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1 Abstract

This report summarizes the progress for the final phase (Phase Il - July 2009 —
December 2010) of the 3-year DOE funded program on Integrated Sensing and Control
for Coal Gasification. The original program, due to end in July 2010, was extended under
a no-cost extension till December 2010.The objective of this program is to develop a
comprehensive systems approach to integrated design of sensing and control systems,
using advanced model-based techniques. In particular, this program is focused on the
model-based sensing and control system design for the core gasification section of an
IGCC plant. The program was divided into three phases. There were three main Tasks in
Phase | and Phase Il of the program. These Tasks were completed earlier in 2008 and
2009. The key focus of the first year of the program was on Task 1. The Task involved (i)
developing a detailed first-principles transient model for the overall gasification section in
Matlab/Simulink® , and (ii) developing a sensing and packaging solution and installing in
the Radiant Syngas Cooler (RSC) in the TECO IGCC plant at Polk power station, Florida
to obtain operation data to be used for model validation. The key focus in the second year
of the program was on Tasks 2 & 3. In Task 2, initially a linear model-based analysis was
performed to analyze the performance of a model-based estimation using a Kalman Filter.
It performance was studied in the presence of expected errors in modeling and online
sensors to figure out important sensor set to meet critical performance criteria. Thereafter,
a nonlinear Extended Kalman Filter (EKF) was designed and its performance was
evaluated through simulation studies for estimating key unmeasured process variables like
gasifier temperature and carbon conversion, and identifying unknown/variable model
parameters like gasification kinetics and RSC fouling in the presence of expected errors in
modeling and online sensors. In parallel, in Task 3, a nonlinear Model Predictive Controller
(MPC) was implemented, assuming ideal measurement of key process variables, and its
performance was studied for optimizing the transient and steady state operation during
startup as well as normal operation. The individual EKF and MPC simulation results were
very promising and were presented in Topical report for Phase Il in 2009. In Phase Il of
this program, the key focus was on combining the EKF in closed-loop with MPC to obtain
the overall integrated sensing and control solution. The closed-loop performance of the
integrated EKF and MPC systems was studied through simulations for startup, turndown
and fuel changes in the presence of sensor (bias and noise) and modeling
(unknown/varying parameters) errors. The extensive simulation performed on the
integrated systems shows that the system works well even in the presence of random
sensor and modeling errors. These results are summarized in this topical report.

2 Executive Summary

This section summarizes the key accomplishments of the final phase (Phase Il -July 2009
— December 2010) of the three-year program. The final phase accomplishment was built
on accomplishments of earlier phases of the program. This section summarizes those
accomplishments as well for completeness.



2.1 Phase | and Phase I

The Phase | and Phase Il of the program was divided into multiple tasks. These tasks and
related accomplishments are described briefly in this section.

2.1.1 Task 1 — Modeling and Sensor Installation

The focus in Task 1 was to (i) develop a detailed transient model of the gasification
section to be used for simulation studies and sensing and control system design in Task 2
and Task 3, and (ii) implement sensors in RSC in the TECO IGCC plant to obtain data for
model validation.

2.1.1.1 Task 1 — Modeling for gasification section

In this subtask, a dynamic model was developed for nominal, high-pressure operation of
the gasification section for both steady state as well as transient operation like turndown
(i.e., throughput changes) and fuel changes (coal /coal+petcoke blends). This model was
then extended to encompass the post-ignition, pressure ramp-up portion of the startup
process as well, where the pressure in the syngas side as well as the steam side was
raised gradually to nominal operating pressures. In parallel, another model was developed
for the pre-heating phase of the startup, wherein the thermal transients in the gasifier
refractory and the RSC and the corresponding thermal stresses were modeled during the
pre-heating operation. This task was completed in June 2008, except for the gasifier
refractory pre-heating stress model, and a detailed description of the modeling, model
reduction and simulation runs was included in the previous Topical report for Phase |
(June 2008). The last task of modeling the gasifier refractory pre-heating and
corresponding thermal stresses was completed in 2008 Q3. In particular, a transient
thermal model was implemented in Matlab/Simulink® for the temperature profile in the
refractory lining during gasifier pre-heating. Also, a detailed ANSYS® model was
implemented to calculate the tensile and compressive stresses in the refractory bricks due
to the thermal gradients in the bricks due to heating on the inner surface. The ANSYS®
stress model was coupled with the Simulink transient thermal model to obtain the overall
gasifier pre-heating model. The integrated gasifier pre-heating model was simulated with
baseline pre-heating temperature profiles to obtain the corresponding baseline transient
tensile and compressive stress profiles in the refractory bricks, which served as the basis
for subsequent MPC studies for optimized pre-heating to obtain the entitlement in terms of
shortest time for completion of pre-heating.

