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Abstract

The research emphasis under this grant’s funding is in the area of algebraic multigrid
methods. The research has two main branches: 1) exploring interdisciplinary applications
in which algebraic multigrid can make an impact and 2) extending the scope of algebraic
multigrid methods with algorithmic improvements that are based in strong analysis.

The work in interdisciplinary applications falls primarily in the field of biomedical
imaging. Work under this grant demonstrated the effectiveness and robustness of multigrid
for solving linear systems that result from highly heterogeneous finite element method
models of the human head. The results in this work also give promise to medical advances
possible with software that may be developed.

Research to extend the scope of algebraic multigrid has been focused in several areas.
In collaboration with researchers at the University of Colorado, Lawrence Livermore Na-
tional Laboratory, and Los Alamos National Laboratory, the PI developed an adaptive
multigrid with subcycling via complementary grids. This method has very cheap comput-
ing costs per iterate and is showing promise as a preconditioner for conjugate gradient.
Recent work with Los Alamos National Laboratory concentrates on developing algorithms
that take advantage of the recent advances in adaptive multigrid research.

The results of the various efforts in this research could ultimately have direct use and
impact to researchers for a wide variety of applications, including, astrophysics, neuro-
science, contaminant transport in porous media, bi-domain heart modeling, modeling of
tumor growth, and flow in heterogeneous porous media. This work has already led to basic
advances in computational mathematics and numerical linear algebra and will continue
to do so into the future.
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Executive Summary

Research under this grant focused on the analysis, development and implementation of al-
gebraic multigrid methods. Such methods show great promise in increasing the efficiency of
modern computational science. Moreover, such work targeted applications stemming from
forward and inverse problems in discontinuous media.

The analysis and development of such methods has concentrated on adaptive multigrid
which automatically adjusts the multigrid components to improve efficiency. Success in such
an area would vastly expand the use of multigrid into the engineering and scientific commu-
nity where such users are generally not multigrid experts but require fast linear solvers in
computational experimentation.

Work under this grant led to the development of an adaptive algebraic multigrid method
that uses, so called, complementary grids. The method is notably cheap computationally per
iteration and shows promise as an efficient preconditioner, which is a common role for multigrid
methods. This work led to developing projects with two researchers at Los Alamos National
Laboratory which are made possible by recent advances in adaptive multigrid research.

The work funded under this grant demonstrated the efficiency of multigrid on a biomedical
application in brain topography. Algebraic multigrid methods were marketably faster than
the preexisting methods being used. If such 3-D current distributions can be computed
and visualized within an hour, clinical applications become possible. If it can be done in
real time, clinical utility will be ensured. The work under this grant demonstrated that an
efficient numerical solution based on algebraic multigrid is a promising direction in this field
of research. Moreover, multigrid methods are also noteworthy for their scalability on a large
class of problems. As such, multigrid methods have the potential to solve the currents and
fields in a whole head model (800,000 nodes) within a few seconds on a fast computer. Such
a result would benefit the field of brain modeling research.

Recent work with Los Alamos National Laboratory concentrates on developing algorithms
that take advantage of the recent advances in adaptive multigrid research. Current work in
the BoxMG implementation will be adding a general Full Approximation Scheme (FAS) based
simulation framework. FAS and linear multigrid are equivalent for linear problems. As such,
FAS is developed for nonlinear problems which are of importance to many DOE applications.
More specifically, in FAS the coarse-grid problem is solved for the full approximation rather
than the error equation. Existing research on adaptive AMG methods provides an excellent
starting point for adaption of the operators in the FAS hierarchy. The work on BoxMG
promises to leverage the direct connection to the physical problem, to aid in the development
and analysis of new techniques and error estimation.

The results of the various efforts in this research could ultimately have direct use and
impact to researchers for a wide variety of applications, including, astrophysics, neuroscience,
contaminant transport in porous media, bi-domain heart modeling, modeling of tumor growth,
and flow in heterogeneous porous media. This work has already led to basic advances in
computational mathematics and numerical linear algebra and will continue to do so into the
future.



