

Editorial

Special Issue for the 9th International Conference on Carbonaceous Particles in the Atmosphere

A.W. Strawa¹, T.W. Kirchstetter², and H. Puxbaum³

¹ NASA-Ames Research Center, Moffett Field, CA, USA

² Lawrence Berkeley National Laboratory, Berkeley, CA, USA

³ Vienna University of Technology, Vienna, Austria

Carbonaceous particles are a minor constituent of the atmosphere but have a profound effect on air quality, human health, visibility and climate. The importance of carbonaceous particles has been increasingly recognized and become a mainstream topic at numerous conferences. Such was not the case in 1978, when the 1st International Conference on Carbonaceous Particles in the Atmosphere (ICCPA), or “Carbon Conference” as it is widely known, was introduced as a new forum to bring together scientists who were just beginning to reveal the importance and complexity of carbonaceous particles in the environment. Table 1 lists the conference dates, venues in the series as well as the proceedings, and special issues resulting from the meetings. Penner and Novakov (Penner and Novakov, 1996) provide an excellent historical perspective to the early ICCPA Conferences. Thirty years later, the ninth in this conference series was held at its inception site, Berkeley, California, attended by 160 scientists from 31 countries, and featuring both new and old themes in 49 oral and 83 poster presentations. Topics covered such areas as historical trends in black carbon aerosol, ambient concentrations, analytic techniques, secondary aerosol formation, biogenic, biomass, and HULIS¹ characterization, optical properties, and regional and global climate effects. The conference website, <http://iccpa.lbl.gov/>, holds the agenda, as well as many presentations, for the 9th ICCPA. The 10th ICCPA is tentatively scheduled for 2011 in Vienna, Austria.

The papers in this issue are representative of several of the themes discussed in the conference. Ban-Weiss et al., (Ban-Weiss et al., accepted) measured the abundance of ultrafine particles in a traffic tunnel and found that heavy duty diesel trucks emit at least an order of magnitude more ultrafine particles than light duty gas-powered vehicles per unit of fuel burned. Understanding of this issue is important as ultrafine particles have been shown to adversely affect human health (Lighty et al., 2000; Pope and Dockery, 2006). Gan et al. (Gan et al., accepted) examined the indoor air quality aboard submarines and found that the diesel particulate matter concentrations exceeded the EPA 24 hour standard. Claeys et al. (Claeys et al., accepted) studied the importance and sources of secondary organic aerosol (SOA) in remote marine environment during a period of high biological activity. Methanesulphonate was the major SOA compound detected and there was no evidence for SOA from isoprene. The optical properties of

¹ HULIS is an acronym for HUMic-LIKE Substances and denotes particles that contain humic and fulvic acids (cf. Gruber, E.R., and Rudich, Y., Atmospheric HULIS: How humic-like are they? A comprehensive and critical review, *Atmos. Chem. Phys.*, 6, 729-753, 2006.)

gasoline and diesel vehicle particulate emissions and their relative contribution to radiative forcing was studied by Strawa et al. (*Strawa et al.*, accepted).

Characterization and source apportionment of carbonaceous particles continues to be an issue of concentrated research. Trompeter, et al. (*Trompeter et al.*, accepted) determined factors influencing ambient concentrations of carbonaceous particulate matter within a New Zealand air shed. The results of Cerqueira et al., (*Cerqueira et al.*, accepted) indicated that elemental carbon (BC)² is removed from the atmosphere by wet deposition less efficiently than water insoluble organic carbon (WIOC), and in turn this species is removed less efficiently than sulfate. Jia et al., (*Jia et al.*, accepted) determined that saccharides can be used as tracers for the seasonal change of carbohydrate production and utilization in a local ecosystem. Lin et al. (*Lin et al.*, accepted) found that HULIS comprised a significant fraction of water soluble organic carbon (WSOC) in an ambient aerosol in rural south China and in fresh biomass burning aerosols. Sources are postulated to include formation in cloud droplets, secondary formation through heterogeneous reactions and primary emissions from biomass burning. Ram et al. (*Ram and Sarin*, accepted) provide the first comprehensive data set on atmospheric abundance of EC, organic carbon (OC), and WSOC over the Indo-Gangetic Plain in northern India.

Improved methodologies to better characterize carbonaceous particles is also a topic of research. This special issue contains several papers related to new techniques. Proton backscatter methodology was explored by Castaneda et al. (*Castaneda et al.*, accepted) to measure carbon and oxygen concentrations in particulate matter. Vander Wal, et al. (*Vander Wal et al.*, accepted) explored the use of high-resolution transmission electron microscopy (HRTEM) images and X-ray photoelectron spectroscopy (XPS) data to identify the sources of carbonaceous particles. Using gas chromatograph – mass spectroscopy (GC-MS) and gas chromatograph – flame ionization detection (GC-FID) techniques, Kundu et al., (*Kundu et al.*, accepted) showed that stable carbon and nitrogen isotopes can explain biomass burning mechanism, and showed evidence of the chemical evolution of aerosols during an intense biomass burning period in Rondônia, Brazil (Amazonia). Based on particle-resolved model simulations Riemer et al. (*Riemer et al.*, accepted) present a new method for calculating the aging time-scale of particles containing BC.