2.1.1.2 Task 1 — Sensor Implementation in RSC at TECO Plant

In this subtask, the objective was to install sensors in the RSC in the TECO IGCC plant
and obtain plant operation data that could be used for RSC model validation. Initially,
three potential sensor candidates were identified: (i) radial temperature profiles at levels 7
& 10, (ii) axial temperature profile between levels 7 &10, and (iii) strain measurement in
the RSC dome outside the hot syngas path. Lab tests on packaging performance for the
axial temperature profile indicated high risks in packaging survivability and potential
adverse impact to nominal plant operation and was thus, not pursued for implementation.
Extensive lab tests were performed in 2007 and 2008 to study and improve the
performance of the optical Fiber Bragg Grating (FBG) sensors under expected thermal
and strain conditions. Finally, sensor packaging design and fabrication for the radial



temperature sensor probes for levels 7 & 10 with integrated Type B thermocouples and
optical fiber FBGs was completed in 2008 and early 2009. These radial temperature
probes were installed in the RSC in the TECO IGCC plant during the plant maintenance
shutdown in February/March 2009. In particular, four radial temperature probes, two at
each level on opposite sides of the RSC were installed. The temperature probe on level 10
worked very well and survived for more than the thirty days that was aimed for. The
temperature probe at level 7 also provided excellent temperature profile data for five days
of operation after initial plant startup. However, on the fifth day of operation, the ceramic
probe broke off abruptly — it was suspected that the hot gas and/or slag impinged directly
onto the probe causing the abrupt breakage. Finally, a set of fiber optic FBG strain
sensors were also installed in the RSC dome outside the hot syngas path to monitor strain
evolution over time due to gradual fouling buildup on the heat transfer area. A key
challenge for this sensor was for the optical fibers to withstand and survive a large thermal
strain (~6000 ue) due to the temperature rise at startup, and thereafter, accurately
measure a very small mechanical strain (~50 ue) due to fouling buildup over several weeks
of operation. This sensor also worked very well and provided a very good measurement of
the gradual fouling buildup over six weeks of plant operation, matching very well with
estimated mechanical strain due to fouling. More details about this task are included in the
previous Topical report for Phase Il (June 2009).

21.2 Task 2 - Sensing System Design

The objective of this task was to design a model-based sensing/estimation system that
provides online measurement/estimate of key process variables in the gasification section
that are important for monitoring and control, e.g., gasifier temperature, carbon
conversion, gasification efficiency, slag viscosity and syngas properties. To this end,
initially, in this task, a linear model-based analysis was performed at nominal baseload
operating condition to study the performance of model-based estimation in the presence
of sensing and modeling errors. The linear model was derived at the nominal baseload
condition from the full nonlinear model, and a Kalman filter analysis was performed to
study the impact of modeling errors and sensor errors (e.g. bias and noise) on the
estimation performance. Also, a sensitivity study was performed to identify key sensor
biases and model parameter errors that contributed to the uncertainty in overall estimation
accuracy. This analysis was then followed by a full nonlinear model-based estimation
using an Extended Kalman Filter (EKF) to verify the performance of nonlinear estimator in
the presence of errors in model parameters and sensor noise/bias. One key problem with
the standard EKEF is that it does not enforce any constraints on the estimated state or
parameter variables, which are important to ensure physical validity of the model. To
address this, the EKF implementation was extended to include constraints on all estimated
variables to enforce them to be in expected and/or physically meaningful range. The
performance of the constrained EKF was tested through extensive simulation studies in
the presence of unknown errors in the model parameters, e.g. RSC fouling and gasifier
kinetics, which are often not known precisely and/or change slowly over time. The EKF
simulations showed that the unknown model parameters were correctly identified and
updated to match simulated variations, thereby allowing accurate estimation of key
process variables that were not measured but were important for monitoring and control,
e.g. gasifier temperature, carbon conversion, slag viscosity and overall efficiency. More
details about this task are included in the previous Topical report for Phase Il (June 2009).



2.1.3 Task 3 — Control System Design

In this task, initially a nonlinear model predictive controller (MPC) was designed and
implemented to optimize the steady state and transient operation during nominal plant
operation (e.g. turndown and fuel changes) as well as during startup, specifically pre-
heating of gasifier and RSC during startup. The MPC was implemented on the full
nonlinear model of the gasification section in Matlab/Simulink® and its performance
tested through extensive simulation studies. In this initial stage, the MPC implementation
assumed accurate knowledge of all important state and output variables, to identify the
entitlement in performance improvements achievable for nominal operation and startup.

