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1 Abstract 

This report summarizes the progress for the final phase  (Phase III - July 2009 – 
December 2010) of the 3-year DOE funded program on Integrated Sensing and Control 
for Coal Gasification. The original program, due to end in July 2010, was extended under 
a no-cost extension till December 2010.The objective of this program is to develop a 
comprehensive systems approach to integrated design of sensing and control systems, 
using advanced model-based techniques. In particular, this program is focused on the 
model-based sensing and control system design for the core gasification section of an 
IGCC plant. The program was divided into three phases. There were three main Tasks in 
Phase I and Phase II of the program. These Tasks were completed earlier in 2008 and 
2009. The key focus of the first year of the program was on Task 1. The Task involved (i) 
developing a detailed first-principles transient model for the overall gasification section in 
Matlab/Simulink® , and (ii) developing a sensing and packaging solution and installing in 
the Radiant Syngas Cooler (RSC) in the TECO IGCC plant at Polk power station, Florida 
to obtain operation data to be used for model validation.  The key focus in the second year 
of the program was on Tasks 2 & 3. In Task 2, initially a linear model-based analysis was 
performed to analyze the performance of a model-based estimation using a Kalman Filter. 
It performance was studied in the presence of expected errors in modeling and online 
sensors to figure out important sensor set to meet critical performance criteria. Thereafter, 
a nonlinear Extended Kalman Filter (EKF) was designed and its performance was 
evaluated through simulation studies for estimating key unmeasured process variables like 
gasifier temperature and carbon conversion, and identifying unknown/variable model 
parameters like gasification kinetics and RSC fouling in the presence of expected errors in 
modeling and online sensors. In parallel, in Task 3, a nonlinear Model Predictive Controller 
(MPC) was implemented, assuming ideal measurement of key process variables, and its 
performance was studied for optimizing the transient and steady state operation during 
startup as well as normal operation. The individual EKF and MPC simulation results were 
very promising and were presented in Topical report for Phase II in 2009. In Phase III of 
this program, the key focus was on combining the EKF in closed-loop with MPC to obtain 
the overall integrated sensing and control solution.  The closed-loop performance of the 
integrated EKF and MPC systems was studied through simulations for startup, turndown 
and fuel changes in the presence of sensor (bias and noise) and modeling 
(unknown/varying parameters) errors. The extensive simulation performed on the 
integrated systems shows that the system works well even in the presence of random 
sensor and modeling errors. These results are summarized in this topical report. 

2 Executive Summary 

This section summarizes the key accomplishments of the final phase (Phase III -July 2009 
– December 2010) of the three-year program. The final phase accomplishment was built 
on accomplishments of earlier phases of the program. This section summarizes those 
accomplishments as well for completeness. 
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2.1 Phase I and Phase II  

The Phase I and Phase II of the program was divided into multiple tasks. These tasks and 
related accomplishments are described briefly in this section. 
 

2.1.1 Task 1 – Modeling and Sensor Installation 

The focus in Task 1 was to (i) develop a detailed transient model of the gasification 
section to be used for simulation studies and sensing and control system design in Task 2 
and Task 3, and (ii) implement sensors in RSC in the TECO IGCC plant to obtain data for 
model validation.  
 

2.1.1.1 Task 1 – Modeling for gasification section 

In this subtask, a dynamic model was developed for nominal, high-pressure operation of 
the gasification section for both steady state as well as transient operation like turndown 
(i.e., throughput changes) and fuel changes (coal /coal+petcoke blends). This model was 
then extended to encompass the post-ignition, pressure ramp-up portion of the startup 
process as well, where the pressure in the syngas side as well as the steam side was 
raised gradually to nominal operating pressures. In parallel, another model was developed 
for the pre-heating phase of the startup, wherein the thermal transients in the gasifier 
refractory and the RSC and the corresponding thermal stresses were modeled during the 
pre-heating operation. This task was completed in June 2008, except for the gasifier 
refractory pre-heating stress model, and a detailed description of the modeling, model 
reduction and simulation runs was included in the previous Topical report for Phase I 
(June 2008). The last task of modeling the gasifier refractory pre-heating and 
corresponding thermal stresses was completed in 2008 Q3. In particular, a transient 
thermal model was implemented in Matlab/Simulink®  for the temperature profile in the 
refractory lining during gasifier pre-heating. Also, a detailed ANSYS® model was 
implemented to calculate the tensile and compressive stresses in the refractory bricks due 
to the thermal gradients in the bricks due to heating on the inner surface. The ANSYS®  
stress model was coupled with the Simulink transient thermal model to obtain the overall 
gasifier pre-heating model. The integrated gasifier pre-heating model was simulated with 
baseline pre-heating temperature profiles to obtain the corresponding baseline transient 
tensile and compressive stress profiles in the refractory bricks, which served as the basis 
for subsequent MPC studies for optimized pre-heating to obtain the entitlement in terms of 
shortest time for completion of pre-heating. 

2.1.1.2 Task 1 – Sensor Implementation in RSC at TECO Plant 

In this subtask, the objective was to install sensors in the RSC in the TECO IGCC plant 
and obtain plant operation data that could be used for RSC model validation. Initially, 
three potential sensor candidates were identified: (i) radial temperature profiles at levels 7 
& 10, (ii) axial temperature profile between levels 7 &10, and (iii) strain measurement in 
the RSC dome outside the hot syngas path. Lab tests on packaging performance for the 
axial temperature profile indicated high risks in packaging survivability and potential 
adverse impact to nominal plant operation and was thus, not pursued for implementation.  
Extensive lab tests were performed in 2007 and 2008 to study and improve the 
performance of the optical Fiber Bragg Grating (FBG) sensors under expected thermal 
and strain conditions. Finally, sensor packaging design and fabrication for the radial 
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temperature sensor probes for levels 7 & 10 with integrated Type B thermocouples and 
optical fiber FBGs was completed in 2008 and early 2009. These radial temperature 
probes were installed in the RSC in the TECO IGCC plant during the plant maintenance 
shutdown in February/March 2009. In particular, four radial temperature probes, two at 
each level on opposite sides of the RSC were installed. The temperature probe on level 10 
worked very well and survived for more than the thirty days that was aimed for. The 
temperature probe at level 7 also provided excellent temperature profile data for five days 
of operation after initial plant startup. However, on the fifth day of operation, the ceramic 
probe broke off abruptly – it was suspected that the hot gas and/or slag impinged directly 
onto the probe causing the abrupt breakage. Finally, a set of fiber optic FBG strain 
sensors were also installed in the RSC dome outside the hot syngas path to monitor strain 
evolution over time due to gradual fouling buildup on the heat transfer area. A key 
challenge for this sensor was for the optical fibers to withstand and survive a large thermal 
strain (~6000 µε) due to the temperature rise at startup, and thereafter, accurately 
measure a very small mechanical strain (~50 µε) due to fouling buildup over several weeks 
of operation. This sensor also worked very well and provided a very good measurement of 
the gradual fouling buildup over six weeks of plant operation, matching very well with 
estimated mechanical strain due to fouling. More details about this task are included in the 
previous Topical report for Phase II (June 2009). 
 