Final Scientific/Technical Report

Research under this grant focused on the analysis, development and implementation of al-
gebraic multigrid methods. Such methods show great promise in increasing the efficiency of
modern computational science. Moreover, such work targeted applications stemming from
forward and inverse problems in discontinuous media.

1 Adaptive Algebraic Smoothers

Chartier spent the month of June 2007 at Los Alamos National Laboratory. A majority
of his time was spent in research collaboration with Bobby Philip a research scientist in the
Mathematical Analysis and Modeling Group. Chartier and Philip made considerable progress
on a new multigrid method that uses Local Sensitivity Analysis (LSA) to identify blocks of
variables in a linear system that are strongly coupled. With such information regarding the
coupling of variables, we construct stationary block iterative methods that can be used, for
instance, as smoothers in multigrid methods. The smoothers so constructed can be used in
the context of both geometric and algebraic multigrid methods. The method is suitable for
both constant and variable coefficient problems. Furthermore, the method has been applied
to systems arising from both scalar and coupled system partial differential equations (PDEs),
as well as linear systems not arising from PDEs. The simplicity of the method will allow it to
be easily incorporated into existing multigrid codes. Furthermore, it is possible to adaptively
vary the size and strength of the blocks leading to the construction of a parametrized family of
block iterative smoothers which can be tuned to the problem based on efficiency or convergence
criteria.

Giving the details of this method are beyond the scope of this progress report but are
available upon request. Chartier and Philip expect to submit a paper for peer review within
the coming month. The next subsection gives numerical results on a variety of problems to
emphasize the robustness of the method.

1.0.1 Varying anisotropy within the domain

The first example is from Section 1.3 in [19]. The underlying PDE is:

−(aux)x − (buy)y + cuxy = f(x, y) (1)

defined on a unit square with full Dirichlet boundary conditions. The problem is defined such
that a = b = 1 everywhere except in the upper left quarter of the unit square where b = 103

and the lower right quarter where a = 103. To split the domain into four regions with varying
anisotropies, c = 0 except in the upper right quarter where c = 2.

The discretized system is formed using a standard 5-point stencil and a (left-oriented)
7-point stencil for the diffusion and mixed derivative points of the PDE, respectively. As
a result of these varying coefficients, the system is isotropic in the lower left quarter of the
unit square but strongly anisotropic in the remaining quarters. The direction, however, of
the anisotropy varies in the remaining three quarters of the unit square with the direction of
strong connection lying in the x, y and diagonal directions for the upper left, lower right, and
upper right quarters, respectively. The varying directions of these anisotropies are reflected
in the smooth error produced after four iterations of pointwise Gauss-Seidel seen in Figure



Pointwise Block

‖r‖ Conv. Fac. ‖r‖ Conv. Fac.

1.704e+007 1.00000 1.704e+007 1.00000

2.580e+006 0.15138 2.908e+003 0.00017

7.049e+005 0.27318 9.142e+002 0.31444

3.736e+005 0.53000 6.060e+002 0.66285

2.666e+005 0.71357 4.764e+002 0.78607

Table 1: Pointwise and block smoothing results for PDE given in 1 defined with full Dirichlet
boundary conditions. Algebraic block smoothing created 285 blocks.
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Figure 1: Algebraically smooth error after four iterations of (a) pointwise smoother and (b)
block smoother for the scalar PDE (1).

1 (a). Note that the numerics use the discretized system which included both A and f were
supplied by Klaus Stüben.

In Table 1, pointwise Gauss-Seidel converges toward the solution. However, the adaptive
algebraic smoother performs much better particularly in the first iteration which is important
for multigrid methods. The adaptive algebraic smoother forms blocks that geometrically
follow the anisotropies within each region, which results in geometrically smooth error, as
seen in Figure 1 (b), suggesting its usefulness for geometric multigrid methods. Note that the
largest error occurs in the quarter of the domain that is isotropic which is where the block
smoother chooses only pointwise smoothing.