MPC simulation studies were performed for gasifier pre-heating subject to constraints on
the thermal stresses in the refractory bricks — imposing the same stress limits as obtained
with the current baseline pre-heating strategy. Simulation studies showed significant
reduction in total pre-heating time for the gasifier refractory, with more than 20% reduction
from the baseline pre-heating time. In an alternative implementation, MPC was also tested
to simultaneously reduce the startup time as well as the maximum thermal tensile stresses
to identify a design tradeoff between the two. MPC simulation studies on the RSC pre-
heating, subject to thermal gradient and stress constraints also showed possibility of
significantly faster pre-heating— potentially completing the RSC pre-heating in less than
ten hours, depending on the maximum steam flow available during pre-heating. Finally,
MPC simulation studies were also performed for nominal operation including baseload
operation, turndown between baseload and fifty percent load and fuel changes with up to
fifty percent petcoke in coal-petcoke blend. Using a multivariable optimization and running
to critical operability constraints, one optimization mode focused on minimizing the amount
of oxygen used at steady-state operation at baseload or part-load — this in turn, reduces
the internal electricity consumption in the air separation unit (ASU). MPC simulation
studies indicated a reduction in oxygen consumption by 5-10% at baseload and half-load
conditions. Similarly, MPC simulations were performed to accelerate the transient load
changes (turndown) between baseload and fifty percent load conditions, allowing
potentially 20% faster turndown capabilities through coordinated manipulation of multiple
operating variables, while enforcing key operability constraints. These MPC studies were
repeated for operation for coal-petcoke blend with up to 50% petcoke. MPC allows a
smooth transition from coal to petcoke blend, maintaining desired electricity power output
while simultaneously enforcing all operability constraints. MPC allowed a similar 20%
improvement in ramp rates for turndown transient operations with petcoke blend. More
details about this task are included in the previous Topical report for Phase Il (June 2009).

2.2 Phasellll

This section summarizes the key accomplishment of the program in the final phase (2009-
2010).

Design of nonlinear Extended Kalman Filter (EKF) and nonlinear Model Predictive
Controller (MPC) are the key elements of the advanced model-based integrated sensing
and control systems. These elements were independently designed and tested in earlier
phases of the program. In phase Il of the program the key focus was on integrating EKF
and MPC to achieve the integrated advanced model based sensing and control solution
for the gasification section of the IGCC plant.



Up to 2009 Q4, the development and testing of EKF and MPC were performed separately.
While the EKF model used an early version of the reduced-order model, the MPC
implementation, as it matured, was updated to use a more efficient reduced-order model.
In particular the MPC implementation incurs a large model simulation expense due to
repeated prediction over a long future horizon. This had motivated simplifying/eliminating
certain fast transients (e.g. syngas flow and pressure relations) to enable faster model
predictions and MPC simulation. In 2010 Q1, the MPC and EKF implementations were
updated to a common gasification section model with the aim of integrating MPC and EKF
in the overall combined sensing and control solution. The updated EKF and MPC were
tested and validated individually through simulation in their existing framework (open loop
simulation for EKF and “ideal plant” simulation for MPC).

In 2010 Q2, the focus was on integrating EKF in closed-loop with MPC to obtain the
overall sensing and control solution. The integration necessitated re-tuning of the MPC
and EKF parameters to ensure overall closed-loop system stability and performance. The
integrated EKF & MPC closed-loop performance was studied through a number of
simulations for steady state and transient operation, with coal and coal-petcoke blend, in
the presence of sensor (bias and noise) and modeling (unknown) parameters (e.g.,
gasifier kinetics and RSC fouling factor) errors. In 2010 Q3, these studies were used to
continue updating the EKF and MPC implementations and tuning to achieve desired
closed-loop performance for tracking and optimization in the presence of sensor (bias &
noise) and/or modeling (unknown model parameters) errors. The simulation results
showed that the tracking performance was good both at steady state and during transients
with some expected performance degradation due to sensor noise and biases. However,
the simulation studies also highlighted potential issues when optimizing for minimum
oxygen consumption at part load and maximum electrical power output at baseload
conditions.

Based on simulation studies, further refinement of MPC and EKF were carried out in 2010
Q4, to improve performance for optimized operations. In particular, refinements were
made in order to have robust solution for a) oxygen minimization at part load while still
tracking the net power output setpoint and b) net electrical power output maximization at
baseload condition. The simulation studies of this final solution showed a similar trend that
was observed in phase Il simulations with “idealized” plant and sensor measurements
with, of course, certain expected minor degradation in the performance. This trend
includes a reduction in oxygen consumption by 7-10% at 50% partload conditions and 1-
2% increase in net electrical output at baseload load conditions with coal slurry. Similar
studies for operation with coal-petcoke blend with up to 50% petcoke showed 2-6%
reduction in oxygen consumption at 50% load. Similarly, the simulation studies for the
transient load changes (turndown) between baseload and fifty percent load conditions
showed that it was possible to have potentially 20% faster turndown capabilities through
coordinated manipulation of multiple operating variables, while enforcing key operability
constraints.

These results were also presented to the DoE team in the final program review in
December 2010. A simulation demonstration of the gasification section model and the
overall integrated sensing and control solution using EKF and MPC was also performed. In
addition, software for a) simulating the gasifier section models b) unconstrained extended



Kalman filter ¢) model reduction algorithm used for deriving lower order model based on
singular decomposition were delivered. All deliverables for this program have been met.