2.1.2 Task 2 - Sensing System Design 

The objective of this task was to design a model-based sensing/estimation system that 
provides online measurement/estimate of key process variables in the gasification section 
that are important for monitoring and control, e.g., gasifier temperature, carbon 
conversion, gasification efficiency, slag viscosity and syngas properties. To this end, 
initially, in this task, a linear model-based analysis was performed at nominal baseload 
operating condition to study the performance of model-based estimation in the presence 
of sensing and modeling errors. The linear model was derived at the nominal baseload 
condition from the full nonlinear model, and a Kalman filter analysis was performed to 
study the impact of modeling errors and sensor errors (e.g. bias and noise) on the 
estimation performance. Also, a sensitivity study was performed to identify key sensor 
biases and model parameter errors that contributed to the uncertainty in overall estimation 
accuracy. This analysis was then followed by a full nonlinear model-based estimation 
using an Extended Kalman Filter (EKF) to verify the performance of nonlinear estimator in 
the presence of errors in model parameters and sensor noise/bias. One key problem with 
the standard EKF is that it does not enforce any constraints on the estimated state or 
parameter variables, which are important to ensure physical validity of the model. To 
address this, the EKF implementation was extended to include constraints on all estimated 
variables to enforce them to be in expected and/or physically meaningful range.  The 
performance of the constrained EKF was tested through extensive simulation studies in 
the presence of unknown errors in the model parameters, e.g. RSC fouling and gasifier 
kinetics, which are often not known precisely and/or change slowly over time. The EKF 
simulations showed that the unknown model parameters were correctly identified and 
updated to match simulated variations, thereby allowing accurate estimation of key 
process variables that were not measured but were important for monitoring and control, 
e.g. gasifier temperature, carbon conversion, slag viscosity and overall efficiency. More 
details about this task are included in the previous Topical report for Phase II (June 2009). 
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2.1.3 Task 3 – Control System Design 

In this task, initially a nonlinear model predictive controller (MPC) was designed and 
implemented to optimize the steady state and transient operation during nominal plant 
operation (e.g. turndown and fuel changes) as well as during startup, specifically pre-
heating of gasifier and RSC during startup. The MPC was implemented on the full 
nonlinear model of the gasification section in Matlab/Simulink®  and its performance 
tested through extensive simulation studies. In this initial stage, the MPC implementation 
assumed accurate knowledge of all important state and output variables, to identify the 
entitlement in performance improvements achievable for nominal operation and startup.  
 
MPC simulation studies were performed for gasifier pre-heating subject to constraints on 
the thermal stresses in the refractory bricks – imposing the same stress limits as obtained 
with the current baseline pre-heating strategy. Simulation studies showed significant 
reduction in total pre-heating time for the gasifier refractory, with more than 20% reduction 
from the baseline pre-heating time. In an alternative implementation, MPC was also tested 
to simultaneously reduce the startup time as well as the maximum thermal tensile stresses 
to identify a design tradeoff between the two. MPC simulation studies on the RSC pre-
heating, subject to thermal gradient and stress constraints also showed possibility of 
significantly faster pre-heating– potentially completing the RSC pre-heating in less than 
ten hours, depending on the maximum steam flow available during pre-heating. Finally, 
MPC simulation studies were also performed for nominal operation including baseload 
operation, turndown between baseload and fifty percent load and fuel changes with up to 
fifty percent petcoke in coal-petcoke blend. Using a multivariable optimization and running 
to critical operability constraints, one optimization mode focused on minimizing the amount 
of oxygen used at steady-state operation at baseload or part-load – this in turn, reduces 
the internal electricity consumption in the air separation unit (ASU). MPC simulation 
studies indicated a reduction in oxygen consumption by 5-10% at baseload and half-load 
conditions. Similarly, MPC simulations were performed to accelerate the transient load 
changes (turndown) between baseload and fifty percent load conditions, allowing 
potentially 20% faster turndown capabilities through coordinated manipulation of multiple 
operating variables, while enforcing key operability constraints. These MPC studies were 
repeated for operation for coal-petcoke blend with up to 50% petcoke. MPC allows a 
smooth transition from coal to petcoke blend, maintaining desired electricity power output 
while simultaneously enforcing all operability constraints. MPC allowed a similar 20% 
improvement in ramp rates for turndown transient operations with petcoke blend. More 
details about this task are included in the previous Topical report for Phase II (June 2009). 

2.2 Phase III 

This section summarizes the key accomplishment of the program in the final phase (2009-
2010). 
 
Design of nonlinear Extended Kalman Filter (EKF) and nonlinear Model Predictive 
Controller (MPC) are the key elements of the advanced model-based integrated sensing 
and control systems. These elements were independently designed and tested in earlier 
phases of the program. In phase III of the program the key focus was on integrating EKF 
and MPC to achieve the integrated advanced model based sensing and control solution 
for the gasification section of the IGCC plant. 
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Up to 2009 Q4, the development and testing of EKF and MPC were performed separately. 
While the EKF model used an early version of the reduced-order model, the MPC 
implementation, as it matured, was updated to use a more efficient reduced-order model. 
In particular the MPC implementation incurs a large model simulation expense due to 
repeated prediction over a long future horizon. This had motivated simplifying/eliminating 
certain fast transients (e.g. syngas flow and pressure relations) to enable faster model 
predictions and MPC simulation. In 2010 Q1, the MPC and EKF implementations were 
updated to a common gasification section model with the aim of integrating MPC and EKF 
in the overall combined sensing and control solution.  The updated EKF and MPC were 
tested and validated individually through simulation in their existing framework (open loop 
simulation for EKF and “ideal plant” simulation for MPC). 
 
