
NC_ENFILE 2 Too many netcdfs open
NC_EEXIST 3 netedf file exists && NC_NOCLOBBER
NC_EINVAL 4 Invalid argument
NC_EPERM 5 Write to read only file
NC_ENOTINDEFINE 6 Operation not allowed in data mode
NC_EINDEFINE 7 Operation not allowed in define mode
NC_EINVALCOORDS 8 Coordinates out of domain ‘
NC_EMAXDIMS 9 MAX_NC_DIMS (defined in netcdf.h) exceeded
NC_ENAMEINUSE 10 String match to name in use
NC_ENOTATT 11 Attribute not found
NC_EMAXATTS 12 MAX_NC_ATTRS (defined in netcdf.h) exceeded
NC_EBADTYPE 13 Not a netcdf data type
NC_EBADDIM 14 Invalid dimension id

. NC_EUNLIMPOS 15 NC_UNLIMITED in the wrong index
NC_EMAXVARS 16 MAX_NC_VARS (defined in netcdf.h) exceeded
NC_ENOTVAR 17 Variable not found
NC_EGLOBAL 18 Action prohibited on NC_GLOBAL varid
NC_ENOTNC 19 Not a netedf file
NC_ESTS 20 In Fortran, string too short
NC_EMAXNAME 21 MAX_NC_NAME (defined in netcdf.h) exceeded
NC_EUNLIMIT 22 NC_UNLIMITED size already in use
NC_EXDR 32 XDR error
NC_SYSERR -1 Fatal system error

C-2

Appendix D

Sample Codes

This appendix contains examples of C and Fortran programs that use the EXODUS II APL
C Write Example Code

The following is a C program that creates and populates an EXODUS II file:

#include <stdio.h>
#include “netcdf.h”
#include “exodusII.h”

main ()
{
int exoid, num_dim, num_nodes, num_elem, num_elem blk;
int num_elem_in block{10], num nodes_per_elem[10];
~ int num node_sets, num sides, num_side_sets, error;
int i, 3, k, m, *elem_map, *connect;
int node_11st[100],elem_ list{100],side_l1list[100];
int ebids[10], ids[10];
int num_sides_per_set[10], num nodes_per_set{10], num elem per_set{1l0];
int num_4f per set[10]; ’
int dAf_1ind[10], node_ind[10], elem ind[10}, side_ind[10];
int num _ga_rec, num_info;
int num_glo_vars, num nod vars, num ele_vars;
int *truth_tab:;
int whole_time_step, num time_ steps;
int ndims, nvars, ngatts, recdim;
int CPU_word_size, I0_word_slize;
int prop_arrayli2];

float *glob_var_vals, *nodal_var_vals, *elem var_vals;

float time_wvalue;

float x[100], y[100], =z[100], *dummy;

float attrib[1l], dist_fact[100];

char *coord_names[3], *ga_ record[2][4], *info[3], *var_names[3];
char tmpstr[80]; '

char *prop_names[2];

dummy = 0; /* assign this so the Cray compiler docesn’t complain */
/* Specify compute and i/o word size */

CPU_word_size = 0;/* float or double */
10_word_size = 0;/* use system default (4 bytes) */

/* create EXODUS II file */

exold = ex_create (“test.exo”,/* filename path */
EX_CLOBBER, /* create mode */
&CPU_word_size, /* CPU float word size in bytes */
&I0_word_size);/* 1I/0 float word size in bytes */
/* ncopts = NC_VERBOSE; */

/* initialize file with parameters */

num dim = 3;

num_nodes 26;

D-1

num elem = 5;

num_elem_blk = 5;
num_node_sets = 2
num_slde_sets = 5

error = ex_put_init (exold, “This is a test”, num dim, num nodes, num_elem,
num_elem_blk, num_node_sets, num side_sets);

/* write nodal coordinates values and names to database */

/* Quad #1 */

x[{0] = 0.0; ¥vi[0] = 0.0; z[0] = 0.0;
x{1l}] = 1.0; yli1] = 0.0; z[1l] = 0.0;
x[2] = 1.0; yI2] = 1.0; z[2] = 0.0;
x[3] = 0.0; ¥I3] = 1.0; z{3] = 0.0;
/* Quad #2 */
x[4)] = 1.0; y{4] = 0.0; z[4] = 0.0;
x[5] = 2.0; y[5] = 0.0; z[5] = 0.0;
x[61 = 2.0; y[6] = 1.0; z[6] = 0.0;
x[71 = 1.0; ¥[7] = 1.0; z[7] = 0.0;
/* Hex #1 */
x[8] = 0.0; y[8] = 0.0; 2[8] = 0.0;
x[9] = 10.0; y¥[8] = 0.0; 2z[8) = 0.0;
x{10] = 10.0; y[10}] = .0.0; z[10] =-10.0;
x[11] = 1.0; ¥[11] = 0.0; z{11] =-10.0;
x[12] = 1.0; y[12] = 10.0; z[12] = 0.0;
x[13] = 10.0; ¥[13] = 10.0; z[13] = 0.0;
x{14] = 10.0; y[14] = 10.0; z{fl1l4] =-10.0;
x[151 = 1.0; y[15] = 10.0; z[15] =-10.0;
/* Tetra #1 */
x[16] = 0.0; y[16] = 0.0; z{16] = 0.0;
x[17] = 1.0; ¥[17] = 0.0; z[17] = 5.0;
x[18] = 10.0; y[18] = 0.0; z[18] = 2.0;
x[{18} = 7.0; y[19] = 5.0; z[19] = 3.0;
/* Wedge #1 */
x[20] = 3.0; y[20] = 0.0; z[20] = 6.0;
x[21] = 6.0; y[21] = 0.0; z[21] = 0.0;
x[22] = 0.0; y[22] = 0.0; z[22] = 0.0;
x[23] = 3.0; y[23] = 2.0; z[23] = 6.0;
x[24] = 6.0; yv[24] = 2.0; z[24] = 2.0;
x[25] = 0.0; y[25] = 2.0; z[25] = 0.0;

error = ex put_coord (exold, x, v, 2z);

coord_names|[0]
coord_names[1]
coord_names([2]

“xecoor”;
"ycoor” ;
“zcoor”;

error = ex put_coord_names (exold, coord_names);
/* write element order map */
elem _map = (int *) calloc(num_elem, sizeof(int));

for (i=1; i<=num elem; 1i++)

{
}

elem map([i-1] = 1;

error = ex_put_map (exold, elem map);

free (elem map);

/* write element block parameters */

num_elem_in block{0] = 1;

num_elem in_block[1]
num_elem_ in _block[2]
num_elem_in block[3]
num_elem in block[4]

“

own
-

M
e~

/* elements 1in block #1 are 4-node quads */
/* elements in block #2 are 4-node quads */
/* elements in block #3 are 8-node hexes */
/* elements in block #3 are 4-node tetras */
/* elements in block #3 are 6-node wedges */

num_nodes_per_elem[0]
num_nodes_per_elem[l]
num_nodes_per_elem[2]
num_nodes_per_elem[3]
num_nodes_per_elem[4]

winowu
LN

e We %o e Ny

ebids [0]
ebids[1]
ebids[2]
ebids 3}
ebids[4]

10;
11;
12;
13;
14;

error = ex_put_elem block (exoid, ebids[0], “QUAD”, num_elem in block[O0],
num_nodes_per_elem[0], 1);

error = ex_put_elem block (exold, ebids{l], “QUAD”, num elem in block([l],
num_nodes_per_elem(1], 1);

error = ex put_elem block (exoid, ebids[2], “HEX”, num_elem_ in block[2],
num_nodes_per_elem[2], 1):;

error = ex put_elem block (excld, ebids{3], “TETRA”, num _elem in block([3],
num_nodes_per_elem{3], 1);

error = ex_put_elem block (exold, ebids([4], “WEDGE”, num_elem in block{4],
nure_nodes_per_elem[4], 1);

/* write element block properties */
prop _names[0] = “TOP”;

prop_names[1] “RIGHT” ;
error = ex_put_prop names{exold, EX ELEM BLOCK, 2, prop_names);

error = ex_put_prop(exoid, EX ELEM BLOCK, ebids[0], “TOP”, 1);
error = ex put_prop(exoid, EX_ELEM BLOCK, ebids{i1}], #TOP”, 1):
error = ex_put_prop(exoid, EX_ELEM BLOCK, ebids([2], “RIGHT”, 1);
error = ex_put_prop(exoid, EX_ELEM BLOCK, ebids[3], “RIGHT”, 1);
error = ex_put_prop(exoid, EX_ELEM BLOCK, ebids[4], “RIGHT”, 1);

/* write element connectivity */

connect = (int *) calloc(8, sizeof(int));

connect [0] = 1; connect[l] = 2; connect{2] = 3; connect{3] = 4;
error = ex_put_elem conn (exoid, ebids[0], connect);

connect [0] = 5; connect{l] = 6; connect{2] = 7; connect[3] = 8;
error = ex_put_elem conn (exoid, ebids[l], connect);

connect [0] = 9; connect[l] = 10; connect[2] = 11; connect[3] = 12;
connect [4] = 13; connect([5] = 14; connect{6] = 15; connect[7] = 16;

error = ex_put_elem conn (exoid, ebids[2], connect):;
connect [0} = 17; connect[l] = 18; connect[2] = 19; connect{3] = 20;
error = ex_put_elem conn (excid, ebids{3}, connect);

connect [0}
connect [3]