1.1 Systems of Partial Differential Equations

System PDEs are traditionally difficult problems for algebraic multigrid methods. This section
demonstrates the ability of the adaptive algebraic smoother to define strong couplings for
such problems and its affect on the block smoothing iteration. For simplicity the examples
presented in this section are 2 × 2 coupled systems of PDEs where AMG is known to have



Pointwise Block

‖r‖ Conv. Fac. ‖r‖ Conv. Fac.

33.43388 1.00000 33.43388 1.00000

4.91278 0.14694 0.06436 0.00193

1.32823 0.27036 0.02394 0.37189

0.73113 0.55045 0.00427 0.17855

0.53874 0.73686 0.00204 0.47660

Table 2: For α = 0.1, algebraic block smoothing created 66 blocks for ǫ = 0.01 and k = 0.01
in system (2).

Pointwise Block

‖r‖ Conv. Fac. ‖r‖ Conv. Fac.

2.68835e+003 1.00000e+000 2.68835e+003 1.00000

2.89686e+009 1.07756e+006 2.65285e-001 0.00010

1.06165e+014 3.66484e+004 2.61072e-005 0.00010

3.94519e+018 3.71608e+004 2.56705e-009 0.00010

1.47601e+023 3.74130e+004 2.51757e-013 0.00010

Table 3: For α = 0.1, the adaptive algebraic smoother created 1089 blocks for ǫ = 0.01 and
k = 100 in system (2).

trouble.
We consider two model systems where the anisotropy in each variable differs. These

systems were provided by Jim E. Jones [13]. In order to introduce the system of interest,
define

−△ǫ:x ≡





−1
−ǫ 2 + 2ǫ −ǫ

−1



 and −△ǫ:y ≡





−ǫ

−1 2 + 2ǫ −1
−ǫ



 .

Therefore, this section considers the linear system:

(

−△ǫ:x kI

−kI −△ǫ:y

)(

u

v

)

=

(

f

g

)

. (2)

For the numerics to follow, we will set ǫ = 0.01.
In the first system, the diagonal blocks have the 5-point anisotropic Laplacian with ǫ =

0.01. Again, the direction of the anisotropy differs between the blocks. In order to have a
coupled system, we set k = 0.01.

In Table 2, pointwise Gauss-Seidel converges toward the solution. However, the adaptive
algebraic smoother performs much better both in early and later iterations. The system is
2178 × 2178 with a total of 66 blocks where each block contains 33 variables.

In the second system, we keep ǫ = 0.01. However, we create a large off-diagonal element
by setting k = 100. In fact, the linear system is no longer (and far from being) diagonally
dominant. The adaptive algebraic smoother’s success on problems difficult for pointwise
Gauss-Seidel is clearly seen in this example. In Table 3 we see clear divergence for pointwise
Gauss-Seidel. The adaptive algebraic smoother performs with low convergence rates. Again,



the system is 2178 × 2178. The block smoother chooses 1089 blocks with each being a 2 × 2
block.

2 Forward-inverse computations of bioelectric and biomag-
netic fields of human head and torso

Chartier continued collaboration with Ceon Ramon of the Electrical Engineering Department
at the University of Washington on problems involving magnetoencephalography to detect
neuronal activity in the brain. The discretized system

Ax = b, (3)

is generated from MEG (magnetoencephalography) and EEG (electroencephalography) data
of the head and/or torso, where A is a sparse matrix with approximately 1.5 million degrees
of freedom.

The linear systems in this project stem from highly heterogeneous finite element method
(FEM) models of the human head. Such models have recently become increasingly popular
for EEG (electroencephalography) simulations and inverse reconstructions of the electrical
sources in the cortex. Recent work [17] has studied how the FEM models influence the
forward and inverse simulations. For more information, see [10, 18, 11].