In 2010 Q2, the focus was on integrating EKF in closed-loop with MPC to obtain the 
overall sensing and control solution. The integration necessitated re-tuning of the MPC 
and EKF parameters to ensure overall closed-loop system stability and performance. The 
integrated EKF & MPC closed-loop performance was studied through a number of 
simulations for steady state and transient operation, with coal and coal-petcoke blend, in 
the presence of sensor (bias and noise) and modeling (unknown) parameters (e.g., 
gasifier kinetics and RSC fouling factor) errors. In 2010 Q3, these studies were used to 
continue updating the EKF and MPC implementations and tuning to achieve desired 
closed-loop performance for tracking and optimization in the presence of sensor (bias & 
noise) and/or modeling (unknown model parameters) errors. The simulation results 
showed that the tracking performance was good both at steady state and during transients 
with some expected performance degradation due to sensor noise and biases. However, 
the simulation studies also highlighted potential issues when optimizing for minimum 
oxygen consumption at part load and maximum electrical power output at baseload 
conditions.  
 
Based on simulation studies, further refinement of MPC and EKF were carried out in 2010 
Q4, to improve performance for optimized operations. In particular, refinements were 
made in order to have robust solution for a) oxygen minimization at part load while still 
tracking the net power output setpoint and b) net electrical power output maximization at 
baseload condition. The simulation studies of this final solution showed a similar trend that 
was observed in phase II simulations with “idealized” plant and sensor measurements 
with, of course, certain expected minor degradation in the performance. This trend 
includes a reduction in oxygen consumption by 7-10% at 50% partload conditions and 1-
2% increase in net electrical output at baseload load conditions with coal slurry. Similar 
studies for operation with coal-petcoke blend with up to 50% petcoke showed 2-6% 
reduction in oxygen consumption at 50% load. Similarly, the simulation studies for the 
transient load changes (turndown) between baseload and fifty percent load conditions 
showed that it was possible to have potentially 20% faster turndown capabilities through 
coordinated manipulation of multiple operating variables, while enforcing key operability 
constraints.  
 
These results were also presented to the DoE team in the final program review in 
December 2010. A simulation demonstration of the gasification section model and the 
overall integrated sensing and control solution using EKF and MPC was also performed. In 
addition, software for a) simulating the gasifier section models b) unconstrained extended 
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Kalman filter c) model reduction algorithm used for deriving lower order model based on 
singular decomposition were delivered. All deliverables for this program have been met. 

3  Introduction 

This program is aimed at developing an integrated advanced sensing and controls solution 
for improved operation of IGCC plant, focusing in particular, on the core gasification 
section of the plant. The gasification section has a particularly harsh environment with high 
temperatures and pressures and presence of slag and corrosive elements. Owing to the 
harsh environment, limited online sensing is currently available for online monitoring and 
controls. Consequently, the operation of this section using a combination of simple 
controls and operator judgment based on limited and/or infrequent measurements is often 
conservative, especially for transient operations.  
 
In this three-year program, a systematic model-based approach is developed for the 
design of a comprehensive sensing system combining online sensors along with online 
model-based estimation, and a model-based multivariable controller that optimizes the 
operation of the gasification section at steady state as well as through key transients like 
startup, turndown and fuel changes. To this end, available models for different units of the 
gasification section (e.g. gasifier, radiant syngas cooler (RSC)) have been combined in a 
common platform in Matlab/Simulink®  to obtain a comprehensive dynamic model of the 
gasification section. Also, specific sensing technologies have been implemented in the 
IGCC plant at TECO Polk Power Station to obtain operation data that are used for the 
RSC model validation. The dynamic model of the gasification section is used in a 
systematic model-based analysis and design framework to design a comprehensive 
sensing and control system to improve the robustness and flexibility and optimize the 
operation of the gasification section for steady-state as well as transient operations, in 
particular, for startup, turndown and fuel changes. 

3.1 Program Tasks 

The overall three-year program consists of three main tasks: 
1. Modeling, model reduction and model validation, 
2. Sensing system design, and 
3. Control system design. 

In Task 1, available models for different units in the gasification section were combined in 
a common platform in Matlab/Simulink®  to obtain the dynamic model for the overall 
gasification section, which are used for sensing and control system design in Tasks 2 and 
3. Available component models for key process units were implemented in 
Matlab/Simulink® . Some of the existing models had only been used at steady state 
conditions and appropriate updates were made to allow transient simulation with these 
models. Furthermore, some of the models, e.g. gasifier and RSC, were of high order, i.e., 
they had a large number of internal states since they model spatial variation along the 
length of the gasifier and the RSC. Owing to the large dimension, these models are 
computationally expensive and not amenable to real-time transient simulations and model-
based analysis and design of sensing and control systems. Thus, these high-order models 
were simplified through model reduction techniques to obtain lower order models while 
maintaining high accuracy for control. Also, in Task 1, temperature and strain sensors 
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were implemented in the RSC in the TECO Polk Power Station IGCC plant to obtain 
suitable operation data that was used for validation of the RSC model. A key common 
challenge for all the sensors was developing suitable packaging for the harsh environment 
in the RSC, and appropriate mechanical design to facilitate easy installation given the 
limited access inside the RSC. These sensors were installed in the TECO IGCC plant in 
the RSC in early 2009 and plant operation data was obtained successfully. 
 