21; connect[1]
24; connect(4]

22; connect[2]
25; connect[5]

23;
26;

error = ex put_elem_ conn (excld, ebids[4]), connect);
free (conhect);

/* write element block attributes */

D-3

attrib{0] = 3.14159;
error = ex put_elem_attr (exold, ebids{0], attrib);

attrib[0] = 6.14159;
error =-ex put_elem_attr (exold, ebids[l], attrib);

error = ex _put_elem attr (exold, ebids[2], attrib);

error = ex_put_elem attr (exold, eblds{3], attrib);

error = ex put_elem attr (exold, ebidsf4], attrib);
/* write individual node sets */

error = ex_put_node_ set_param (exoid, 20, 5, 5);

node_list[0] = 100; node_list[1l] = 101; node_1ist[2] = 102;
node_11ist[3] = 103; node_list[4] = 104;
dist_fact{[0)] = 1.0; dist_fact[l] = 2.0; dist_fact{2] = 3.0;
dist_fact([3] = 4.0; dist_fact[4] = 5.0;

error = ex_put_node_set (exold, 20, node_1list);

error = ex put_node_ set_dist_fact (exold, 20, dist_fact);
error = ex_put_node_éet_param (excold, 21, 3, 3);

node _1ist[0] = 200; node_list[1l] = 201; node_list[2] = 202;
dUtjwtm]=1J4dﬂtjutﬂ]=24;dhtjmt&]=3J;

error = eXx_put_node_set (exoid, 21, node_list);

error = ex_put_node_set_dist_fact (exoild, 21, dist_fact);
error = ex_put_prop(exocid, EX_NODE_SET, 20, “FACE”, 4);
error = ex_put_prop(exoid, EX NODE_SET, 21, “FACE”, 5);
prop_array[0] = 1000;

prop_array[l] = 2000;

error = ex_pﬁt_prop_array(exoid, EX NODE_SET, “VELOCITY”, prop_array):;
/* write concatenated node sets; this produces the game information as
* the above code which writes individual node sets
*/
/* THIS SECTION IS COMMENTED OUT
ids[0] = 20; ids[1] = 21;

num_nodes_per_set[0] = 5; ﬁnm_nodes_per_set[l] = 3;

node_ind[0] = 0; node_ind[1] = §;

node_11ist{0] = 100; node_list{1l] = 101; node_list{2] = 102;
node_1ist{3] = 103; node_list{[4] = 104;
node_1ist[5] = 200; node_list[6] = 201; node_list[7] = 202;

num df per_set[0] = 5; num 4f_per set[l] = 3;
df_ind[0] = 0; 4f_ind[1l] = 5;
dist_fact[0]

dist_fact[3]
dist_fact[5]

1.0; dist_fact[1]
4.0; dist_fact[4]
1.1; dist_fact[6]

dist_facti2] = 3.0;

2.0;
5.0;
2.1;

dist_fact{?7] = 3.1;

error = ex_put_concat_node_sets (exoid, ids, num nodes_per_set,
num_df_ per_set, node_ind,
df _ind, node_list, dist_fact);

erxror
error

ex put_prop(exoild, EX NODE_SET, 20, “FACE”, 4);
ex_put_prop(exoid, EX NODE_SET, 21, “FACE”, 5):;

/*

prop_array|[0]
prop_arrayl[l]

1000;
2000;

error = ex_put_prop_array(exoid, EX_NODE_SET, “VELOCITY”, prop_array);-

END COMMENTED OUT SECTION ¥/

write individual side sets */
/* side set #1 - quad */

error = ex_put_side_set_param (exoid, 30, 2, 4);

elem list|[0] 2; elem list(l] 2;

side_ 1list[0] 4; side_list([1]

2;

dist_fact[0]
dist_fact[3]

30.0; dist_fact[l] = 30.1; dist_fact[2] = 30.2;
30.3; :)

error = ei_put_side_set (exoid, 30, elem list, side_list);
error = ex_put_side_set_dist_fact (exoid, 30, dist fact);
/* side set #2 - quad, spanning 2 elements */
error = ex_put_side_set_param (exoid, 31, 2, 4);
elem_list[0]

1; elem_list[1] 2;

side_list [0] 2; side_1list[1] 3;

dist_fact[0]
dist_fact (3]

31.0; dist_fact[l] = 31.1; dist_fact2] = 31.2;
31.3;

error = ex_put_slde_set (exoid, 31, elem list, side_list);
error = ex_put_side_set_dist_fact (exoid, 31, dist_fact);
/* side set #3 - hex */

error = ex_put_side_set_param (exoid, 32, 7, 0):

elem 1ist[0] = 3; elem 1ist[l] = 3;
elem 1ist[2] = 3; elem 1ist[3] = 3;
elem 1ist[4)] = 3; elem list[5] = 3;
elem_1list{6] = 3;

side _1list[0] = 5; side_1list[l] = 3;
side_list[2] = 3; side_1ist[3] = 2;
side_list[4] = 4; side_1list[S] = 1;
side_list[6] = 6;

error = ex _put_silde_set (exoid, 32, elem list, side_list);
/* side set #4 - tetras */

error = ex_put_side_set_param (exold, 33, 4, 0);

elem 11ist[0] = 4; elem 1ist[1] = 4;
elem_list[2] = 4; elem 1list[3] = 4;
side_11ist (0] = 1; side_1list[1l] = 2;
side _1list([2] = 3; side_list[3] = 4;

error = ex_put_slide set (exoild, 33, elem list, side_list);
/* slde set #5 - wedges */

error = ex_put_side set_ param (exold, 34, 5, 0);

D-5

elem_1ist[0] = 5; elem_list[l] = 5;
elem_1i1st[2] = 5; elem_list[3] = 5;
elem_1list{4] = 5;

side_1ist[0] = 1; side_1list[1l] = 2;
side_11s8t[2] = 3; side_1ist[3] = 4;

slde_1list[4]
error = ex_put_side_set (exocild, 34, elem_list, side_list);

/* write concatenated side sets; side set node lists (which is how side sets
* were described in EXODUS I) are converted to side set side lists and then
* written out; this produces the same information as the above code which
* writes indiwvidual side sets
*/

/* THIS SECTION IS COMMENTED OUT

1ds[0] = 30;

ids[1] = 31;

ids{2] = 32;

ids{[3] = 33;

1ds{4] = 34;

node_1list[0] = 8; node_1list[1l] = 5;
node_1l1ist[2] = 6; node_list[3] = 7;
nede_list[4] = 2; node_ 1list[5] = 3;
node_list[6] = 7; node_list[7] = 8;
node_list([8] = 9; node_list[9]

[
H N
~

11; node_1list[11]

node_1l1ist{l19] = 10;
node_list[12] = 11; node_1list[13] = 12;
node_list[14] = 16; node_1l1l1ist[15] = 15;
node_list[16] = 16; node_ 1list[17] = 15;
node_1list[18] = 11; node_1list[19] = 12;
node_1list[20] = 10; node_list[21] = 11;
node_list[22] = 15; node_list[23] = 14;
node_list[24] = 13; node_list[25] = 16;
node_list[26] = 12; node_1list[27] = 9;
nede_list[28] = 14; node_1ist[29] = 13;
node_1ist[30] = 9; node_1list[31] = 10;
node_1list[32] = 16; node_1list[33] = 13;
node_list[34] = 14; node_1list[35] = 15;
node_list[36] 17; node_1ist[37] = 18;

node_list[38]

node_1list[39]
node_list[41]

18; node_1list[40] = 19;

node_1ist[42] 20; node_1list([43] = 19;

ion
[y
~J
-

node_1l1ist[44]

node_list{45] = 19; node_list[46] = 18;
node_list{47] = 17;

node_1list{48] = 25; node_1list[49] = 24;
noede_1ist[S50] = 21; node_list[51] = 22;
node_1list([52] = 26; node_1list[53] = 25;
node_1list[54] = 22; node_1list[55] = 23;
node_1l1at[56] = 26; node_1ist([57] = 23;
node_1list[58] = 21; node_1list([59] = 24;