3 Introduction

This program is aimed at developing an integrated advanced sensing and controls solution
for improved operation of IGCC plant, focusing in particular, on the core gasification
section of the plant. The gasification section has a particularly harsh environment with high
temperatures and pressures and presence of slag and corrosive elements. Owing to the
harsh environment, limited online sensing is currently available for online monitoring and
controls. Consequently, the operation of this section using a combination of simple
controls and operator judgment based on limited and/or infrequent measurements is often
conservative, especially for transient operations.

In this three-year program, a systematic model-based approach is developed for the
design of a comprehensive sensing system combining online sensors along with online
model-based estimation, and a model-based multivariable controller that optimizes the
operation of the gasification section at steady state as well as through key transients like
startup, turndown and fuel changes. To this end, available models for different units of the
gasification section (e.g. gasifier, radiant syngas cooler (RSC)) have been combined in a
common platform in Matlab/Simulink® to obtain a comprehensive dynamic model of the
gasification section. Also, specific sensing technologies have been implemented in the
IGCC plant at TECO Polk Power Station to obtain operation data that are used for the
RSC model validation. The dynamic model of the gasification section is used in a
systematic model-based analysis and design framework to design a comprehensive
sensing and control system to improve the robustness and flexibility and optimize the
operation of the gasification section for steady-state as well as transient operations, in
particular, for startup, turndown and fuel changes.

3.1 Program Tasks

The overall three-year program consists of three main tasks:
1. Modeling, model reduction and model validation,
2. Sensing system design, and
3. Control system design.

In Task 1, available models for different units in the gasification section were combined in
a common platform in Matlab/Simulink® to obtain the dynamic model for the overall
gasification section, which are used for sensing and control system design in Tasks 2 and
3. Available component models for key process units were implemented in
Matlab/Simulink® . Some of the existing models had only been used at steady state
conditions and appropriate updates were made to allow transient simulation with these
models. Furthermore, some of the models, e.g. gasifier and RSC, were of high order, i.e.,
they had a large number of internal states since they model spatial variation along the
length of the gasifier and the RSC. Owing to the large dimension, these models are
computationally expensive and not amenable to real-time transient simulations and model-
based analysis and design of sensing and control systems. Thus, these high-order models
were simplified through model reduction techniques to obtain lower order models while
maintaining high accuracy for control. Also, in Task 1, temperature and strain sensors
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were implemented in the RSC in the TECO Polk Power Station IGCC plant to obtain
suitable operation data that was used for validation of the RSC model. A key common
challenge for all the sensors was developing suitable packaging for the harsh environment
in the RSC, and appropriate mechanical design to facilitate easy installation given the
limited access inside the RSC. These sensors were installed in the TECO IGCC plant in
the RSC in early 2009 and plant operation data was obtained successfully.

In Task 2, the dynamic model of the gasification section from Task 1 was initially used to
perform a systematic “observability” analysis. More specifically, a linear model-based
Kalman filter analysis was performed to study the estimation performance for key
unmeasured variables and its sensitivity to modeling and sensor errors. The sensitivity
analysis allowed identifying the key sensor errors (bias and noise) and modeling errors
(parametric errors) with respect to good system performance, which were then included in
an online nonlinear model-based estimation algorithm using an extended Kalman filter
(EKF). Simulation studies were performed in the presence of modeling errors introduced
through variations in model parameters, and noise and biases in online sensors to verify
the performance of the nonlinear model-based estimation system at steady-state as well
as during transient operations. More details on this task are included in Topical report for
Phase Il (2009).

In Task 3, a model-based advanced controller was designed for the gasification section to
coordinate the operation of the individual units in this section to optimize the overall
section performance. In particular, a nonlinear model predictive controller (MPC) was
implemented initially assuming ideal measurement for all variables needed for feedback,
to optimize the performance of the gasification section at steady state and during key
transients like startup, turndown (i.e. throughput changes), and fuel changes. Extensive
MPC simulation studies were performed for startup, specifically gasifier and RSC pre-
heating, and normal operation modes including turndown and fuel changes. These MPC
simulations indicated opportunities for significant improvements in transient operation,
reducing pre-heating and turndown transient times, and optimizing steady-state
performance for minimized oxygen consumption. More details on this task are included in
Topical report for Phase Il (2009).

Finally, the design of an advanced model based sensing and control system requires
integrating the comprehensive sensing solution consisting of combining online sensors
along with online model-based estimation (EKF) with the model based predictive control
(MPC) developed in Task 2 and Task 3. This effort was carried out in Phase Il of this
program and is described in Section 4.