In Task 2, the dynamic model of the gasification section from Task 1 was initially used to 
perform a systematic “observability” analysis. More specifically, a linear model-based 
Kalman filter analysis was performed to study the estimation performance for key 
unmeasured variables and its sensitivity to modeling and sensor errors. The sensitivity 
analysis allowed identifying the key sensor errors (bias and noise) and modeling errors 
(parametric errors) with respect to good system performance, which were then included in 
an online nonlinear model-based estimation algorithm using an extended Kalman filter 
(EKF). Simulation studies were performed in the presence of modeling errors introduced 
through variations in model parameters, and noise and biases in online sensors to verify 
the performance of the nonlinear model-based estimation system at steady-state as well 
as during transient operations. More details on this task are included in Topical report for 
Phase II (2009). 
 
In Task 3, a model-based advanced controller was designed for the gasification section to 
coordinate the operation of the individual units in this section to optimize the overall 
section performance. In particular, a nonlinear model predictive controller (MPC) was 
implemented initially assuming ideal measurement for all variables needed for feedback, 
to optimize the performance of the gasification section at steady state and during key 
transients like startup, turndown (i.e. throughput changes), and fuel changes. Extensive 
MPC simulation studies were performed for startup, specifically gasifier and RSC pre-
heating, and normal operation modes including turndown and fuel changes. These MPC 
simulations indicated opportunities for significant improvements in transient operation, 
reducing pre-heating and turndown transient times, and optimizing steady-state 
performance for minimized oxygen consumption. More details on this task are included in 
Topical report for Phase II (2009). 
 
Finally, the design of an advanced model based sensing and control system requires 
integrating the comprehensive sensing solution consisting of combining online sensors 
along with online model-based estimation (EKF) with the model based predictive control 
(MPC) developed in Task 2 and Task 3.  This effort was carried out in Phase III of this 
program and is described in Section 4. 
 

3.2 Program Plan and Summary 

Figure 1 shows the detailed program plan for each task and subtask and the key 
milestones. The modeling of individual gasification section components, model reduction 
and combination of the individual component models in Matlab/Simulink®  (Tasks 1.1-1.4) 
to get the overall gasification section dynamic model were completed in Task 1 by June 
2008. The model was extended to encompass post-ignition pressure ramp-up operation. 
Separately, models were implemented for pre-heating of the RSC and gasifier refractory – 
the latter was completed in 2008 Q3. In parallel, under Task 1.5, lab tests were performed 
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for optical fiber FBG sensors towards implementation in the TECO Polk Power Station 
IGCC plant. The sensors were installed in 2009 Q1 and plant operation data was 
successfully obtained in 2009 Q2. 
 
In phase II of the program, the gasification section model developed in phase I was used 
for analysis and design of model-based sensing and control systems under Tasks 2 and 3, 
respectively. More specifically, under Task 2, initially linear models were generated from 
the full nonlinear model at baseload operating condition and used for model-based 
analysis for a sensing system using a combination of online sensors and model-based 
estimation. Thereafter, a full nonlinear model-based estimator using a nonlinear extended 
Kalman filter (EKF) was implemented in Matlab/Simulink®  and its online estimation 
performance was tested in the presence of modeling and sensor errors through steady 
state and transient simulations. This Task was completed in 2009 Q2. 
 
Under Task 3, nonlinear model predictive controllers (MPC) were designed and 
implemented in Matlab/Simulink®  to optimize the steady state and transient operation of 
the gasification section subject to critical operability constraints. In particular, MPC was 
designed for optimizing pre-heating of the gasifier and the RSC. Similarly, MPC was 
designed for optimized operation at nominal baseload or part-load steady state as well as 
for throughput changes during turndown with coal and coal-petcoke blend fuel. The 
performance of the MPC in achieving optimized operation for startup and nominal 
operation was tested through extensive simulations and this subtask was complete in July 
2009. 
 
The Phase III of this program was extended under a no-cost extension till December 2010. 
In this final phase of the program, the separate model-based sensing system using EKF 
designed in Task 2 and the MPC designed in Task 3 was combined to achieve the overall 
integrated model-based sensing and control system. The MPC and EKF design are 
updated and re-tuned to achieve good performance of the integrated sensing and control 
system. Extensive simulation studies were done to verify the performance of the 
integrated system in the presence of sensor error (noise and bias) and model error 
(parameter uncertainty). These results are documented later in this report. 
 
These results were also presented to DoE team in a final program review in December 
2010, along with simulation demonstrations of the model and developed integrated 
sensing and control solution. In addition, software for a) simulating the gasification section 
models b) unconstraint extended Kalman filter c) model reduction algorithm used for 
deriving lower order model based on singular decomposition were also delivered. 
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Figure 1: Program Plan and Milestones 

3.2.1 Milestones & Status 

 
The key program milestones are shown in Figure 1 by the yellow triangles. The milestones 
and the current status are summarized below. 

• Controls requirements (Dec 2007) – completed collection of controls requirements 
for transient operation modes, turndown, fuel changes, and startup (pre-heating). 

• Complete gasification section dynamic model in Matlab/Simulink®  (Jun 2008) – All 
models were implemented in Matlab/Simulink®  by June 2008, except the gasifier 
pre-heating model. The gasifier pre-heating model using a combination of 
Matlab/Simulink®  and ANSYS®  was completed in 2008 Q3. 

• Advanced MPC solution with ideal sensors (Dec 2008) – Initial MPC 
implementation for nominal and startup operations were completed in 2008 Q4. 
MPC implementations were updated in 2009 Q1-Q2 as simulation studies were 
performed to optimize startup and nominal operation. 

• Validated and updated gasification section model and sensing system design (Jun 
2009) – A nonlinear EKF with constraints was implemented in Matlab/Simulink®  to 
obtain the overall sensing system combining online sensors and model-based 
estimation, and its performance was tested through simulations in 2009 Q1-Q2. 

• Integrated sensing and control system (Jan 2010) – This task started in Phase III. 
The upgrading of underlying models for EKF and MPC were completed in 2010 Q1. 
The integration of these two models was completed in 2010 Q2. The integration 
necessitated further tuning of EKF and MPC. This was completed in 2010 Q3. 

• Final computer simulation demonstration of integrated model-based advanced 
sensing and control system (Jun 2010). The computer simulation of the final 
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version of the integrated advanced sensing and control system was demonstrated 
to DoE in December 2010.  