D-6

node_list[60] = 23; node_list[61] = 22;
node_list[62] = 21;

node_1list[63] = 24; node_list[64] = 25;
node_list [65] = 26;

node_ind[0] = O;

node_1ind{[1l]} = 4;

node_ind[2} = 8;

node_1ind[3} = 36;

node_1ind[4] = 47;
num_elem per set[0] = 2;
num_elem per set[l] = 2;

num_elem per_set[2] = 7;

num_elem_ per_set[3] = 4;
num_elem per set[4] = 5;
num_nodes_per_set[0] = 4;
num_nodes_per_set[l] = 4;
num_nodes_per_set{2] = 28;
num_nodes_per_set[3] = 12;
num_nodes_per_set[4] = 18;

elem ind[0}] = 0;

elem ind[l] = 2;

elem_ind[2] = 4;

elem ind{3] = 11;

elem_indi4} = 15;

elem_list[0] = 2; elem_ list[l] = 2;
elem list[2] = 1; elem_list[3] = 2;
elem list[4] = 3; elem list[5] = 3:
elem_ list[6] = 3; elem_1list([7] = 3;
elem list[8] = 3; elem_1list[9] = 3;
elem_l1list[10] = 3; elem_1list[11l] = 4;
elem 1list{12] = 4; elem_1list[13] = 4;
elem _list{14] = 4; elem_1list[15] = 5;
elem list[16] = 5; elem_ list{17] = 5;
elem 1list[18] = 5; elem_list[19] = 5;

error = ex_cvt_nodes_to_sides (exocid,
num_elem_ per set,
num_nodes_per_set,

elem_ind,
node_1ind,
elem_list,
node_list,
side_list);

num_df_ per set[0] = 4;

num_df_per set{l] = 4;

num df per set[2] = 0;

num_4df_ per_set[3] = 0;

num_df_ per_set[4] = 0;

df_ind[0] = 0;

daf_ind[l] = 4;

dist_fact[0] = 30.0; dist_fact[l] = 30.1;

dist_fact[2] = 30.2; dist_fact[3] = 30.3;

dist_fact[4] = 31.0; dist_fact[5] = 31.1;

dist_fact[6] = 31.2; dist_fact{[7] = 31.3;

error = ex_put_concat_side sets (exoid, 1ds, num_elem_per_set,
num_df_per set, elem ind, 4f_ind,
elem list, side_1list, dist_fact);

END COMMENTED OUT SECTION */

error = ex_put_prop(exoid, EX_ SIDE_SET, 30, “COLOR”, 100);

D-7

error = ex put_prop(excld, EX SIDE_ SET, 31, “COLOR”, 101):;
/* write QA records */
num _ga_rec = 2;

ga_record[0][0] “PESTWTY ;

ga_recoxrd[0] [1] = “testwt”;
ga_record[0][2] = #07/07/93”";
ga_record@f[0][3]1 = #15:41:33";
ga_record{1] {0] = “FASTQ”;
ga_record[1]{1] = “fastg”;
ga_record[l1]1(2] = #07/07/937;
gqa_record[1]{3] = *16:41:33";

error = ex put_ga (exold, num ga_rec, ga_record);
/* write information records */

num info = 3;

info[0] = #“This is the first information record.”;
info[l] = “This is the second information record.”;
info[2] = #This is the third information record.”;

error = ex_put_info (exoid, num info, info);

/* write results variables parameters and names */
num_glo_vars = 1;
var_names[0] = “glo_vars”;

error

= ex_put_var_param (exold, “g”, num_glo_wvars);
error = ‘.

g
ex_put_var_names (exold, “g”, num glo_vars, var_names);

num_nod_vars 2;

var _names]0]
var_names[1l]

“nod_var0”;
“nod_varl”;

error
error

ex_put_var_param (exold, “n”, num_nod_vars);
ex_put_var_names (exoid, “n”, num_nod_wvars, var_names);

num _ele_vars 3;

var_names][0]
var_names[1]
var_names([2]

“ele_var0”;
"ele_varl”;
“ele_var2”;

error
error

= ex_put_var_param (exold, “e”, num_ele vars);
= ex_put_var_names (exold, “e”, num_ele_vars, var_names);
/* write element variable truth table */
truth.tab = (int *) calloc ((num elem blk*num_ele_vars), sizeof(int)):

k = 0;
for (i=0; i<num elem_blk; i++)

for (1=0; j<num_ele_vars; J++)
truth_tabik++] = 1;
}
error = ex_put_elem var_tab (exoid, num elem blk, num ele_vars, truth_tab);
free (truth tab);

- /* for each time step, write the analysis results;
* the code below f£ills the arrays glob_var_ vals,

D-8

* nodal_var_vals, and elem_var_vals with values for debugging purposes;
* obviocusly the analysis code will populate these arrays
*/

whole_time_ step = 1;
num_time steps = 10;

glob_var_vals = (float *) calloc (num_glo_vars, CPU_word_size);
nodal_var_vals = (float *) calloc (num_ncdes, CPU_word_size);
elem var_vals = (float *) calloc (4, CPU_word_size):;

for (i=0; i<num time steps; 1++)
{
time value = (float)(i1+1)/100.;

/* write time wvalue */
error = ex_put_time (exoild, whole_time_step, &time_value):
/* write global variables */

for (3=0; j<num_glo_vars; Jj++)
{

glob_var_vals[j] = (float) (j+2) * time_value;
}

error = ex_put_glob_vars (exoid, whole_time_step, num glo_vars,
glob_var_vals);

/* write nodal variables */

for (k=1; k<=num nod vars; k++)
{
for (3=0; j<num _nodes; j++)
{
nodal_var_vals[j] = (float)k + ((float)(j+1l) * time_value);
}

error = ex_put_nodal_var (exoid, whole_time_step, k, num_nodes,
nodal_var_vals);

}
/* write element variables */
for (k=1; k<=num_ele_vars; k++)
for (j=0; Jj<num_elem blk; J++)

for (m=0; m<num_elem in_block|[j]; m++)
{
elem var vals[m] = (float) (k+1l) + (float) (j+2) +
((float) (m+1)*time_value);
}
error = ex_put_elem var (exoild, whole_time_step, k, ebids(]j],
pum_elem in block[]], elem var_wvals);

}
}
whole_time_step++;

/* update the data file; this should be done at the end of every time step
* to ensure that no data is lost if the analysis dies
*/
error = ex_update (exold):;

}

free(glob_var_vals);

free(nodal_var_vals);

free(elem var_vals);

/* close the EXODUS files

*/
error = ex_close {(exold):;

D-9

C Read Example Code

The following C program reads data from an EXODUS 11 file:

#include <stdioc.h>
#include “netcdf.h”
#include “exodusII.h”

main ()
{
int exocid, num_dim, num_nodes, num_elem, num_elem blk, num_node_sets;
int num_side_sets, error;
int 1, 3, k, m, node_ctr;
int *elem map, *connect, *node_list, *node_ctr_list, *elem list, *side_list;
int *ids;
int *num_sides_per_set, *num_nodes_per_ set, *num _elem per_set;
int *num_df_ per set;
int *node_ihd, *elem_ind, *df_ind, *side_ind, num ga_rec, num info;
int num_glo_vars, num nod_vars, num_ele vars;
int *truth_tab;
int whole_time_step, num_time_steps;
int id, *num_elem_in_block, *num_nodes_per_ elem, *num_attr;
int num nodes_1in_set, num_elem_ in_ set;
int num sides_1in_set, num_ df_in_set;
int 1ist_len, elem list_len, node_list_len, side_1list_len, df_1list_len;
int node_num, time_step, var_index, beg_time, end_time, elem num;
int CPU_word_size, I0_word_size;
int prop_array{2], num_props, prop_value, *prop_values;

float *glob_var_vals, *nodal_var_vals, *elem_var_vals;
float time_value, *time_values, *var_values;

float *x, *y, *z, *dummy;

float attrib([l], *dist_fact;

float version, fdum;

char *coord names[3], *ga_record[2][4], *info[3], *var_names[3];
char title[MAX LINE_LENGTH+1], elem_type[MAX STR_LENGTH+1];

char *cdum;

char *prop_names([3];

dummy = 0; /* assign this so the Cray compiler dcesn’t complain */
cdum = 0;

CPU_word_size = 0;/* float or double */
IO_word_size = 0;/* use what is stored in file */

/* open EXODUS II files */

exoid = ex_open (“test.exo”, /* filename path */
EX_READ, /* access mode = READ */
&CPU_word_size, /* CPU word size */
&I0_word_slize,/* 10 word size */
&verslon);/* ExoduslI library version */

1f (exold < 0) exit(1);
/* ncopts = NC_VERBOSE; */
/* read database parameters */

error = ex_get_init (exoid, title, &num dim, &num nodes, &num_elem,
&num_elem blk, &num_node_sets, &num_side_sets);

/* read nodal coordinates values and names from database */

(float *) calloc(num nodes, sizeof(float)):;
4 (float *) calloc(num_nodes, sizeof(fleoat));
if (num _dim >= 3)

z = (float *) calloc(num nodes, sizeof(float)}):
else

x

D-10

z = 0;
error = ex_get_coord (exold, x, vy, 2z):
free (x);
free (v):
if (num_dim >= 3)
free (2z);

for (i=0; i<num dim; 1++)
{

}

coord_names[1] = (char *) calloc ((MAX_STR_LENGTH+l), sizeof (char));

error = ex_get_coord_names (exold, coord_names);

for (i=0; i<num dim; i++)
free(coord_names([1]):;

/* read element order map */
elem map = (int *) calloc(num_elem, sizecf(int));
error = ex_get_map (exoid, elem_map):;
free (elem map);
/* read element block parameters */
ids = (int *) calloc(num_elem blk, sizeof(int)):
num_elem_in block = (int *) calloc(num_elem_ blk, sizeof(int);

num_nodes_per_elem = (int *) calloc(num_elem blk, sizeof(int)};
num_attr = (int *) calloc(num_elem blk, sizeof(int)); -
error = ex_get_elem blk_ids (exoid, ids);

for (i=0; i<num_elem blk; i++)
{
error = ex_get_elem block (exold, 1ids[i], elem_type,
& (num_elem in block[i]),
& (num_nodes_per_elem{i]), &(num attr[i]));