3.2 Program Plan and Summary

Figure 1 shows the detailed program plan for each task and subtask and the key
milestones. The modeling of individual gasification section components, model reduction
and combination of the individual component models in Matlab/Simulink® (Tasks 1.1-1.4)
to get the overall gasification section dynamic model were completed in Task 1 by June
2008. The model was extended to encompass post-ignition pressure ramp-up operation.
Separately, models were implemented for pre-heating of the RSC and gasifier refractory —
the latter was completed in 2008 Q3. In parallel, under Task 1.5, lab tests were performed
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for optical fiber FBG sensors towards implementation in the TECO Polk Power Station
IGCC plant. The sensors were installed in 2009 Q1 and plant operation data was
successfully obtained in 2009 Q2.

In phase Il of the program, the gasification section model developed in phase | was used
for analysis and design of model-based sensing and control systems under Tasks 2 and 3,
respectively. More specifically, under Task 2, initially linear models were generated from
the full nonlinear model at baseload operating condition and used for model-based
analysis for a sensing system using a combination of online sensors and model-based
estimation. Thereafter, a full nonlinear model-based estimator using a nonlinear extended
Kalman filter (EKF) was implemented in Matlab/Simulink® and its online estimation
performance was tested in the presence of modeling and sensor errors through steady
state and transient simulations. This Task was completed in 2009 Q2.

Under Task 3, nonlinear model predictive controllers (MPC) were designed and
implemented in Matlab/Simulink® to optimize the steady state and transient operation of
the gasification section subject to critical operability constraints. In particular, MPC was
designed for optimizing pre-heating of the gasifier and the RSC. Similarly, MPC was
designed for optimized operation at nominal baseload or part-load steady state as well as
for throughput changes during turndown with coal and coal-petcoke blend fuel. The
performance of the MPC in achieving optimized operation for startup and nominal
operation was tested through extensive simulations and this subtask was complete in July
2009.

The Phase Il of this program was extended under a no-cost extension till December 2010.
In this final phase of the program, the separate model-based sensing system using EKF
designed in Task 2 and the MPC designed in Task 3 was combined to achieve the overall
integrated model-based sensing and control system. The MPC and EKF design are
updated and re-tuned to achieve good performance of the integrated sensing and control
system. Extensive simulation studies were done to verify the performance of the
integrated system in the presence of sensor error (noise and bias) and model error
(parameter uncertainty). These results are documented later in this report.

These results were also presented to DoE team in a final program review in December
2010, along with simulation demonstrations of the model and developed integrated
sensing and control solution. In addition, software for a) simulating the gasification section
models b) unconstraint extended Kalman filter c) model reduction algorithm used for
deriving lower order model based on singular decomposition were also delivered.
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Figure 1: Program Plan and Milestones

3.21

Milestones & Status

The key program milestones are shown in Figure 1 by the yellow triangles. The milestones
and the current status are summarized below.

Controls requirements (Dec 2007) — completed collection of controls requirements
for transient operation modes, turndown, fuel changes, and startup (pre-heating).
Complete gasification section dynamic model in Matlab/Simulink® (Jun 2008) — All
models were implemented in Matlab/Simulink® by June 2008, except the gasifier
pre-heating model. The gasifier pre-heating model using a combination of
Matlab/Simulink® and ANSYS® was completed in 2008 Q3.

Advanced MPC solution with ideal sensors (Dec 2008) — Initial MPC
implementation for nominal and startup operations were completed in 2008 Q4.
MPC implementations were updated in 2009 Q1-Q2 as simulation studies were
performed to optimize startup and nominal operation.

Validated and updated gasification section model and sensing system design (Jun
2009) — A nonlinear EKF with constraints was implemented in Matlab/Simulink® to
obtain the overall sensing system combining online sensors and model-based
estimation, and its performance was tested through simulations in 2009 Q1-Q2.
Integrated sensing and control system (Jan 2010) — This task started in Phase lll.
The upgrading of underlying models for EKF and MPC were completed in 2010 Q1.
The integration of these two models was completed in 2010 Q2. The integration
necessitated further tuning of EKF and MPC. This was completed in 2010 Q3.
Final computer simulation demonstration of integrated model-based advanced
sensing and control system (Jun 2010). The computer simulation of the final
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version of the integrated advanced sensing and control system was demonstrated
to DoE in December 2010.

All program milestones and deliverables have been completed.

3.2.2 Financial Plan & Status

3100

2600 —— Actual

A Plan

2100

1600

1100

Total ($K)

600

100

-400

Figure 2: Planned and actual spending

Figure 2shows the planned and actual spending for the total program. The actual
spending until FW 53, 2010 is $2,891K vs. a planned target of $3,016K.
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4 Phase lll - Design of Integrated Sensing and Control System
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Figure 3: Schematic of previous implementation of EKF and MPC. MPC was running with
perfect state feedback from plant while EKF was running in open loop.