 
All program milestones and deliverables have been completed. 
 

3.2.2 Financial Plan & Status  
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Figure 2: Planned and actual spending 

 
Figure 2shows the planned and actual spending for the total program. The actual 
spending until FW 53, 2010 is $2,891K vs. a planned target of $3,016K. 
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4 Phase III - Design of Integrated Sensing and Control System 
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Figure 3: Schematic of previous implementation of EKF and MPC. MPC was running with 
perfect state feedback from plant while EKF was running in open loop. 

 
Figure 3 shows the architecture used in Phase II, wherein the MPC with ideal sensors, i.e. 
perfect knowledge of all state and output variables from the plant, and the EKF-based 
sensing system using a combination of online sensors and model-based estimation were 
developed and tested in parallel. In Phase III of the program, the separate designs for 
MPC with ideal sensors and the EKF-based sensing system were coupled to obtain the 
overall integrated sensing and control system, as shown in Figure 4.  
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Figure 4: Schematic of Integrated EKF and MPC. The EKF updates the states and 
parameters for reduced order model used in MPC that no longer uses the perfect state and 
parameter information from the plant. 
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In a phased approach to this task, first the separate implementations of MPC and EKF 
were unified in a combined implementation, using the latest reduced-order model common 
to both and a common linear model generation routine to achieve high computational 
efficiency. Thereafter, the integrated control and sensing system was retuned for stability 
and performance robustness to random combinations of sensor noise, bias and modeling 
error. The final retuned system was studied using Monte-Carlo simulations for both coal 
slurry feed and coal-petcoke blend. For all these simulations, the system is initially 
simulated in open loop with only the EKF enabled (without engaging MPC controller) for 
about 60 minutes. This time is required for initial transients in estimated states and 
parameters to settle down. Thereafter the MPC controller is engaged to study the 
performance of the integrated EKF-MPC system for steady state and transient operation. 
The simulation results for coal slurry feed based on a number of Monte-Carlo simulations 
with random combinations of sensor noise and bias and modeling error (RSC fouling and 
gasifier kinetics) are presented next.   
 
Simulations studies conducted with the integrated control and sensing system using coal 
slurry feed show good tracking performance during steady state as well as transient 
operations. Figure 5 and Figure 6 show one such result. Figure 5 shows various phases of 
each simulation and the performance improvement in each phase. The simulation is 
initiated (point ‘A’) at base load condition with only the EKF enabled. The simulation runs 
for almost 60 minutes without any external control input (open loop). After that the MPC is 
engaged at point ‘B’. The MPC quickly tracks the Net Electrical output and scrubber 
syngas pressure to the respective reference set points.  At a steady state point ‘C’ the 
MPC engages in net electrical output maximization mode while respecting all the 
operational constraints (e.g., maximum slurry feed, ASU limit etc). At a later steady state 
operation point ‘D’ the MPC suspends the Net Electrical output maximization mode in 
preparation for the Net Electrical output turndown. Operation phase ‘E’ to ‘F’ represents 
25% faster ramp tracking in net MW as well as scrubber syngas pressure compared to the 
nominal operation to 50% part load. Since, it is normally not desirable for the IGCC plant 
to turn down all the way to zero load due to startup complexities, the end of this turn down 
transient may represent the parking of the plant during the low demand period. During this 
period, one objective would be to minimize the oxygen consumption while maintaining 
certain minimum load (net electrical output as well as scrubber syngas pressure). The 
point ‘G’ represents the starting point of such a phase. At point ‘G’ the MPC engages the 
minimization of the oxygen consumption mode while maintaining 50% load. Phase ‘I’-‘J’ of 
the simulation represents the ramp up transient tracking of Net Electrical output from 50% 
load to base load condition at 20% faster rate compared to the nominal rate. Once at the 
base load, the MPC again engages the maximization of Net Electrical output mode at a 
steady state operation point ‘K’. As mentioned, all through this simulation the scrubber 
pressure is also tracked to a given reference trajectory as shown in the bottom graph of 
Figure 5. 
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Figure 5: Integrated sensing and control system closed loop response to coal throughput 
changes from 100% -50%-100% with sensor and parameters error. The MW output and 
scrubber pressure (blue) track the reference profile (red) with 25% (ramp down) to 20% 
(ramp up) faster ramp rate compared to nominal. 

 
Figure 6 shows more details on the overall plant response with the integrated sensing and 
control system to change in coal throughput from base load to 50% part load and then 
back to base load in the manner as described earlier (Figure 5), in the presence of sensor 
(one random combination of sensor bias) and modeling error (RSC fouling and Gasifier 
kinetics).  For this simulation, the plant RSC is 30% fouled and the gasifier kinetics is 70% 
of the nominal value. The EKF is initialized to nominal values of these parameters (RSC 
fouling=0 and Gasifier kinetics scale factor =1). The simulation response shows that 
despite the presence of sensor noise and parameter error the integrated sensing and 
control system has a good Net Electrical output set point tracking performance for both, at 
the steady state as well as the transient operation. This is similar to what was observed 
with “ideal” plant and sensor earlier and reported in 2009 Topical report. Further the 
integrated system is able to maximize the Net Electrical output for this combination of 
sensor noise and bias and model parameter error by more than 2% at the base load and 
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cut down the oxygen consumption at partload by about 10%. Figure 6 also shows that the 
EKF estimates of gasifier kinetics scale factor (Etasf) and the RSC fouling factor (Foulingsf) 
at base load condition are quite good. However, at part-load conditions due to limited 
“observability” of the parameters in the system, the parameter estimation is less accurate. 
More specifically, since EKF estimates all the states, parameters and biases such that 
combinations of all these result in minimum variance estimate to match the sensor 
measurements, the individual parameters are not guaranteed to track the actual 
parameters. However, the overall closed-loop response shows that even in the presence 
of sensor and modeling errors and despite the limited “observability” of the parameters in 
the system, the integrated sensing and control system is able to track the load and syngas 
pressure references well: tracking 20-25% faster turndown ramp rates. In the figure the 
blue graph in Elec_MW_Net and SG_P represent the actual response whereas the 
reference trajectories are shown as red graph.  
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Figure 6: Integrated sensing and control system closed loop response to coal throughput 
changes from 100% -50%-100% with one combination of random sensor biases and 
parameters error. 