The research presentations and discussions at the 9th ICCPA demonstrated that the state of knowledge of atmospheric carbonaceous particles and an awareness of their importance has increased dramatically since the 1st ICCPA in 1978. It was also apparent that more work needs to be done if we are to fully understand the climate and air quality impacts of carbonaceous particles in the environment. Thus it is appropriate to conclude this introduction with a brief summary of open questions and research needs in the carbonaceous aerosol community.

² This aerosol component is variously termed ‘elemental’, ‘graphitic’, or ‘black’ carbon depending partly on the measurement method. The inconsistent use of these terms and their precise definitions has been the subject of ongoing debate since the first Carbon Conference and represents one of the major hurdles that this research community has not yet successfully resolved. For consistency in this preface, we will use the term elemental carbon although several papers in the special issue use the terms black or graphitic carbon.

The uncertainty in our ability to accurately quantify the air pollution-induced perturbation of Earth's radiation balance is mostly due to our lack of understanding of the processes responsible for aerosol radiative forcing (Solomon *et al.*, 2007). Aerosols are short-lived in the atmosphere, surviving from hours to weeks before they are removed by wet or dry deposition, and thus can have significant temporal and regional variation. Regionally, the aerosol radiative forcing can be much larger than green-house gases, and can redistribute enough energy in the atmosphere to impact the hydrological cycle (Ramanathan and Carmichael, 2008; Russell *et al.*, 1997). Recent studies have improved source identification and apportionment (Bond *et al.*, 2004; Novakov *et al.*, 2005; Streets *et al.*, 2003) but more work is required to refine these estimates. Recent work has identified that carbonaceous particles absorb more sunlight than previously thought (Bond and Bergstrom, 2006; Schnaiter *et al.*, 2005). Further research is required to better quantify the amount of light absorbed by carbonaceous particles in the visible and ultra-violet spectrum (Kirchstetter *et al.*, 2004). A more thorough knowledge of the chemical composition of carbonaceous particles is important. The composition of particles affects their interaction with solar radiation and the hydrological cycle, cloud scavenging and aqueous chemistry, and the ability of carbonaceous particles to form CCN [Facchini, 2003, Fuzzi, *et al.*, 2006; Ghan and Schwartz (2007)]. At present only about 10%-20% of the organic mass of carbonaceous aerosol can be identified (Puxbaum *et al.*, 2000; Rogge *et al.*, 1993) although a range of new oxygenated organic compounds will increase the identified OC on the molecular level substantially (e.g. anhydrosugars, tetrols, and further new bio-aerosol markers) (Bauer *et al.*, 2008; Claeys *et al.*, 2007; Puxbaum *et al.*, 2007; Surratt *et al.*, 2006). The evolution of carbonaceous particles, particularly EC, changes the amount of light they scatter and absorb with consequences for climate (Hansen and Sato, 2001; Jacobson, 2001; Menon, 2004).

Carbonaceous particle composition includes heavy metals and polycyclic aromatic hydrocarbons (PAH), which can be toxic, and the importance of ultrafine particles which can be inhaled deep into lungs is now being recognized. Epidemiological studies have linked pulmonary disease and mortality to the inhalation of particulate matter (Lighty *et al.*, 2000; Pope and Dockery, 2006). The specific mechanisms responsible for this linkage are not fully understood.

Future advances in our knowledge of carbonaceous particles, their distribution, and transformation processes will require a more coordinated use of the tools at hand. These tools include laboratory, field, and satellite observations, as well as sophisticated models that more accurately describe the processes involved. Recent call for such integrated approaches (cf. (Charlson, 2001; Diner, 2004; Trenberth *et al.*, 2002) have not been fully embraced by the research community. More integrated studies will be required to advance our understanding of the mechanisms by which carbonaceous particles impact our climate and health.

Acknowledgements

We would like acknowledge the support of the conference sponsors, the California Air Resources Board, the Department of Energy, the National Science Foundation, and Magee Scientific.

We thank again Dr. Steve Chu, who has since become the United States Secretary of Energy, for addressing the conference, as well as the many people who contributed to the success of this meeting, including the scientific committee, the conference and program chairs, keynote speakers, and especially the local organizers.

Work was supported by the U.S. Department of Energy under Contract No. DE-AC02-05CH11232.