Figure 3 shows the architecture used in Phase II, wherein the MPC with ideal sensors, i.e.
perfect knowledge of all state and output variables from the plant, and the EKF-based
sensing system using a combination of online sensors and model-based estimation were
developed and tested in parallel. In Phase lll of the program, the separate designs for
MPC with ideal sensors and the EKF-based sensing system were coupled to obtain the
overall integrated sensing and control system, as shown in Figure 4.
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Figure 4: Schematic of Integrated EKF and MPC. The EKF updates the states and
parameters for reduced order model used in MPC that no longer uses the perfect state and
parameter information from the plant.
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In a phased approach to this task, first the separate implementations of MPC and EKF
were unified in a combined implementation, using the latest reduced-order model common
to both and a common linear model generation routine to achieve high computational
efficiency. Thereafter, the integrated control and sensing system was retuned for stability
and performance robustness to random combinations of sensor noise, bias and modeling
error. The final retuned system was studied using Monte-Carlo simulations for both coal
slurry feed and coal-petcoke blend. For all these simulations, the system is initially
simulated in open loop with only the EKF enabled (without engaging MPC controller) for
about 60 minutes. This time is required for initial transients in estimated states and
parameters to settle down. Thereafter the MPC controller is engaged to study the
performance of the integrated EKF-MPC system for steady state and transient operation.
The simulation results for coal slurry feed based on a number of Monte-Carlo simulations
with random combinations of sensor noise and bias and modeling error (RSC fouling and
gasifier kinetics) are presented next.

Simulations studies conducted with the integrated control and sensing system using coal
slurry feed show good tracking performance during steady state as well as transient
operations. Figure 5 and Figure 6 show one such result. Figure 5 shows various phases of
each simulation and the performance improvement in each phase. The simulation is
initiated (point ‘A’) at base load condition with only the EKF enabled. The simulation runs
for almost 60 minutes without any external control input (open loop). After that the MPC is
engaged at point ‘B’. The MPC quickly tracks the Net Electrical output and scrubber
syngas pressure to the respective reference set points. At a steady state point ‘C’ the
MPC engages in net electrical output maximization mode while respecting all the
operational constraints (e.g., maximum slurry feed, ASU limit etc). At a later steady state
operation point ‘D’ the MPC suspends the Net Electrical output maximization mode in
preparation for the Net Electrical output turndown. Operation phase ‘E’ to ‘F’ represents
25% faster ramp tracking in net MW as well as scrubber syngas pressure compared to the
nominal operation to 50% part load. Since, it is normally not desirable for the IGCC plant
to turn down all the way to zero load due to startup complexities, the end of this turn down
transient may represent the parking of the plant during the low demand period. During this
period, one objective would be to minimize the oxygen consumption while maintaining
certain minimum load (net electrical output as well as scrubber syngas pressure). The
point ‘G’ represents the starting point of such a phase. At point ‘G’ the MPC engages the
minimization of the oxygen consumption mode while maintaining 50% load. Phase ‘I'-'J’ of
the simulation represents the ramp up transient tracking of Net Electrical output from 50%
load to base load condition at 20% faster rate compared to the nominal rate. Once at the
base load, the MPC again engages the maximization of Net Electrical output mode at a
steady state operation point ‘K’. As mentioned, all through this simulation the scrubber
pressure is also tracked to a given reference trajectory as shown in the bottom graph of
Figure 5.
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Figure 5: Integrated sensing and control system closed loop response to coal throughput
changes from 100% -50%-100% with sensor and parameters error. The MW output and
scrubber pressure (blue) track the reference profile (red) with 25% (ramp down) to 20%
(ramp up) faster ramp rate compared to nominal.