Figure 2: A segmented slice, marked as slice number 30, used in the FEM model. Note the
detailed structure of the ears, eye sockets, sinus and oral cavities, and occipital hole. This is
the 30th slice starting from the left side of the subject and is located 1.7 cm to the right from
the midline of the brain.

Under this grant funding, Chartier along with with undergraduate Tim Rankin demon-
strated the effective role multigrid methods can play in such simulations. The sparse matrix



equations of interest result from a FEM model of the head that produces the necessary electric
potentials and fluxes. A 3-D view of the model and the coordinate system is given in Figure
3.

Figure 3: A three dimensional view of the head model superimposed with 145 EEG electrode
positions.

Such a FEM model results in a sparse matrix equation that involves over 1.5 million
variables. The research demonstrated the effectiveness of SAMG multigrid algorithm, which
is an algebraic multigrid package produced by the Fraunhofer-Institute for Algorithms and
Scientific Computing [19, 20]. The results were compared to the existing FEM solver used
by Ramon’s group in their simulation code. SAMG was found to perform with comparable
speeds for Ramon’s set of model problems. Further, SAMG performed at a rate at least 30
times faster than the method previously used in Ramon’s FEM code.

During the 2007–2008 academic year, Chartier met with Ramon to discuss testing publicly
available AMG codes on these sets of problems and comparing their performance to SAMG.
Further, Ramon and Chartier intend to pursue implementing such ideas in Matlab so they
can be explored by researchers and students in biomedical engineering.

3 BoxMG: Robust variational multigrid on structured grids

The Black Box Multigrid (BoxMG) (introduced in [7] and further developed in [8, 9]) is a
robust variationally based multigrid solver for symmetric elliptic PDEs discretized on logically
structured two- or three-dimensional grids. Much like AMG the user is only required to
provide the fine-grid discretization and an initial guess for the solution. It uses standard
coarsening, so it coarsens the problem by a a factor for 4 in two dimensions and 8 in three
dimensions. The interpolation in BoxMG is constructed from the discrete operator such that it
approximately preserves the continuity of the normal flux (i.e., with discontinuous coefficients
it is not the gradient of the solution is not continuous). Using this operator-induced technique
in conjunction with the variational construction of coarse-grid operators BoxMG constructs
the entire hierarchy of operators that are needed. Relaxation is either colored Gauss-Seidel,
or alternating-line relaxation in two dimensions and alternating-plane relaxation in three
dimensions. BoxMG was recently released as an open source project under the Lesser GNU



Figure 4: A compass-based definition of an arbitrary 9-point stencil (left). A 9-point sym-
metric stencil defined using a cell-based nomenclature (right).

Public License (LGPL), and is available on the web (https://software.lanl.gov/boxmg).
The software is already being used by researchers for a wide variety of applications, including,
bi-domain heart modeling [2], modeling of tumor growth [12], and flow in heterogeneous
porous media [14, 15, 16]. Both OpenMP and MPI-based parallel versions are available as
well, so users that find it useful can migrate their codes to these platforms easily.

Current work in the BoxMG implementation will be adding a general Full Approximation
Scheme (FAS) based simulation framework. FAS and linear multigrid are equivalent for linear
problems. As such, FAS is developed for nonlinear problems which are of importance to many
DOE applications. More specifically, in FAS the coarse-grid problem is solved for the full
approximation rather than the error equation. For more information, see ([6], chapter 6 or
[21], section 5.3). Existing research on adaptive AMG methods [4, 3, 5] provides an excellent
starting point for adaption of the operators in the FAS hierarchy.

To this end, Chartier along with David Moulton (Los Alamos National Laboratory) and
Scott MacLachlan (Tufts University) continue their collaborative work to integrate existing
research on adaptive AMG methods into BoxMG. The hope is to leverage the direct connection
to the physical problem, to aid in the development and analysis of new techniques and error
estimation.