}

. /* read element block properties */
error = ex_inquire (exoid, EX_INQ EB_PROP, &num_props, &fdum, cdum);

for (1=0; i<num_props; i++)
{

}

prop_names[i] = (char *) calloc ((MAX_ VAR NAME_ LENGTH+1l), sizeof (char)):

error = ex_get__prop__names(exoid,EX_ELm_BLOCK,prop__names) H

for (1=0; i<num props; i++)
{

for (3=0; J<num_elem blk; j++)

error = ex_get_prop(exoid, EX_ELEM BLOCK, ids([j], prop_names{i],
&prop_value);
}
}

for (1=0; i<num_props; i++)
free(prop_names[i]);

/* read element connectivity */
for (i=0; i<num_elem blk; 1++)
{

connect = {int *) calloc((num nodes_per_elemii] * num_elem in block([il),
sizeof (int));

D-11

error = ex_get elem_conn (exoid, ids[i], connect);
free (connect);
}

/* read element block attributes */

for (i1=0; i<num elem blk; i++)
{

}

free (ids);
free (num_nodes_per_elem);
free (num_attr);

error = ex_get_elem_attr (exoid, ids[i], attrid);

/* read individual node sets */
ids = (int *) calloc(num_node sets, sizeof(int)):
error = ex_get_node_set_1ds (exoid, 1ds);
for (i=0; i<num node_sets; i++)

¢ error = ex_get_node_set_péram (exold, ids[il],

&num_nodes_in set, &num df_in_set);

node_list
dist_fact

= (int *) calloc(num_nodes_in_set, sizeof(int)):
= (float *) calloc(num nodes_in_set, sizeof(float));

error = ex_get_node_set (exoid, 1ds[i], node 1list);

i1f (num_df_1in_set > 0)
{

}

error = ex_get node_set_dist_fact (exold, ids{i}], dist_fact);

free (node_list);
free (dist_fact);
}
free(ids);

/* read node set propertles */
error = ex_lngquire (exold, EX_INQ_NS_PROP, &num_props, &fdum, cdum):;

for (1=0; i<num_props; i++)
{
prop_names[i] = (char *) calloc ((MAX_VAR_NAME LENGTH+1), sizeof(char)):

prop_values = (int *) calloc (num node_sets, sizeof(int)):;
error = ex_get_prop_names(exoid,EX_NODE_SET,prop_names);

for (1=0; i<num_props; 1++)
{
error = ex get_prop_array(exoid, EX NODE_SET, prop_names[i],
prop_values);
3

for (i=0; i<num props; i++)
free(prop_names[1]);
free(prop_values);

/* read concatenated node sets; this produces the same information as

* the above code which reads individual node sets

*/
error = ex_ingulre (exold, EX_INQ _NODE_SETS, &num_node_sets, &fdum, cdum);
ids = (int *) calloc(num_node_sets, sizeof (int));
num_nodes_per_set = (int *) calloc(num node_sets, sizeof(int)):;

num_df_ per_set = (int *) calloc(num_node_sets, sizeof(int)):
node_ind = (int *) calloc(num_node_sets, sizeof(int)):;

D-12

/*

df_ind = (int *) calloc (num_node_sets, sizeof(int));

error = ex_inquire (exoid, EX_INQ_NS_NODE_LEN, &list_len, &fdum, cdum);
node_list = (int *) calloc(list_len, sizeof(int));

error = ex_inquire (exoild, EX IND_NS_DF_LEN, &list_len, &fdum, cdum);
dist_fact = (float *) calloc(list_len, sizeof(float));

error = ex_get_concat_node_sets (exoid, ids,num nodes_per_set,num df per_ set,
node_ind, 4f_ind, node_1list, dist_fact);

free (ids);

free (num_nodes_per_set);
free (df_ind);

free (node_ind);

free (num df_per_set):;
free (node_list);

free (dlst_fact);

read individual side sets */
ids = (int *) calloc(num_side_sets, sizeof(int));
error = ex_get_side_set_ids (exold, ids);

for (i=0; i<num_side_sets; i++)

{
error = ex_get_slde_set_param (exoid, ids[i], &num_sides_in_ set,
&num_df_in set);
/* Note: The # of elements 1s same as # of sides! */
num_elem_in set = num sides_in_set;
elem_list = (int *) calloc(num_elem in set, sizeof(imt));
slde_list = (int *) calloc{num_sides_in_set, sizecf(int));
node_ctr_1list = (int *) calloc(num_elem_in_ set, sizeof(int)):
node_1list = (int *) calloc(num_elem_ in set*21, sizeof(int)});
dist_fact = (float *) calloc(num_4df_ in_set, sizeof(float));
error = ex_get_side set (exoid, 1ids[i], elem_list, side_list);
error = ex _get_side.set_node_list (exoid, ids[i}, node_ctr_list,
node_1list);
if (num 4df_in set > 0)
{
error = ex_get_side_set_dist_fact (exold, ids[i], dist_fact);
}
free (elem_11ist);
free (side_1list);
free (node_ctr_list):;
free {node_1list);
free (dist_fact);
}

/* read side set properties */
error = ex inquire (exold, EX INQ SS_PROP, &num_props, &fdum, cdum);

for (i=0; i1<num_props; 1++)
{

}

prop_names [1] = (char *) calloc ((MAX VAR NAME_LENGTH+1), sizeof(char));

error = ex_get_ prop_names (exold,EX SIDE_SET,prop_names);
for (1=0; i<num_props; i++)
for (J=0; j<num_side_sets; J++)

error = ex_get_prop(exoid, EX_SIDE_SET, ids[j], prop_names|i],
&prop_value);

D-13

}

}

for (1=0; i<num props; 1i++)
free(prop _names{i]):

free (1ids);

error = ex_ingquire (exoid, EX_INQ SIDE_SETS, &num_side_sets, &fdum, cdum);

1if (num_side_sets > 0)

{ ' ‘
error = ex_linquire(exoid, EX_INQ_SS_ELEM LEN, &elem_list_len, &fdum, cdum);

error = ex_lnquire(exoid, EX_ INQ_SS_NODE_LEN, &node_list_len, &fdum, cdum);

error = ex_Jlnquire(exoid, EX INQ_SS DF LEN, &df_list_len, &fdum, cdum);
}

/* read concatenated side sets; this produces the same information as
* the above code which reads individual side sets
*/

/* concatenated side set read */

ids = (int *) calloc(num _side_sets, silzeof(int)):;

num elem per_set = (int *) calloc(num side_sets, sizeof(int));
num_df per_set = (int *) calloc{num_side_sets, sizeof(int));
elem_ind = (int *) calloc(num_side_sets, sizeof(int)):;

df_ind = (int *) calloc{num side_sets, sizeof(int));

elem list = (int *) calloc(elem_list_len, sizeof(int));
slde_1list = (int *) calloc(elem list_len, sizeof(int)):
dist_fact = (float *) calloc(df_list_len, sizeof (float));

error = ex_get_concat_side_sets (exoid, ids, num elem per_set,
num_df_ per_set, elem ind, 4df_ind,
elem list, side_list, dist_fact);

free (1ids);

free (num elem per set); .
free (num 4f_ per set);
free (df_ind);

free (elem_1ind);

free (elem_list);

free (side_1list);

free (dist_fact);

/* end of concatenated side set read */
/* read QA records */
ex_Iingquire (excld, EX_INQ_QA, &num_ga_rec, &fdum, cdum);
for (i1=0; i<num ga_rec; i++)
{ for (3=0; J<4; J++)
¢ ga_record{i][j} = (char *) calloc ((MAX_ STR_LENGTH+l1), sizeof(char)):;
}
error = ex get_ga (exold, ga_record);
/* read information records */
error = ex_lnquire (exold, EX_INQ INFO, &num_info, &fdum, cdum);

for (1=0; l<num info; 1i++)
{

}

error = ex _get_info (excid, info):
for (i1=0; i<num_info; 1i++)

{

info[l] = (char *) calloc ({(MAX LINE_LENGTH+1l), sizeof(char));

D-14

free(info[i]l);
}

/* read global variables parameters and names */

error = ex_get_ var_ param (exoid, #“g”, &num_ glo_vars);

for (i=0; i<num_glo_vars; 1i++)
{

}

var_names|[i] = (char *) calloc ((MAX_STR_LENGTH+1l), slzeof (char)):

error = ex_get var_names (exold, “g”, num_glo_vars, var_names);

for (i=0; i<num_glo_vars; 1i++)
{

}

free(var_names[il):

/* read nodal variables parameters and names */
error = ex get_var_param (exoild, #“n”, &num nod_vars);

for (1=0; i<num nod_vars; 1++)

{
}

var_names[l] = (char *) calloc ((MAX_STR_LENGTH+1), sizeof{char)):

error = ex get_var_names (exoid, ”“n”, num nod_vars, var_names);

for (i=0; i<num _nod vars; 1++)
{

}

free(var_names[i]);