Table 1 - 30 Years of ICCPA

Year and Venue	Proceedings and Special Issues
1978, Berkeley	Lawrence Berkeley National Laboratory, Report #LBL-9037, 1979
1983, Linz	Science of the Total Environment, 36, 1984
1987, Berkeley	Aerosol Science and Technology, 10(1&2), 1989; 12(1) 1990
1991, Vienna	Atmospheric Environment, 27A (8), 1993
1994, Berkeley	J. Geophysical Research, 101(D14), 1996
1997, Vienna	Atmospheric Environment, 33(17), 1999
2000, San Juan	J. Geophysical Research, 107(D21), 2002
2004, Vienna	Atmospheric Chemistry and Physics, Special Issue 2005
2008, Berkeley	J. Aerosol Science

References

Ban-Weiss, G.A., Lunden, M.M., Kirchstetter, T.W., and Harley, R.A., Size-Resolved Particle Number and Volume Emission Factors for On-Road Gasoline and Diesel Motor Vehicles, *J. Aerosol Sci.*, accepted.

Bauer, H., Claeys, M., Vermeylen, R., Schueller, E., Weinke, G., Berger, A., and Puxbaum, H., Arabitol and mannitol as tracers for the quantification of airborne fungal spores., *Atmos. Environ.*, 42 (3), 588-593, 2008.

Bond, T.C., and Bergstrom, R.W., Light absorbing by carbonaceous particles: An investigative review, *Aerosol Sci. Tech*, 41 (1), 27-47, 2006.

Bond, T.C., Streets, D.G., Yarber, K.F., Nelson, S.M., Woo, J.-H., and Klimont, Z., A technology-based global inventory of black and organic carbon emissions from combustion, *J. Geophys Res.*, 109, D14203, 2004.

Castaneda, C.M., Ashbaugh, L., and Wakabayashi, P., Use of proton backscattering to determine the carbon and oxygen content in fine particle samples deposited on PTFE((CF₂)_n) membranized disk filters, *J. Aerosol Sci.*, accepted.

Cerqueira, M., Pio, C., Legrand, M., Puxbaum, H., A., K.-G., Afonso, J., Preunkert, S., Gelencsér, A., and Fialho, P., Particulate carbon in precipitation at European background sites, *J. Aerosol Sci.*, accepted.

Charlson, R.J., Extending atmospheric aerosol measurements to the global scale, *IGACtivities Newsletter*, 25, 11-14, 2001.

Claeys, M., Szmigielski, R., Kourtchev, I., Van der Veken, P., Vermeylen, R., Maenhaut, W., Jaoui, M., Kleindienst, T., Lewandowski, M., Offenberg, J., and Edney, E., Hydroxydicarboxylic Acids: Markers for Secondary Organic Aerosol from the Photooxidation of α -Pinene., *Environ. Sci. & Tech.*, 41 (5), 1628-1634, 2007.

Claeys, M., Wang, W., Vermeylen, R., Kourtchev, I., Chi, X., Farhat, F., Surratt, J.D., Gómez-González, Y., Sciare, J., and Maenhaut, W., Chemical characterisation of marine aerosol at Amsterdam Island during the austral summer of 2006-2007, *J. Aerosol Sci.*, accepted.

Diner, D.J., PARAGON An integrated approach for characterizing aerosol climate impacts and environmental interactions, *Bull. Am. Meteorol. Soc.*, 85 (10), 1491-1502, 2004.

Gan, T.-H., Mazurek, M., Hanhela, P.J., and G., R., Characteristics of Submarine Engine Diesel Particulates in the Maritime Environment, *J. Aerosol Sci.*, accepted.

Graber, E.R., and Rudich, Y., Atmospheric HULIS: How humic-like are they? A comprehensive and critical review, *Atmos. Chem. Phys.*, 6, 729-753, 2006.

Hansen, J.E., and Sato, M., Trends of measured climate forcing agents., *Proc. Natl. Acad. Sci. U.S.A.*, 98 (14), 14778-14783, 2001.

Jacobson, M.Z., Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, *Nature*, 409, 2001.

Jia, Y., Clements, A.L., and Fraser, M., Saccharide Composition in Atmospheric Particulate Matter in the Southwest US and Estimates of Source Contributions, *J. Aerosol Sci.*, accepted.

Kirchstetter, T.W., Novakov, T., and Hobbs, P.V., Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon, *J. Geophys. Res.*, 109, D21208, 2004.

Kundu, S., Kawamura, K., Andreae, M.O., Andreae, T.W., and Hoffer, A., Diurnal variation in the water-soluble inorganic ions, organic carbon and isotopic compositions of total carbon and nitrogen in biomass burning aerosols from the LBA-SMOCC campaign in Rondônia, Brazil, *J. Aerosol Sci.*, accepted.