In November 2008, Chartier visited Tufts University where Moulton also visited in order
for MacLachlan, Moulton and Chartier to begin work on building the common infrastructure
necessary to integrate adaptive multigrid ideas into BoxMG. By the end of the visit, the
framework was in place for continued development of the code.

While work and discussions continued, a visit by Chartier to Tufts in the fall of 2009
accelerated development. Chartier and MacLachlan were able to complete one implementation
of BoxMG with adaptive ideas. The following gives a short overview of the method.

3.0.1 Adaptive Process

Let BoxMG(x,b) denote one call to the standard BoxMG solver with initial guess x and
right-hand side b. Assume that the vector b is supplied by the user. Then the adaptive
process for BoxMG follows

1. Let x be a random vector and run BoxMG(x,0).

2. Let k = NOG be the index of the finest grid and set x(k) = x.



3. Relax on A(k)x(k) = 0 until (x(k))T A(k)x(k) = (x(k))T r(k) is “stable”.

4. Redefine interpolation P k
k−1 and coarse grid operator A(k−1) = (P k

k−1)
T A(k)P k

k−1.

5. If k > 1, let x(k−1) = (x(k))c (that is, inject x(k) onto grid k − 1), set k = k − 1, and go
to Step (3). Otherwise, continue.

6. Let x be a random vector and run BoxMG(x,0). If cycling is inefficient, go to Step (2),
passing the present x as a smooth prototype. Otherwise, continue.

7. Run BoxMG(y,b) where y be a random vector until convergence is achieved.

3.0.2 Interpolation

From above, Step (4) takes the most time, care and effort from MacLachlan, Moulton and
Chartier. Suppose x(k) is a smooth error prototype obtained in Step (3) above. We wish to
adjust the interpolation operator P k

k−1 to accommodate x(k).
Partition the fine grid k as F ∪ C, where C consists of the coarse grid nodes from grid

k−1 and F contains the remaining fine grid nodes. As in standard BoxMG, the values at the
nodes in C are simply injected onto the fine grid. Standard coarsening implies that we must
consider the following three cases when interpolating to the F -nodes. An F -node has coarse
grid neighbors

(a) to the North and South,

(b) to the East and West, or

(c) neither, in which case the F -node has coarse neighbors to the Northwest, Northeast,
Southeast, and Southwest.

In what follows, we consider (a). An analogous interpolation scheme would be used for
(b). The final case is handled exactly as in standard BoxMG, using, of course, the newly
interpolated values obtained in (a) and (b). As such, we implicitly assume that the necessary
adaptivity for (c) is already sufficiently built into the nodes interpolated in (a) and (b). For
(a), we use the prototype error vector produced through the adaptive process given above
to adjust the interpolation weights to the node associated with the stencil entry −SijW , for
example. In particular, the weights for interpolation to this point are now adjusted from the
prototype error vector.

Initial numerical results produced increased robustness of BoxMG. However, if we take

Au = 0.

and alter this to:
SASx = 0, (4)

where S is a diagonal matrix with sii = 10di and di ∈ (0, 103), adaptive cycling methods
found in [4, 3, 5] recover suitable interpolation weights even with the drastic change in the
geometric nature of the algebraic smooth error.

This was not the case for the first implementation of an adaptive BoxMG algorithm. The
group suspects that using a standard BoxMG definition for interpolation of F -nodes with



Northwest, Northeast, Southeast and Southwest neighbors is potentially the culprit. More
analytical study of the algorithm will uncover the truth of this suspicion or lead to insight
into another algorithmic decision that limits the algorithm in this way.

The group continues to study this method and discusses a method in which interpolation
follows a more AMG style of interpolation. Comparing both efficiency and robustness of such
methods is the goal of the group. Chartier anticipates working with an undergraduate student
during the summer of 2010 to continue work on this project.