/* read element variables parameters and names */
error = ex_get_var_ param (excid, “e”, &num_ele_vars);

for (i=0; i<num_ele_vars; i++)

{
}

var_names[i] = (char *) calloc ((MAX_STR_LENGTH+1l), sizeof(char)):;

error = ex_get var names (exoid, “e”, num_ele_vars, var_names);

for (i=0; i<num ele_vars; i++)
{

}

/* read element variable truth table */

free(var_names[i]);

truth_tab = (int *) calloc ((num_elem blk*num ele vars), sizeof(int)‘);
error = ex_get_elem var_tab (exoid, num_elem blk, num ele_vars, truth_tab);
free (truth_tab);

/* determine how many time steps are stored */
error = ex_inquire (exoid, EX_INQ_ TIME, &ﬁum__time_steps, &fdum, cdum);

/* read time value at one time step */

time_ step = 3;
error = ex_get_time (exoid, time_step, &time value);

/* read time values at all tlme steps */

time_values = (float *) calloc (num time_steps, sizeof(float)):;

D-15

error = ex_get_all times (exoid, time_wvalues);
free (time_values);

/* read all global variables at one time step */
var_values = (float *) calloc (num_glo_vars, slzeof(float)):;

error = ex get_glob_vars (exolid, time_step, num_glo_vars, var_values):;
free (var_values);

/* read a single global varlable through time */

var_index = 1;
beg_time = 1;
end_time = -1;
var_values = (float *) calloc (num time_steps, sizeof(float));

error = ex_get_glob_var_time (exold, var_index, beg_time, end_time,
var_values); :
free (var_values);
/* read a nodal variable at one time step */

var_values = (float *) calloc (num_nodes, sizeof(float));

error = ex get_nodal_wvar (exold, time_step, var_index, num_nodes,
’ var_values);

free (var_values);
/* read a nodal variable through time */
var_values = (float *) calloc (num_time_steps, sizeof(float));
node_num = 1;’
error = ex_get nodal_var_time (exoid, var Iindex, node num, beg time,
) . end_time, var_values);
free (var_values);
/* read an element variable at oﬁe time step */
ids = (int *) calloc(num_elem blk, sizeof(int));
error = ex_get_elem blk ids (exoid, 1ds);
for (1=0; i<num elem dblk; i++)

var_values = (float *) calloc (num_elem in block[i], sizeof(float)):;

error = ex _get_elem var (exold, time_step, var_index, ids[l],
num_elem_in _blockil], var wvalues);

free (var_wvalues);
}
free (num_elem_in block):;
free(ids);
/* read an element variable through time */
var_values = (float *) calloc (num_time_steps, sizeof(float)):;
var_index = 2;
elem num = 2;
error = ex_get_elem var_ time (exoid, var_index, elem num, beg time,
end_time, var_values);
free (var_values);

error = ex_close (exold);

D-16

FORTRAN Write Example Code

The following Fortran program creates an EXODUS II file and populates it. Although this
sample code does not conform entirely to the ANSI Fortran-77 standard (i.e., lengths of
variable names, included files, etc.), it has successfully compiled and executed on all UNIX
workstations we have attempted and is included only as an example.

program testwt ’

This is a test program for the Fortran binding of the EXODUS II
database write routines.

QN0

include ’‘exodusII.inc’

iin, iout

exold, num_dim, num nodes, num_elem, num_ elem blk
num_elem_in block(2), num node_sets

num_side_sets

i, j, k, m, elem map(2), connect(4)

node_11s8t(10), elem list(10), side_list(10)
ebids(2),1ds(2), num_nodes_per_set (2), num_elem_ per_set (2)
num_ df_per_set (2)

df_ind(2), node_ind(2), elem_ind(2), num_ga_ rec, num_1info
num_glo_vars, num nod_vars, num ele_vars

truth_tab(3,2)

whole_time_step, num_time steps

cpu_word_slize, io_word_size

prop_array(2)

integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer

glob_var_vals(10), nodal_var_vals(8)
time_value, elem_var_vals(20)

x(8), v(8), Aummy(1)

attrib(1l), dist_fact(8)

real
real
real
real

character*(MXSTLN)
character* (MXSTLN)
character* (MXSTLN)
character* (MXSTLN)
character* (MXLNLN)
character* (MXSTLN)
data 1in /5/, iout
cpu_word_size = 0

io word_size = 0

Q0

exold = excre
1 EXCLOB,

naaQ

num_dim = 2
num_ncdes =
num_elem = 2
num_elem_blk = 2
num_node_sets
num_side_sets

8

= 2
= 2

call expinl (exoid,

coord_names (3)
cname
var_names (3)
ga_record(4,2)
inform(3)
prop_names(2)

/6/

create EXODUS IXI files

("test .exo”,

cpu_word_size, lo_word size, lerr)

initialize file with parameters

athig is a test”, num_dim, num_nodes,

1 num_elem, num_elem blk, num_node_sets,

2 num_side_sets,

ierr)

D-17

¢ write nodal coordinates values and names to database

c
x(1) = 0.0
x(2) = 1.0
x(3) = 1.0
x(4) = 0.0
x(5) = 1.0
x(6) = 2.0
x(7) = 2.0
x(8) = 1.0
y(l) = 0.0
y(2) = 0.0
y(3) = 1.0
y(4) = 1.0
y(5) = 0.0
y(6) = 0.0
y{(7) = 1.0
y(8) = 1.0
call expcor (exoid, x, y, dummy, ilerr)
coord_pnames (1) = “xcoor”
coord_names(2) = *ycoor”
call expcon (exoid, coord_names, lerr)
c
c write element order map
c
do 10 1 = 1, num_elem
elem map(l) = 1
10 continue
call expmap (excid, elem map, lerr)
c
¢ wrilte element block parameters
c
num_elem in _block(l) = 1
num_elem_ in_block(2) = 1
ebids (1) = 10
ebids (2} = 11

cname = “QUAD”

call expelb (exold,ebids(l),cname,num_elem_ in_block(l),4,1, ierr)

call expelb (exocid,ebids(2),cname,num_elem_in_block(2),4,1,ierr)
-c write element block properties

prop_names (1) “TOP”

prop_names (2) “"RIGHT”
call exppn{(exold, EXEBLK, 2,prop_names, lerr)

I

call expp(exoid, EXEBLK, eblds(1), *“TOP”, 1, lerr)
call expp(exold, EXEBLK, ebids(2), *“RIGHT”, 1, ierr)
c
¢ write element connectivity
c

connect (1)
connect (2)
connect (3)
connect (4)

B W

call expelc (exoid, ebids(l), connect, ierr)

D-18

connect (1)
connect (2)
connect (3)
connect (4)

® N0

call expelc (exold, ebids(2), comnect, ierr)

c
¢ write element block attributes
c
attrib(1) = 3.14159
call expeat (exoid, eblds(1l), attrib, ilerr)
attrib(l) = 6.14159
call expeat (exoid, ebids(2), attrib, lerr)
c
¢ write individual node sets
c
node_list(1l) = 100
node_1list(2) = 101
node_1list(3) = 102
node_list(4) = 103
node_list(5) = 104
dist_fact(l) = 1.0
dist_fact(2) = 2.0
dist_fact(3) = 3.0
dist_fact(4) = 4.0
dist_fact(5) = 5.0
call expnp (exoid, 20, 5, 5, ierr)
call expns (exocld, 20, node_list, ierr)
call expnsd (exoid, 20, dist_fact, lerr)
node_1l1ist(1l) = 200
node_list(2) = 201
node_l1st(3) = 202
dist_fact(l) = 1.1
dist_fact(2) = 2.1
dist_fact(3) = 3.1
call expnp (exold, 21, 3, 3, lerr)
call expns (exold, 21, node_list, ierr)
call expnsd (exoid, 21, dist_fact, ierr)
c .
¢ write concatenated node sets; this produces the same information as-
c the above code which writes individual node sets
c
ids (1) = 20
ids(2) = 21
num nodes_per_set(l) = 5
num_nodes_per_set(2) = 3
num &f_per_set(l) = 5
num df per set(2) = 3
node_ind(1) = 1
node_ind(2) = 6
df_ind(1) =1
df_ind(2) = 6
node_1list (1) = 100
node_list(2) = 101
node_1list(3) = 102

D-19

node_list(4) = 103
node_1list(5) = 104
node_1list(6) = 200
node_list(7) = 201
node. 1ist (8) = 202
dist_fact(l) = 1.0
dist_fact(2) = 2.0
dist_fact(3) = 3.0
dist_fact(4) = 4.0
dist_fact(5) = 5.0
dist_fact(6) = 1.1
dist_fact(7) = 2.1
dist_fact(8) = 3.1

¢ commented out because individual node sets already written

c call expecns (exold, ids, num nodes_per_ set, num_df per_set,
c 1 node_ind; df_ind, node_1list, dist_fact, lerr)
c write node set properties

brop_names(l) = #“FACE”
call expp(exoid, EXNSET, 20, prop_names{l), 4, ierr)

call expp(exoid, EXNSET, 21, prop_names(l), 5, lerr)