 



 19

As mentioned earlier, the designed integrated sensing and control close loop system was 
studied using Monte-Carlo simulations using random combinations of the sensor biases 
for each run. These results are presented in Figure 7and Figure 8. For all these 
simulations the plant RSC is 30% fouled and gasifier dynamics is 70% of the nominal 
value whereas, the estimator is initialized with nominal gasifier kinetics (etasf=1) and no 
fouling in the RSC (fouling=0). Histograms of the maximum sustained net electrical power 
output gain at base load condition and maximum sustained saving in oxygen consumption 
at 50% part load observed in Monte-Carlo simulation are presented in Figure 7. The 
simulation shows that the gain in net electrical power output could be as much as 2-2.5%, 
however, this gain is uneven and depends upon the sensor noise and bias combination. 
This is due to non-perfect observability in the system. Due to non-perfect observability 
some performance constraint parameters like carbon conversion, slag viscosity and 
Wobbe index cannot be estimated very accurately. This results in more conservative 
optimized performance due to constraints posed on these signals.  The Monte Carlo 
simulation also shows that 7-10% sustained saving in oxygen consumption over the 
nominal consumption for 50% load can be achieved by judicious manipulation of control 
inputs. For consistency purpose, the saving in oxygen consumption is normalized with 
respect to the net electrical power output to account for any slight changes in electrical 
power output during the optimization of oxygen consumption phase. This gain is similar to 
what was observed with “perfect” sensors as reported in 2009 Topical report for Phase II. 
 
Finally, Figure 8 shows the time traces and histograms of gasifier kinetics parameter 
(etasf) and RSC fouling for the same Monte-Carlo simulations. As mentioned earlier, each 
simulation starts in open loop with model-based estimator (EKF) engaged for an hour 
before the controller (MPC) is activated. This is required for the estimates of  “unknown” 
parameters in model (used both for EKF and MPC) and sensor biases to settle to its 
steady state values as seen in subplots in Figure 8. Without this open loop operation, it 
has been observed in multiple simulations that the interaction between the estimator and 
the controller may lead to closed loop system instability. The time traces of the parameters 
also show that these parameters are estimated more accurately at the base load steady 
state condition as compared with the part load steady state condition or during the 
transient operations, due to poor observability at part load conditions. Since the 
parameters observability is better as the base load condition, starting the simulation at 
these conditions also helps in more accurate estimation of these parameters. Starting at 
baseload condition, once the estimation has converged close to the “correct” value, it does 
not change significantly again on account of poor observability. The histograms at the 
bottom of Figure 8 correspond to the average value of corresponding parameters for each 
Monte-Carlo simulation. The figures show that the average estimated parameter values 
over each simulation are close to actual values.  
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Figure 7: Monte Carlo simulation results for Net Electrical output gain at the base load 
condition and oxygen saving at 50% part load condition for various random combination of 
sensor error (bias) and model parameter error (gasifier kinetics and RSC fouling) using the 
integrated sensing and control system for coal throughput changes from 100%-50%-100%. 
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Figure 8: Monte Carlo simulation results for gasifier kinetics and RSC fouling for various 
random combination of sensor bias and model parameters error for the integrated sensing 
and control system closed loop system to coal throughput changes from 100%-50%-100%.  
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Similar simulation studies were also carried out for coal-petcoke fuel blend. These results 
are presented next. Figure 9 shows various phases of simulation with coal-petcoke fuel 
blend. The simulation is initiated (point ‘A’) at base load condition with EKF engaged. The 
simulation runs for almost 60 minutes without any external control input (open loop). After 
that the MPC is engaged at point ‘B’. The MPC quickly tracks the Net Electrical output and 
scrubber syngas pressure to the respective reference set points. Operation phase ‘C’ to 
‘D’ represents 25% faster ramp tracking in net MW as well as scrubber syngas pressure 
compared to the nominal operation to 50% part load. Again, since it is normally not 
desirable for the IGCC plant to turn down all the way to zero load due to startup 
complexities, the end of this turn down transient may represent the parking of the plant 
during the low demand period. During this period one objective would be to minimize the 
oxygen consumption while maintaining certain minimum load. The point ‘E’ represents 
starting of such a phase. At point ‘E’ the MPC engages the minimization of the oxygen 
consumption mode while maintaining 50% load. At point ‘F’ the MPC disengages the 
oxygen minimization mode in preparation for transient operation. Phase ‘G’-‘H’ of the 
simulation represents the ramp up transient tracking of Net Electrical output from 50% 
load to base load condition at 20% faster rate compared to the nominal rate. Once at base 
load, the MPC again engages tracking of Net Electrical output as well as scrubber syngas 
pressure mode and maintains the steady state operation. As mentioned, all through this 
simulation, the scrubber pressure is also tracked to a given reference trajectory as shown 
in the bottom graph of Figure 9. 
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Figure 9: Integrated sensing and control system closed loop response to coal-petcoke 
blend throughput changes from 100%-50%-100% with sensor and parameters error. The 
MW output (blue) track the MW reference (red) with 25% (ramp down)-20% (ramp up) faster 
ramp rate compared to nominal. 