Figure 6 shows more details on the overall plant response with the integrated sensing and
control system to change in coal throughput from base load to 50% part load and then
back to base load in the manner as described earlier (Figure 5), in the presence of sensor
(one random combination of sensor bias) and modeling error (RSC fouling and Gasifier
kinetics). For this simulation, the plant RSC is 30% fouled and the gasifier kinetics is 70%
of the nominal value. The EKF is initialized to nominal values of these parameters (RSC
fouling=0 and Gasifier kinetics scale factor =1). The simulation response shows that
despite the presence of sensor noise and parameter error the integrated sensing and
control system has a good Net Electrical output set point tracking performance for both, at
the steady state as well as the transient operation. This is similar to what was observed
with “ideal” plant and sensor earlier and reported in 2009 Topical report. Further the
integrated system is able to maximize the Net Electrical output for this combination of
sensor noise and bias and model parameter error by more than 2% at the base load and
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cut down the oxygen consumption at partload by about 10%. Figure 6 also shows that the
EKF estimates of gasifier kinetics scale factor (Etasr) and the RSC fouling factor (Foulingss)
at base load condition are quite good. However, at part-load conditions due to limited
‘observability” of the parameters in the system, the parameter estimation is less accurate.
More specifically, since EKF estimates all the states, parameters and biases such that
combinations of all these result in minimum variance estimate to match the sensor
measurements, the individual parameters are not guaranteed to track the actual
parameters. However, the overall closed-loop response shows that even in the presence
of sensor and modeling errors and despite the limited “observability” of the parameters in
the system, the integrated sensing and control system is able to track the load and syngas
pressure references well: tracking 20-25% faster turndown ramp rates. In the figure the
blue graph in Elec_ MW_Net and SG_P represent the actual response whereas the
reference trajectories are shown as red graph.
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Figure 6: Integrated sensing and control system closed loop response to coal throughput
changes from 100% -50%-100% with one combination of random sensor biases and
parameters error.
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As mentioned earlier, the designed integrated sensing and control close loop system was
studied using Monte-Carlo simulations using random combinations of the sensor biases
for each run. These results are presented in Figure 7and Figure 8. For all these
simulations the plant RSC is 30% fouled and gasifier dynamics is 70% of the nominal
value whereas, the estimator is initialized with nominal gasifier kinetics (etag=1) and no
fouling in the RSC (fouling=0). Histograms of the maximum sustained net electrical power
output gain at base load condition and maximum sustained saving in oxygen consumption
at 50% part load observed in Monte-Carlo simulation are presented in Figure 7. The
simulation shows that the gain in net electrical power output could be as much as 2-2.5%,
however, this gain is uneven and depends upon the sensor noise and bias combination.
This is due to non-perfect observability in the system. Due to non-perfect observability
some performance constraint parameters like carbon conversion, slag viscosity and
Wobbe index cannot be estimated very accurately. This results in more conservative
optimized performance due to constraints posed on these signals. The Monte Carlo
simulation also shows that 7-10% sustained saving in oxygen consumption over the
nominal consumption for 50% load can be achieved by judicious manipulation of control
inputs. For consistency purpose, the saving in oxygen consumption is normalized with
respect to the net electrical power output to account for any slight changes in electrical
power output during the optimization of oxygen consumption phase. This gain is similar to
what was observed with “perfect” sensors as reported in 2009 Topical report for Phase Il.

Finally, Figure 8 shows the time traces and histograms of gasifier kinetics parameter
(etasr) and RSC fouling for the same Monte-Carlo simulations. As mentioned earlier, each
simulation starts in open loop with model-based estimator (EKF) engaged for an hour
before the controller (MPC) is activated. This is required for the estimates of “unknown”
parameters in model (used both for EKF and MPC) and sensor biases to settle to its
steady state values as seen in subplots in Figure 8. Without this open loop operation, it
has been observed in multiple simulations that the interaction between the estimator and
the controller may lead to closed loop system instability. The time traces of the parameters
also show that these parameters are estimated more accurately at the base load steady
state condition as compared with the part load steady state condition or during the
transient operations, due to poor observability at part load conditions. Since the
parameters observability is better as the base load condition, starting the simulation at
these conditions also helps in more accurate estimation of these parameters. Starting at
baseload condition, once the estimation has converged close to the “correct” value, it does
not change significantly again on account of poor observability. The histograms at the
bottom of Figure 8 correspond to the average value of corresponding parameters for each
Monte-Carlo simulation. The figures show that the average estimated parameter values
over each simulation are close to actual values.
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Figure 7: Monte Carlo simulation results for Net Electrical output gain at the base load
condition and oxygen saving at 50% part load condition for various random combination of
sensor error (bias) and model parameter error (gasifier kinetics and RSC fouling) using the
integrated sensing and control system for coal throughput changes from 100%-50%-100%.
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Figure 8: Monte Carlo simulation results for gasifier kinetics and RSC fouling for various
random combination of sensor bias and model parameters error for the integrated sensing
and control system closed loop system to coal throughput changes from 100%-50%-100%.
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Similar simulation studies were also carried out for coal-petcoke fuel blend. These results
are presented next. Figure 9 shows various phases of simulation with coal-petcoke fuel
blend. The simulation is initiated (point ‘A’) at base load condition with EKF engaged. The
simulation runs for almost 60 minutes without any external control input (open loop). After
that the MPC is engaged at point ‘B’. The MPC quickly tracks the Net Electrical output and
scrubber syngas pressure to the respective reference set points. Operation phase ‘C’ to
‘D’ represents 25% faster ramp tracking in net MW as well as scrubber syngas pressure
compared to the nominal operation to 50% part load. Again, since it is normally not
desirable for the IGCC plant to turn down all the way to zero load due to startup
complexities, the end of this turn down transient may represent the parking of the plant
during the low demand period. During this period one objective would be to minimize the
oxygen consumption while maintaining certain minimum load. The point ‘E’ represents
starting of such a phase. At point ‘E’ the MPC engages the minimization of the oxygen
consumption mode while maintaining 50% load. At point ‘F’ the MPC disengages the
oxygen minimization mode in preparation for transient operation. Phase ‘G’-‘H’ of the
simulation represents the ramp up transient tracking of Net Electrical output from 50%
load to base load condition at 20% faster rate compared to the nominal rate. Once at base
load, the MPC again engages tracking of Net Electrical output as well as scrubber syngas
pressure mode and maintains the steady state operation. As mentioned, all through this
simulation, the scrubber pressure is also tracked to a given reference trajectory as shown
in the bottom graph of Figure 9.
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Figure 9: Integrated sensing and control system closed loop response to coal-petcoke
blend throughput changes from 100%-50%-100% with sensor and parameters error. The
MW output (blue) track the MW reference (red) with 25% (ramp down)-20% (ramp up) faster
ramp rate compared to nominal.