1000
2000

prop_array(1l)
prop_array(2)

prop_names(1l) = “FRONT”
call exppa(excid, EXNSET, prop_names(l), prop_array, lerr)

c

¢ write individual side sets

c
elem_1list (1) = 11
elem_list(2) = 12
side_list(1) =1
side_1list(2) = 2
dist_fact (1) = 30.0
dist_fact(2) = 30.1
dist_fact(3) = 30.2
dist_fact(4) = 30.3

call expsp (exoid, 30, 2, 4, ierr)
call expss (exold, 30, elem_list, side_list, ilerr)
call expssd (exoid, 30, dist_fact, ierr)

elem_list (1) = 13
elem_list(2) = 14
side_list (1) = 3
side_1list(2) = 4
dist_fact (1) = 31.0
dist_fact(2) = 31.1
dist_fact(3) = 31.2
dist_fact(4) = 31.3

call expsp (exoid, 31, 2, 4, ierr)
call expss (exoid, 31, elem_list, side_list, ierr)
call expssd (exold, 31, dist_fact, ierr)

¢ write concatenated side sets; this produces the same information as
¢ the above code which writes individual side sets
c

lds (1)
ids(2)

30
31

D-20

num _elem per_set (1)

nn
[]

num_elem_per_set(2) 2
num_df per_set(l) = 4
- num_df_ per_set(2) = 4
elem ind(l) = 1
elem ind(2) = 3
df_ind(1) =1
df_ind(2) = 5
elem list(l) = 11
elem list(2) = 12
elem list(3) = 13
elem_list(4) = 14
gide_1list(1) =1
side_1l1ist(2) = 2
side_list(3) = 3
side_list(4) = 4
dist_fact(1l) = 30.0
dist_fact(2) = 30.1
dist_fact(3) = 30.2
dist_fact(4) = 30.3
dist_fact(5) = 31.0
dist_fact(6) = 31.1
dist_fact(7) = 31.2
dist_fact(8) = 31.3

¢ commented out because individual side sets already written

c call expcss (exoid, i1ds, num_elem_per_ set, num _df_per_set,

¢ 1 elem_ind, 4f_ind, elem_list, side_1list, dist_fact,
c 2 jerr)

prop_names{l) = “COLOR”
call expp(exoid, EXSSET, 30, prop_names(l), 100, lerr)

call expp(exoid, EXSSET, 31, prop_names(l), 101, lerr)

c
¢ write QA records
c
num _ga_rec = 2
ga_record(l,1l) = “TESTWT fortran version”
ga_record(2,1) = “testwt”
ga_record(3,1) = #07/07/93”"
ga_record(4,1) = #15:41:33”"
ga_record(1l,2) = “FASTQ"
ga_record(2,2) = “fastqg”
qa_record(3,2) = #07/07/93”"
ga_record(4,2) = #16:41:33"
call expga (exoid, num_ga rec, ga_record, ilerr)
c
¢ write information records
c

num_info = 3

inform(l) = “This is the first information record.”
inform(2) = #“This is the second information record.”
inform(3) = “This is the third information record.”

call expinf (excid, num_info, inform, lerr)

D-21

c
c write results variables parameters and names
c

num_glo_vars 1

var_names (1) = “glo_vars”

call expvp (exoid, #g”, num_glo_vars, lerr)
call expvan (exold, “g”, num_glo_wvars, var_names, lerr)

num_nod_vars 2

var_namesg(l) = “nod_var0”
var_names(2) = “nod_varl”

call expvp (exoid, “n”, num _nod_vars, ierr)
call expvan (exocid, “n”, num_nod vars, var_names, lerr)

num_ele_vars 3
var_names (1)
var_names (2)
var_names (3)

“ele_var0”
“ele_varl”
“"ale_var2” .

call expvp (exoid, “e”, num_ele_vars, lerr)
call expvan (exold, “e”, num ele vars, var_names, lerr)

c
c write element variable truth table
c

k=20

do 30 1 = 1,num elem blk
do 20 1 = 1,num_ele_vars
truth_tab(j,1) =1
20 continue
30 continue .
call expvtt (exoid, num_elem_blk, num_ele_vars, truth_tab,ierr)

for each time step, write the analysis results;

the code below fills the arrays glob_var_vwvals,

nodal_var_vals, and elem_var_vals with values for debugging purposes;
obviously the analysis code will populate these arrays

anNQaQaaa0

whole_time step = 1
num_time_steps = 10

do 110 i = 1, num_time_steps
time_value = real(i)/100.

c
¢ write time value
c

call exptim (exoild, whole_time_ step, time value, ilerr)
c
¢ write global variables
c

do 50 j = 1, num glo_vars

glob_var _wvals(j) = real(j+l) * time_wvalue

50 continue

call expgv (exoid, whole_time_step, num glo vars,
1 glob_var_wvals, ierr)

D-22

c
¢ write nodal variables

c
do 70 k = 1, num_nod_vars
do 60 §J = 1, num _nodes
nodal_var_ vals(j) = real(k) + (real(d) * time value)

60 continue

call expnv (exold, whole_ time_step, k, num_nodes,

1 ’ nodal_var_vals, lerr)

70 continue
c

c write element variables

c
- do 100 k = 1, num ele_vars
do 90 J = 1, num_elem blk _
do 80 m = 1, num_elem in block(])
elem_var_vals(m) = real(k+l) + real(j+1l) +
1 {real(m)*time_value)
80 continue
call expev (exoid, whole_time_step, k, ebids(i),
1 num_elem_in_block(j), elem_wvar_vals, lerr)
90 continue
100 continue
whole_time_step = whole_time_step + 1
c
c update the data file; this should be done at the end of every time
¢ step to ensure that no data is lost if the analysis dies
c

call exupda (exold, lerr)
110 continue
o]
¢ close the EXODUS files
c

call exclos (exold, ilerr)

stop
end

D-23

FORTRAN

Read Example Code

The foliowing Fortran program reads data from an EXODUS II file:

program

naQaaa

testrd

This 1s a test program for the Fortran binding of the EXODUS II
database read routines

implicit none

include

integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer
integer

‘exodusIl.inc’

1in, iout, ierr

exold, num dim, num_nodes, num elem, num_elem_blk
num_node_ sets

num_side_sets

i1, j, elem map(2), comnect(4), node_list(10)
elem_list (10), side_1l1ist(10), 1ids(5)
num_elem_per_set(2), num_nodes_per_set(2)
num_df_per_ set(2)

num_df_1in set, num sideszs_in_set

df_ind(2), node_ind(2), elem_ind(2), num ga_rec, num_info
num_glo_vars, num_nod_vars, num_ele_vars
truth_tab(3,2)

num_time steps

num_elem_in_block(2), num nodes_per_elem(2)
num_attr(2)

num_ncdes_1in_set, num _elem in set

df_list_len, list_len, elem list_len

node_num, time_ step, var_index, beg_time, end_time
elem_num .

cpu_ws,lo_ws

num_props, prop_value

real time_value, time_values(10), var_values(10)

real x(

real attrib(l), dist_fact(8)
real vers, f£dum

character* (MXSTLN) coord names(3), ga_record(4,2), var_names(3)
character* (MXLNIN) inform(3), titl

character typ* (MXSTLN), cdum*1l

character* (MXSTILN) prop_names (3)

data iin /5/, iout /6/

open EXODUS

Qo

cpu_ws
lo_ws =

exold =

QN

II files

=0
0

exopen (“test.exo”, EXREAD, cpu_ws, io_ws, vers, lerr)

read database parameters

call exgini (exoid, titl, num_dim, num nodes, num_elem,

1

read nodal

Q

num_elem blk, num_node_sets, num side sets, ierr)

coordinates values and names from database

call exgcor (exoid, x, y, dummy, lerr)

D-24

call exgcon (exoid, coord_names, ierr)

c
¢ read element order map
c
call exgmap (exold, elem map, lerr)
c
c read element block parameters
c
c
call exgebi (exoid, ids, ierr)
do 40 1 = 1, num_elem blk
call exgeld (exoid, ids(i), typ, num_elem in block(l),
1 num_nodes_per_elem(i), num attr(i), ierr)
40 continue
c read element block properties */
call exing (exoid, EXNEBP, num_props, fdum, cdum, ierr)
call exgpn(exoid, EXEBLK, prop_names, lerr)
do 47 i = 1, num_props
do 45 3 = 1, num_elem blk
call exgp{exoid, EXEBLK, 1ds (J) ,prop_names (i) ,prop_value, lerr)
45 continue
47 continue
c
c read element connectivity
c
do 60 1 = 1, num _elem_blk
call exgelc (exoid, ids(i), connect, lerr)
60 continue
c
¢ read element block attributes
c
do 70 i = 1, num_elem_blk
call exgeat (exoid, 1ds(l), attrib, lerr)
70 continue
c

c read individual node sets
if (num_node_sets .gt. 0) then
call exgnsi (exoid, ids, ierr)
endif
do 100 1 = 1, num _node_sets

call exgnp (exoid, ids(i), num_nodes_in set,
1 num_df_in_set, ilerr)

call exgns (exoid, ids(i), mode_list, ierr)
call exgnsd (exoid, 1ids(1), dist_fact, lerr)