 
Figure 10 shows more details on the overall plant response to the integrated sensing and 
control system to changes in coal-petcoke blend throughput from base load to 50% part 
load and then back to base load in the manner as described earlier (Figure 9), in the 
presence of one random combination of sensor error (bias) and modeling error (RSC 
fouling and gasifier kinetics).  Similar to the coal case, for this study the plant RSC is 30% 
fouled and the gasifier kinetics is 70% of the nominal value. The EKF is initialized to 
nominal values of these parameters (RSC fouling=0 and gasifier kinetics scale factor =1). 
The simulation response shows that despite the presence of sensor noise and parameter 
error the integrated sensing and control system has a good steady state as well as the 
transient operation tracking performance for both, the Net Electrical output as well as 
scrubber syngas pressure. This is similar to what was observed with “ideal” plant and 
sensor earlier and reported in 2009 Topical report for Phase II. Further the integrated 
system is able to cut down the oxygen consumption by about 6% at partload. This is again 
similar to what was observed with “ideal” plant and sensors and reported in 2009 Topical 
report. Figure 10 also shows the EKF estimates of gasifier kinetics scale factor (Etasf) and 
the RSC fouling factor (Foulingsf) over the duration of the simulation. The figure shows that 
plant parameters namely gasifier kinetics scale factor and RSC fouling factor estimates 



 23

are slightly less accurate: at base load condition, the EKF estimates slightly faster gasifier 
kinetics whereas at the partload condition it estimates slightly slower kinetics. Further, at 
baseload condition the RSC fouling is accurately estimated close to the actual value of 
30%, while the estimation deteriorates at part load condition. This is due to limited 
“observability” of the parameters in the system, especially for small throughput at partload 
operation. Similar to coal case, since EKF estimates all the states, parameters and biases 
such that combinations of all these result in minimum variance estimate to match the 
sensor measurements, the individual parameters are not guaranteed to track the actual 
parameters. Nevertheless, the overall closed-loop response shows that even in the 
presence of sensor and modeling errors and despite the limited “observability” of the 
parameters in the system, the integrated sensing and control system is able to track the 
load and syngas pressure references well: tracking 20-25% faster turndown ramp rates. In 
the figure the blue graph in Elec_MW_Net and SG_P represent the actual response 
whereas the reference trajectories are shown as red graph. 
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Figure 10: Integrated sensing and control system closed loop response to coal-petcoke 
blend throughput changes from 100%-50%-100% with one combination of random sensor 
bias and parameter errors. 
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Figure 11: Monte Carlo simulation results for normalized oxygen saving at 50% part load 
condition with various random combination of sensors error (noise and bias) and model 
parameters error (gasifier kinetics and RSC fouling) for the integrated sensing and control 
system to coal-petcoke blend throughput changes from 100%-50%-100%. 

 
As mentioned earlier, similar to coal fuel, the designed integrated sensing and control 
close loop system was studied using Monte-Carlo simulations using random combinations 
of sensor biases for each run. These results are presented in Figure 11 and Figure 12. For 
all these simulations, the plant RSC is 30% fouled and gasifier kinetics is 70% of the 
nominal value whereas the estimator is initialized with nominal gasifier kinetics (etasf=1) 
and no RSC fouling (fouling=0). Histogram of the maximum sustained saving in oxygen 
consumption at 50% part load observed in Monte-Carlo simulation is presented in Figure 
11. The Monte Carlo simulation shows that 3-6% sustained saving in oxygen consumption 
over the nominal consumption for 50% load can be achieved by judicious manipulation of 
control inputs for most cases of sensor bias combination.  For some combination of 
sensors bias, this gain may be quite small. This is due to non-perfect observability in the 
system. Due to non-perfect observability some performance constraint parameters like 
carbon conversion, slag viscosity and Wobbe index cannot be estimated very accurately. 
This results in more conservative optimized performance due to constraints posed on 
these variables.  For consistency purpose, the saving in oxygen consumption is 
normalized with respect to the net electrical power output to account for any slight 
changes in electrical power output during the optimization of oxygen consumption phase. 
This gain is similar to what was observed with “perfect” sensors as reported in 2009 
Topical report. 
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Figure 12: Monte Carlo simulation results for gasifier kinetics and RSC fouling for various 
random combination of sensor noise and model parameters error for the Integrated 
sensing and control system closed loop system to coal-petcoke blend throughput changes 
from 100%-50%-100%. 

 
Finally, Figure 12 shows the time traces and histograms of gasifier kinetics parameter 
(etasf) and RSC fouling for the same Monte-Carlo simulations. As mentioned earlier, each 
simulation starts in open loop with model-based estimator (EKF) engaged for an hour 
before the controller (MPC) is activated. This is required for the estimates of  “unknown” 
parameters in model (used both for EKF and MPC) and sensor biases to settle to its 
steady state values as seen in subplots in Figure 12. Similar to coal fuel cases, without 
this open loop operation, it has been observed in multiple simulations that the interaction 
between the estimator and the controller may lead to closed loop system instability. The 
time traces of the parameters also show that these parameters are estimated more 
accurately at the base load steady state condition as compared with the part load steady 
state condition or during the transient operations, due to poor observability at part load 
conditions. Since the parameters observability is better as the base load condition, starting 
the simulation at these conditions also helps in more accurate estimation of these 



 26

parameters. Starting at baseload condition, once the estimation has converged to the 
“correct” value, it does not change significantly again on account of poor observability. The 
histograms at the bottom of Figure 12 correspond to the average value of corresponding 
parameters for each Monte-Carlo simulation. The figures show that unlike the coal case, in 
coal-petcoke cases, the average parameter values over each simulation are not very 
accurate. The performance of the EKF parameter estimation could possibly be improved 
by further retuning of the EKF. Despite this, as shown in Figure 10, the Integrated sensing 
and control system has good steady state as well transient tracking performance and is 
able to optimize the operational cost within the operational constraints. 

5 Conclusions 

An IGCC plant is a large chemical plant that is traditionally designed to operate mainly at 
steady-state conditions, coupled to a power generation plant, which is intended to operate 
in a robust and flexible manner. It is highly desired to achieve high degree of reliability and 
increasingly flexible operation in terms of turndown or load-following capability and fuel 
changes while achieving optimum overall plant efficiency. This in turn, implies a need for 
increasing automation for coordinated and optimized operation of the various sections of 
the plant to meet fluctuating power generation objectives.  One of the main hurdles in 
increasing automated operation of the plant is limited sensing of the critical parameters 
available in the real time, e.g., slag viscosity and carbon conversion due to harsh sensing 
environment with in the gasifier section. This situation can be improved by using soft 
sensors to complement the hardware sensor available in the plant. This program is 
focused on developing advanced integrated sensing and control systems to achieve the 
objectives of higher reliability and flexible operation with optimized efficiency. In particular, 
this program focuses on the gasification section, which is the core section of the plant, yet 
most limited in terms of automated operation, due in large part to a very harsh 
environment and corresponding limitations on online sensing. Motivated by this, the aim is 
to develop a systematic model-based approach for analysis and design of sensing and 
control systems, using physics-based models in online sensing and control.  
 