4 Summary

The results of the various efforts in this research could ultimately have direct use and impact
to researchers for a wide variety of applications, including, astrophysics, neuroscience, con-
taminant transport in porous media, bi-domain heart modeling, modeling of tumor growth,
and flow in heterogeneous porous media. This work has already led to basic advances in
computational mathematics and numerical linear algebra and will continue to do so into the
future.



5 Conference Presentations and Journal Articles

5.1 Conferences and talks

1. Session Co-organizer – Adaptive Algebraic Multigrid Methods, SIAM Annual Meeting,
Denver, Colorado, July 2008.

2. Department of Mathematics Colloquium, Wake Forest University, Winston-Salem, North
Carolina. October 2008. Improving on your Mistakes: solving linear systems iteratively.

3. Department of Applied Mathematics Seminar, University of Washington, Seattle, Wash-
ington, April, 2008. Adaptive Block Smoothing.

4. Department of Mathematics Seminar, Willamette University, Salem, Oregon. April
2008. Improving on your Mistakes: solving linear systems iteratively.

5. Department of Mathematics Colloquium, Western Michigan University, Kalamazoo,
Michigan. March 2009. Adaptive Block Smoothing.

6. Invited lecture. Math Colloquium, Appalachian State University, Boone, North Car-
olina. October 2009. Improving on your Mistakes: solving linear systems iteratively.

7. Invited lecture by undergraduate assistant, Southeastern Ranking and Clustering Work-
shop, August 2009. Fiedler’s Method.

8. Florida Institute of Technology, Melbourne, Florida. March 2010. Improving on your

Mistakes: solving linear systems iteratively.

Journal articles

1. Efficiency of Multigrid Algorithms for Head Models on Electroencephalography Simu-

lations (with T. Rankin∗ and C. Ramon), International Journal of Pure and Applied
Mathematics 45 (2008) 3, 349–357.

2. Spectral element agglomerate AMGe (with R. D. Falgout, V. E. Henson, J. E. Jones,
T. A. Manteuffel, S. F. McCormick, J. W. Ruge, and P. S. Vassilevski), in Domain
Decomposition Methods in Science and Engineering XVI, 513–521, Lecture Notes in
Computational Science and Engineering 55, Springer, Berlin, 2007.

3. Philip, Bobby and Timothy Chartier, Adaptive Algebraic Smoothers (with B. Philip),
submitted.

4. Adaptive multigrid via subcycling on complementary grids (with D. Orr), in progress.

5. Robust and Adaptive Multigrid Methods: comparing structured and algebraic approaches

(with S. MacLachlan and D. Moulton)



6 Students supported

1. Undergraduate, Spring 2009 – Implementing and testing algebraic block smoothers
within Algebraic Multigrid.

2. Undergraduate, Spring 2009 – Studying robustness and efficiency of block smoothers to
solve linear system formulation of PageRank.

3. Undergraduate, Summer 2009 – Analyzed the use of algebraic block smoothing methods
as clustering methods and also the use of clustering methods to form algebraic blocks
for iterative relaxation.

4. Undergraduate, Summer 2009 – Analyzed the use of a measure of algebraic strength
from research in algebraic block smoothers in the context of classical AMG.

5. Undergraduate Fall 2009 - Improvement of MATLAB implementation of AMG and
potential of AMG as a solver for M-matrices stemming from ranking problems.

6. Undergraduate Fall 2008, Spring 2009 – Studied robustness and efficiency of block
smoothers to solve linear system formulation of PageRank.

7. Undergraduate Summer 2008 – Performed algorithm development of adaptive BoxMG
for LANL.

8. Undergraduate Summer 2008 – Analyzed preconditioning and adaptive multgrid via
subcycling.

9. Undergraduate, Summer 2007 – Continued analysis of adaptive multigrid method as a
preconditioner and inclusion of preconditioning into the adaptive cycling.
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[19] K. Stüben. Algebraic multigrid (AMG): An introduction with applications. Gesellschaft

für Mathematik und Datenveranbeitung, Nr. 70, 1999.
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