Lighty, J., Veranth, J.M., and Sarofim, A., Combustion Aerosols: Factors Governing Their Size and Composition and Implications to Human Health., *J. Air & Waste Mngt. Ass.*, 50, 1565-1618, 2000.

Lin, P., Huang, X.-F., He, L.-Y., and Yu, J., Abundance and Size Distribution of HULIS in Ambient Aerosols at a Rural Site in South China, *J. Aerosol Sci.*, accepted.

Menon, S., Current Uncertainties in Assessing Aerosol Effects on Climate, *Annu. Rev. Environ. Resource.*, 29, 1-30, 2004.

Novakov, T., Menon, S., and Kirchstetter, T.W., Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing, *J. Geophys. Res.*, 110 (D21205), 2005.

Penner, J.E., and Novakov, T., Carbonaceous particles in the atmosphere: A historical perspective to the Fifth International Conference on Carbonaceous Particles in the Atmosphere, *J. Geophys. Res.*, 101 (14), 19373-19378, 1996.

Pope, C.A., and Dockery, D.W., Health effects of fine particulate air pollution: Lines that connect., *J. Air & Waste Mngt. Ass.*, 56, 709-742, 2006.

Puxbaum, H., Caseiro, A., Sanchez-Ochoa, A., Kasper-Giebl, A., Claeys, M., Gelencser, A., Legrand, M., Preunkert, S., and Pio, C., Levoglucosan levels at background sites in Europe for assessing the impact of biomass combustion on the European aerosol background., *J. Geophys. Res.*, 112 (D23S05), 2007.

Puxbaum, H., Rendl, J., Allabashi, R., Otter, L., and Scholes, M.C., Mass balance of atmospheric aerosol in a South-African subtropical savanna (Nylsvley, May 1997), *J. Geophys. Res.*, 105, 20697-20706, 2000.

Ram, K., and Sarin, M., Atmospheric abundances of carbonaceous species (EC, OC and WSOC) over Indo-Gangetic Plain (IGP) during wintertime, *J. Aerosol Sci.*, accepted.

Ramanathan, V., and Carmichael, G., Global and regional climate changes due to black carbon, *Nature Geoscience*, 1 (April), 221, 2008.

Riemer, N., West, M., Zaveri, R.A., and Easter, R.C., Estimating black carbon aging time-scales with a particle-resolved aerosol model, *J. Aerosol Sci.*, accepted.

Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G., and Simoneit, B.R.T., Quantification of urban organic aerosols at a molecular level : identification, abundance and seasonal variation, *Atmos. Environ.*, 27 (8), 1309-1330, 1993.

Russell, P.B., Kinne, S., and Bergstrom, R.W., Aerosol climate effects: Local radiative forcing and column closure experiments, *J. Geophys. Res.*, 102 (D8), 9397-9407, 1997.

Schnaiter, M., Linke, C., Mohler, O., Naumann, K., Saathoff, H., Wagner, R., and Schurath, U., Absorptoin amplification of black carbon internally mixed with secondary organic aerosol, *J. Geophys Res.*, 110, D19204, 2005.

Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L., Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental

Panel on Climate Change. Summary for Policy Makers, Cambridge University Press, Cambridge, 2007.

Strawa, A.W., Kirchstetter, T.W., Hallar, G., Ban-Weiss, G.A., J., M., Harley, R.A., and Lunden, M.M., Optical and Physical Properties of Primary On-Road Vehicle Particle Emissions And Their Implications for Climate Change, *J. Aerosol Sci.*, accepted.

Streets, D.G., Yarber, K.F., Woo, J.-H., and Carmichael, G.R., Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions, *Glob. Biogeochem. Cycl.*, 17, 1099, 2003.

Surratt, J., Murphy, S., Kroll, J., Ng, N., Hildebrandt, L., Sorooshian, A., Szmigielski, R., Vermeylen, R., Maenhaut, W., Claeys, M., Flagan, R., and Seinfeld, J., Chemical Composition of Secondary Organic Aerosol Formed from the Photooxidation of Isoprene., *J. Phys. Chem. A*, 110 (31), 9965-9690, 2006.

Trenberth, K.E., Karl, T.R., and Spence, T.W., The need for a systems approach to climate observations, *Bull. Am. Meteorol. Soc.*, 83 (1593-1602), 2002.

Trompetter, W.J., Davy, P.K., and Markwitz, A., Influence of environmental conditions on carbonaceous particle concentrations with New Zealand, *J. Aerosol Sci.*, accepted.

Vander Wal, R., Bryg, V.M., and Hays, M.D., Fingerprinting Soot (Towards Source Identification): Physical Structure and Chemical Composition, *J. Aerosol Sci.*, accepted.

LEGAL DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California.