100 continue

D-25

c read node set properties

call exing (exocid, EXNNSP, num_props, fdum, cdum, lerr)
call-exgpn(exoid, EXNSET, prop_names, lerr)
do 107 1 = 1, num props

do 105 j = 1, num_node_sets
call exgp(excid,EXNSET, 1ds(J),prop_names(l),prop_value, ierr)

105 continue

107 continue

(o]

¢ read concatenated node sets; this produces the same information as
¢ the above code which reads individual node sets

c

call exing (exocid, EXNODS, num_node_sets, fdum, cdum, ierr)

1f (num_node_sets .gt. 0) then
call exing (exoid, EXNSNL, 1list_len, fdum, cdum, ilerr)

call exing (exoid, EXNSDF, list_len, fdum, cdum, lerr)

call exgens (exoid, ids, num nodes_per set, num df_per_set,

1 node_ind, df_ind, node_1list, dist_fact, ierr)

endif
c
¢ read individual side sets -
(o

1f (num_side_sets .gt. 0) then

call exgssl (exoid, ids, ilerr) »
endif

do 190 1 = 1, num_side_sets

call exgsp (exoid, 1ds (i), num_sides_in_set, num_df_in_set,
: ierr)

call exgss (exoid, ids(i), elem_list, side_list, lerr)
call exgssd (exold, ids(i), dist_fact, ilerr)
num_elem_in set = num_sides_in_set
190 continue
c read side set properties
call exing (exold, EXNSSP, num props, fdum, cdum, lerr)
call exgpn(exoid, EXSSET, prop_names, lerr)
do 187 1 = 1, num_props
do 195 j = 1, num_side_sets
call exgp(exold, EXSSET,1ds(]j),prop_names(i),prop_value,lerr)
195 continue
197 continue
call exing (excild, EXSIDS, num_side_sets, fdum, cdum, ierr)
1f (num_side_sets .gt. 0) then
call exing (exoid, EXSSEL, elem_ list_len, fdum, cdum, ierr)
call exing (exold, EXSSDF, 4df_list_len, fdum, cdum, lerr)

read concatenated side sets; this produces the same information as
the above code which reads individual side sets

anan

call exgcss (exoid, 1ds, num_elem per_ set, num_df per_set,
1 elem_ind, df_ind, elem_list, side_list, dist_fact,
2 ierr)
endif

D-26

[+] naao aa a0 a0 Q00 ana aa

aaa

a0

[N ¢}

read QA records
call exing (exoid, EXQA, num_ga_rec, fdum, cdum, ierr)

call exgga (exoid, ga_record, ierr)

read information records
call exing (exoid, EXINFO, num_info, fdum, cdum, lerr)

call exginf (exold, inform, ierr)

read global variables parameters and namés
call exgvp (exoid, “g¢g”, num_glo_vars, lerr)

call exgvan (exoid, “g”, num_glo_vars, var_names, ierr)

read nodal variables parameters and names
call exgvp (exold, ”n”, num_nod_vars, lerr)

call exgvan (exoid, *n”, num_nod_vars, var_names, lerr)

read element variables parameters and names
call exgvp (exoid, “e”, num_ele_vars, lerr)

call exgvan (exoid, “e”, num_ele_vars, var_names, lerr)

read element variable truth table

call exgvtt (exoid, num_elem blk, num ele_ vars, truth_tab, lerr)

determine how many time steps are stored

call exinq‘(exoid, EXTIMS, num_time_steps, fdum, cdum, lerr)

read time value at one time step
time_step = 3
call exgtim (exoid, time_step, time_value, ierr)
read time values at all time steps
call exgatm (excid, time_values, lerr)
var_index = 1

beg_time 1
end time -1

read all global variables at one time step

call exggv (exoid, time_step, num_glo_vars, var_values, ierr)
read a single global variable through time

call exggvt (exoid, var_index, beg_time, end_time, var_values,
1 ierr)

D-27

¢ read a nodal variable at one time step

(o
call exgnv (exoid, time_step, var_index, num nodes, var_values,
1 - jerr)

c

¢ read a nodal variable through time

[od
node_num = 1
call exgnvt (exoid, var_index, node_num, beg_time, end_time,
1 var_values, lerr)

c

c read an element variable at one time step

c

call exgebl (exoid, ids, ierr)
do 450 1 = 1, num_elem_blk

call exgev (exold, time_step, var_ index, ids(i),
1 num_elem_in block(i), var_values, lerr)

450 continue

c

¢ read an element varlable through time
[o] &

var_1index = 2
elem num = 2

call exgevt (exold, var_index, elem_num, beg_time, end_time,
1 var_values, lerr)

call exclos (exold, lerr)

stop
end

D-28

A
access mode 25, 26
ASCII version of file 22
attributes
description 9 _
number of 9, 65, 66, 68, 69
read 75
table of 9
write 73

B
boundary conditions 11, 12

C
character strings 5
clobber mode 23, 24
close file 27
concatenated node sets

description 11

read 91

write 87
concatenated side sets

description 15

read 112

write 108
connectivity array 71, 72
conventions

general 4

node ordering 9
convert

netCDF to ASCII 22

node list to side list 115
coordinate names

description 6

read 55

write 53
coordinates, see nodal coordinates
current 28

D
dimensionality 5, 29, 30, 31, 32
distribution factors, see side set; node set

E

efficiency issues A-1

Index

I-1

element attributes, see attributes
element block
description 8
ID 65, 66, 68, 69
ID, description 8
number of 5, 29, 30, 31, 32
parameters, read 68
parameters, write 65
read IDs 70, 128
element connectivity
description 9
read 72
write 71
element number map
description 7
read 61
write 59
element numbering 7, 8
element order map 8, 62, 64

element results, see element variable

element topology 9
element type 8, 65, 66, 68, 69
. table of 9
element variable 20
description 4
read values 152, 154
truth table 20
truth table, read 147
truth table,description 20
truth table,write 145
write values 149
elements
number of 5, 29, 30, 31, 32
error level 47
error messages C-1
error reporting 45
ex_close 27, B-1
ex_create 23, B-1
ex_cvt_nodes_to_sides 115, B-1
ex_err 45, B-1
ex_get_all_times 19, 143, B-1

ex_get_concat_node_sets 11, 91, B-1
ex_get_concat_side_sets 15, 112, B-2

ex_get_coord 6, 51, B-2
ex_get_coord_names 6, 55, B-2
ex_get_elem_attr 9, 75, B-2
ex_get_elem_blk_ids 8, 70, B-2
ex_get_elem_block 8, 68, B-2
ex_get_elem_conn 9, 72, B-2
ex_get_elem_num_map 7, B-2
ex_get_elem_var 20, 152, B-2
ex_get_elem_var_tab 20, 147, B-3
ex_get_elem_var_time 20, 154, B-3
ex_get_glob_var_time 19, 161, B-3
ex_get_glob_vars 19, 159, B-3
ex_get_info 6, 39, B-3

ex_get_init 5, 31, B-3

ex_get_map 8§, 64, B-3
ex_get_nodal_var 19, 165, B-3
ex_get_nodal_var_time 19, 167, B-3
ex_get_node_num_map 7, 58, 61, B-4
ex_get_node_set 11, 82, B-4
ex_get_node_set_dist_fact 11, 85, B-4
ex_get_node_set_ids 11, 86, B-4
ex_get_node_set_param 11, 79, B-4
ex_get_prop 18, 124, B-4
ex_get_prop_array 18, 128, B-4
ex_get_prop_names 18, 120, B-4
ex_get_ga 6, 35, B-4

ex_get_side_set 14, 100, B-4
ex_get_side_set_dist_fact 15, 104, B-4
ex_get_side_set_ids 14, 105, B-4
ex_get_side_set_node_list 14, 15, 106, B-5
ex_get_side_set_param 14, 96, B-5
ex_get_time 19, 141, B-5

ex_get var_names 19, 137, B-5
ex_get_var_param 19, 133, B-5
ex_inquire 41, B-5

ex_open 25, B-5

ex_opts 47, B-5
ex_put_concat_node_sets 11, 87, B-5
ex_put_concat_side_sets 15, 108, B-6
ex_put_coord 6, 49, B-6
ex_put_coord_names 6, 53, B-6
ex_put_elem_attr 9, 73, B-6
ex_put_elem_block 8, 65, B-6
ex_put_elem_conn 9, 71, B-6
ex_put_elem_num_map 7, B-6
ex_put_elem_var 20, 149, B-6

ex_put_elem_var_tab 20, 145, B-6
ex_put_glob_vars 19, 157, B-6
ex_put_info 6, 37, B-7
ex_put_init 5, 29, B-7
ex_put_map 8, 62, B-7
ex_put_nodal_var 19, 163, B-7
ex_put_node_num_map 7, 56, 59, B-7
ex_put_node_set 11, 81, B-7
ex_put_node_set_dist_fact 11, 83, B-7
ex_put_node_set_param 11, 77, B-7
ex_put_prop 18, 122, B-7
ex_put_prop_array 18, 126, B-7
ex_put_prop_param 18, 118, B-8
ex_put_qga 6, 33, B-8
ex_put_side_set 14, 98, B-8
ex_put_side_set_dist_fact 15, 102, B-8
ex_put_side_set_param 14, 94, B-8
ex_put_time 19, 139, B-8
ex_put_var_names 19, 135, B-8
ex_put_var_param 19, 131, B-8
ex_update 22, 28, B-8 ‘
examples