In Phase I of this three-year program a dynamic model of the gasification section was 
developed and implemented in Matlab/Simulink®  for normal operation. The model was 
validated using TECO Polk Power Station IGCC plant in Phase II of the program. Apart 
from this, the key focus in Phase II of the program was to perform (i) a linear model-based 
analysis for sensing system design, (ii) design and implement a nonlinear model-based 
constrained EKF to obtain a comprehensive sensing system integrating online sensors 
with model-based estimation, and (iii) implement an MPC for optimized operation of the 
gasification section during startup pre-heating as well as nominal operation with coal and 
coal-petcoke blend fuels. The initial MPC implementation assumed “ideal” sensors (no 
noise and bias) and “ideal” plant (no parameter uncertainty). Extensive simulation studies 
were performed to evaluate the performance of the model based constrained EKF and the 
MPC independently. Using linear model-based analysis key sensor biases and model 
parameters were identified. These were included in an online nonlinear model-based 
estimation using a constrained EKF. The simulation studies showed that the EKF could 
successfully identify the unknown model parameters and provide an accurate estimate of 
key process variables that were not measured, but were important for process monitoring 
and operation. Similarly, extensive simulation studies were done to evaluate the MPC 
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performance for nominal operation at part-load and baseload conditions and for turndown 
between part-load and baseload conditions. In one optimization mode at steady-state 
conditions, MPC yielded potential reduction of oxygen consumption by up to 10%. In 
another optimization mode for transient operation during turndown, MPC simulations 
yielded faster ramp-up and ramp-down capabilities by 20% faster than baseline nominal 
capability corresponding to the ASU rate limits. The MPC implementation can be 
configured for optimization of different objectives depending on the operation mode. 
These optimization objectives include carbon conversion, efficiency, oxygen consumption 
and power output at steady state, and turndown ramp rates during load transients. This 
capability provides for an enhanced robustness and flexibility in the gasification section 
operation. Similarly, MPC simulations were used to study the operation with coal-petcoke 
blends, and optimization for nominal operation at part-load and baseload conditions and 
turndown, yielding similar improvements as with coal fuel. 
 
In Phase II of the program, a sensing system integrating available online sensors and real-
time model-based estimation, and an MPC were designed and tested separately through 
extensive simulation studies. The main focus of Phase III of the program was to integrate 
the designed sensing and control systems to obtain the overall integrated sensing and 
control system and test out its performance. In this effort, first the underlying physics-
based models were updated to a common version, and then the EKF and MPC were 
coupled and re-tuned extensively for good closed-loop performance of the integrated 
sensing and control solution.  The physical model has many “unknown” parameters, e.g., 
gasifier kinetics, RSC fouling etc. The EKF provides estimates of these parameters as well 
as of outputs important for efficient and safe operation like the gasifier temperature, 
carbon conversion, slag viscosity etc. in the presence of random sensors noise and bias. 
This integrated solution was tested through Monte-Carlo simulations with random 
combinations of sensor biases in the presence of model parameter errors. The simulation 
was designed to test performance of the integrated sensing and control system for Net 
electrical output and syngas pressure setpoint tracking as well as minimizing the oxygen 
use at the part load condition, with coal as well as coal-petcoke fuel blend while respecting 
all the operating constraints like ASU rate and minimum carbon conversion etc in the 
presence of random and unknown sensors noise and bias and unknown plant parameters, 
e.g., gasifier kinetics and RSC fouling factor.  For the coal slurry operation the MPC 
additionally maximizes net electrical output at the base load condition. 
 
The simulation studies show that the steady state as well as the transient tracking 
performance of integrated system is good despite the presence of sensor and modeling 
errors. Further, the integrated system provides the capabilities to the turn down 20% (ramp 
up) or 25% (ramp down) faster than the nominal operation while maintaining all the 
operational constraints. The integrated system also enables the optimization of various 
objective functions depending upon the current operation mode, thus providing operational 
flexibility. More specifically, for example, in the current setting, the MPC maximizes the net 
electric power output at base load condition whereas it minimizes the oxygen usage at the 
part load condition. Again in the framework of current studies, the Monte Carlo simulation 
studies show that the system net electrical output could be increased by about 2% of the 
nominal value at the base load condition with coal slurry. Further, the oxygen consumption 
could be reduced by 7-10% at part load condition for coal slurry. With coal-petcoke blend 
fuel, the oxygen saving was a bit less at around 3-6% - this is in part due to the more 
constrained operation with petcoke owing to the higher carbon content. The EKF also 



 28

estimated the unknown model parameters like gasifier kinetics and RSC fouling. The 
estimates were good at baseload conditions, and deteriorated a bit during transients or at 
partload conditions. This is due to the fact that the parameters are more observable due to 
the higher sensitivity at baseload operation with higher throughput. The parameter 
observability is reduced at partload operation. Due to limited observability it is not always 
possible to estimate the unknown model parameters and compensate for sensor noise 
and bias accurately. Nevertheless, the integrated sensing and control system using EKF 
and MPC works very well for steady state and transient tracking as well as optimization. 
 
The simulation studies have shown promising results for the EKF and MPC 
implementations individually as well as for the final integrated EKF & MPC solution. These 
results can be used as the basis for pursuing a future implementation of the developed 
sensing and controls solution in an IGCC plant, in a staged manner. One option could be 
to implement the EKF first using available online sensors in the gasification section and 
mature its performance in plant application – validating both the underlying model and the 
model-based estimation solution. Thereafter, MPC can be implemented and integrated 
with EKF to achieve the advanced sensing and control solution, first using in an “advisory” 
mode to aid operators and then in an automated closed-loop mode as the technology is 
matured in plant application. In a separate direction, the developed advanced sensing and 
control solution for the gasification section could be expanded or integrated with sensing 
and controls for the other sections towards an overall plant control system for optimizing 
the overall plant operation. 
 
  