C code D-1, D-10

Fortran code D-17, D-24
EXCLOS 27, B-9

"EXCN2S 116, B-9

EXCRE 24, B-9
EXERR 46, B-9
EXGATM 19,.144, B-9
EXGCNS 11, 92, B-9
EXGCON 6, 55, B-9
EXGCOR 6, 52, B-9
EXGCSS 15, 113, B-10
EXGEAT9, 75, B-10
EXGEBI 8, 70, B-10
EXGELB 8, 69, B-10
EXGELC 9, 72, B-10
EXGENM 7, B-10
EXGEYV 20, 153, B-10
EXGEVT 20, 155, B-11
EXGGV 19, 160, B-11
EXGGVT 19, 162, B-11
EXGINF 6, 39, B-11
EXGINI 5, 32, B-11
EXGMAP 8, 58, 61, 64, B-11
EXGNNM 7, B-11

EXGNP 11, 80, B-11 EXPTIM 19, 139, B-17

EXGNS 11, 82, B-12 EXPVAN 19, 136, B-17
EXGNSD 11, 85, B-12 EXPVP 19, 132, B-17
EXGNSI 11, 86, B-12 EXPVTT 20, 146, B-17
EXGNV 19, 166, B-12 EXUPDA 22, 28, B-17
EXGNVT 19, 168, B-12 F

EXGP 18, 124, B-12
EXGPA 18, 129, B-12
EXGPN 18, 121, B-12

flush buffers 22, 28
function call summary B-1

EXGQA 6, 36, B-12 G

EXGSP 14, 97, B-13 global variable

EXGSS 14, 100, B-13 description 4, 19
EXGSSD 15, 104, B-13 read values 159, 161
EXGSSI 14, 105, B-13 write values 157
EXGSSN 14, 15, 107, B-13 I

EXGVAN 19, 138, B-13
EXGVP 19, 133, B-13
EXGVTT 20, 148, B-13
EXINQ 42, B-14

- EXOPEN 26, B-14
EXOPTS 47, B-14
EXPCNS 11, 88, B-14

information data

description 6

read 39

write 37
initialization 4, 29, 31
inquire parameters 41

EXPCON 6, 53, B-14 M
EXPCOR 6, 50, B-14 " model 4, 48
EXPCSS 15, 110, B-14 N

EXPEAT 9, 73, B-15
EXPELB 8, 66, B-15
EXPELC 9, 71, B-15
EXPENM 7, B-15

ncdump 22
netCDF 3, 15, 22
implementation of EXODUS A-1

EXPEV 20, 150, B-15 nodal coordinates
EXPGV 19, 158, B-15 description 6
EXPINF 6, 37, B-15 read 51
EXPINI 5, 30, B-15 wite 49

nodal variable
' description 4, 19

read values 165, 167
write values 163

node number map 58
description 7
write 56

node numbering 7

node ordering 9

EXPMAP 8, 62, B-16
EXPNNM 7, 56, 59, B-16
EXPNP 11, 78, B-16
EXPNS 11, 81, B-16
EXPNSD 11, 83, B-16
EXPNV 19, 164, B-16
EXPP 18, 123, B-16
EXPPA 18, 127, B-16
EXPPN 18, 119, B-17
EXPQA 6, 34, B-17
EXPSP 14, 95, B-17
EXPSS 14, 98, B-17
EXPSSD 15, 102, B-17

I-3

node set
concatenated 11, 87, 91
description 11
distribution factors 11, 77, 79, 83, 85
distribution factors,description 11
ID 11
node list 11
number of 5, 29, 30, 31, 32
read 79, 82
read IDs 86, 128
write 77, 81
nodes
number of 5, 29, 30, 31, 32

0]

object property
array 118, 126, 128
description 17
names 118, 120
value 18, 122, 124

open file 25

Q

quality assurance (QA) records
description 6
read 35
write 33

query database 41

R

results .
data description 19
element, see element variable
global, see global variable
nodal, see nodal variable
variable names 19, 135, 137
variable parameters 131, 133

S

side set
concatenated 15, 108, 112
description 12

distribution factors 14, 94, 96, 102, 104
distribution factors,description 15

element list 14

ID 14

node count list 15
node list 14, 106
node ordering 16
number of 5, 29, 30, 31, 32
parameters 14, 94, 96
read 100

read IDs 105, 128
side list 14

side numbering 13
write 98

T
testrd
C version D-10
Fortran version D-24
testwt
C version D-1
Fortran version D-17
time step
description 19
time value
description 19
read 141, 143
write 139
title 5, 29, 30, 31, 32
truth table, see element variable

U
update file 28

\'%
version 5, 25, 26

W

word size
compute 23, 24, 25, 26
/0 23, 24, 25, 26
I/O, description 5

X
XDR 3

INTERNAL DISTRIBUTION

MS0321
MS0441
MS0833
MS0441
MS0441
MS0441
MS0441
MS0441
MS0441
MS0441
MS0833
MS0441
MS0833
MS0819
MS0820
MS0439
MS0439
MS0439
MS0439
MS0439
MS0439
MS0439
MS0439
MS0439
MS0439
MS0439
MS0439
MS0439
MS0439
MS0439
MS0439
MS0841
- MS0836
MS0827
- MS0827
MS0827
MS0827
MS0827
MS0827
MS0827
MS0834
MS0834
MS0834
MSO0835

1400
1425
1503
1425
1425
1425
1425
1425
1425
1425
1503
1425
1503
1431
1432
1434
1434
1434
1434
1434
1434
1434
1434
1434
1434
1434
1434
1434
1434
1434
1434
1500
1501
1502
1502
1511
1511
1511
1511
1511
1512
1512
1512
1513

E. H. Barsis

S. W. Attaway
J. H. Biffle

T. D. Blacker
M. L. Blanford
W. J. Bohnhoff
J. R. Hipp

J. F. Mareda
C. J. Pavlakos
L. A. Schoof

M. K. Smith (100)

T. J. Tautges

T. J. Wilson

J. S. Peery

F. R. Norwood
J. L. Dohner

C. R. Dohrmann
G. R. Eisler

M. S. Eldred

C. W. Fulcher
T. Hinnerichs
D. W. Lobitz
D. B. Longcope
E. L. Marek

D. R. Martinez
G. G. Parker

J. R. Red-Horse
J. M. Redmond
G. M. Reese

D. J. Segalman
W. R. Witkowski
D. J. McCloskey
C. W. Peterson
A. E. Hodapp
P. J. Hommert
D. K. Gartling
J. S. Rottler

P. A. Sackinger
P. R. Schunk

J. A. Schutt

M. R. Baer

R. J. Gross

M. L. Hobbs

D. R. Helmich

MS0835
MSO0835
MS0443
MS0443
MS0443
MS0443
MS0443
MS0443
MS0443
MS0443
MS0443
MS0443
MS0443
MS0443
MS0443
MS0443
MS0437
MS0437
MS0437
MS0437
MS0437
MS0437
MS0437
MS0437
MS0437
MS0437
MS0437
MS0437
MS0437
MS0630
MS0629
MS0660
MS0660
MS1325
MS1325
MS9043
MS0827
MS0751

MS9043

MS1326
MS0955
MSI1111
MS0827
MS0834
MS1350
MS1328

1513
1513
1561
1561
1561
1561
1561
1561
1561
1561
1561
1561
1561
1561
1561
1561
1562
1562
1562
1562
1562
1562
1562
1562
1562

1562

1562
1562
1562
2800
2801
2861

- 2861

6313
6313
8743
1511
1611
8743
6312
1415
1421
1511
1512
6342
6342

. Hogan, Jr
. Skocypec

. Arguello

. Burchett
S Chambers
. W. Heinstein
. L. Hoffman

. W. Key

J. R. Koteras

H. S. Morgan

M. K. Neilsen

V. L. Porter

C. M. Stone

B. J. Thorne

J. R. Weatherby

G. W. Wellman

C.R. Adams

E. P. Chen

J. D. Gruda

K. W. Gwinn

E. J. Mello

K. E. Metzinger

E. D. Reedy

A. M. Sastry

Rl
zQom

mmg;a

K. W. Schuler

G. D. Sjaardema
A. M. Slavin

J. W. Swegle

R. K. Thomas
J. E. Jones

J.R. Yoder

M. E. Olson

R. R. Lober

J. E. Holland

J. Jung

M. Callabresi
M. W. Glass

D. S. Preece

V. K. Gabrielson
S. A. Shannon
C. A. Peterson
J. N. Shadid

P. L. Hopkins
A. M. Kraynik
A. H. Treadway
A. P. Gilkey

MS9018 8523-2 Central Technical Files

MS0899 13414 Technical Library (5)

MS0619 13416 Technical Publications

MS0100 7613-2 Document Processing
for DOE/OSTI (10)