Figure 10 shows more details on the overall plant response to the integrated sensing and
control system to changes in coal-petcoke blend throughput from base load to 50% part
load and then back to base load in the manner as described earlier (Figure 9), in the
presence of one random combination of sensor error (bias) and modeling error (RSC
fouling and gasifier kinetics). Similar to the coal case, for this study the plant RSC is 30%
fouled and the gasifier kinetics is 70% of the nominal value. The EKF is initialized to
nominal values of these parameters (RSC fouling=0 and gasifier kinetics scale factor =1).
The simulation response shows that despite the presence of sensor noise and parameter
error the integrated sensing and control system has a good steady state as well as the
transient operation tracking performance for both, the Net Electrical output as well as
scrubber syngas pressure. This is similar to what was observed with “ideal” plant and
sensor earlier and reported in 2009 Topical report for Phase Il. Further the integrated
system is able to cut down the oxygen consumption by about 6% at partload. This is again
similar to what was observed with “ideal” plant and sensors and reported in 2009 Topical
report. Figure 10 also shows the EKF estimates of gasifier kinetics scale factor (Etass) and
the RSC fouling factor (Foulingss) over the duration of the simulation. The figure shows that
plant parameters namely gasifier kinetics scale factor and RSC fouling factor estimates
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are slightly less accurate: at base load condition, the EKF estimates slightly faster gasifier
kinetics whereas at the partload condition it estimates slightly slower kinetics. Further, at
baseload condition the RSC fouling is accurately estimated close to the actual value of
30%, while the estimation deteriorates at part load condition. This is due to limited
“‘observability” of the parameters in the system, especially for small throughput at partload
operation. Similar to coal case, since EKF estimates all the states, parameters and biases
such that combinations of all these result in minimum variance estimate to match the
sensor measurements, the individual parameters are not guaranteed to track the actual
parameters. Nevertheless, the overall closed-loop response shows that even in the
presence of sensor and modeling errors and despite the limited “observability” of the
parameters in the system, the integrated sensing and control system is able to track the
load and syngas pressure references well: tracking 20-25% faster turndown ramp rates. In
the figure the blue graph in Elec_ MW_Net and SG_P represent the actual response
whereas the reference trajectories are shown as red graph.
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Figure 10: Integrated sensing and control system closed loop response to coal-petcoke
blend throughput changes from 100%-50%-100% with one combination of random sensor
bias and parameter errors.
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Figure 11: Monte Carlo simulation results for normalized oxygen saving at 50% part load
condition with various random combination of sensors error (noise and bias) and model
parameters error (gasifier kinetics and RSC fouling) for the integrated sensing and control
system to coal-petcoke blend throughput changes from 100%-50%-100%.

As mentioned earlier, similar to coal fuel, the designed integrated sensing and control
close loop system was studied using Monte-Carlo simulations using random combinations
of sensor biases for each run. These results are presented in Figure 11 and Figure 12. For
all these simulations, the plant RSC is 30% fouled and gasifier kinetics is 70% of the
nominal value whereas the estimator is initialized with nominal gasifier kinetics (etag=1)
and no RSC fouling (fouling=0). Histogram of the maximum sustained saving in oxygen
consumption at 50% part load observed in Monte-Carlo simulation is presented in Figure
11. The Monte Carlo simulation shows that 3-6% sustained saving in oxygen consumption
over the nominal consumption for 50% load can be achieved by judicious manipulation of
control inputs for most cases of sensor bias combination. For some combination of
sensors bias, this gain may be quite small. This is due to non-perfect observability in the
system. Due to non-perfect observability some performance constraint parameters like
carbon conversion, slag viscosity and Wobbe index cannot be estimated very accurately.
This results in more conservative optimized performance due to constraints posed on
these variables. For consistency purpose, the saving in oxygen consumption is
normalized with respect to the net electrical power output to account for any slight
changes in electrical power output during the optimization of oxygen consumption phase.
This gain is similar to what was observed with “perfect” sensors as reported in 2009
Topical report.

24



Monte-Carlo Simulation : etasf

Monte-Carlo Simulation : Rsc fouling

0.8
k]
8
® 04
0.2
0 : : : 0 : : :
0 100 200 300 0 100 200 300
time [min] time [min]
Histogram of average etasf Histogram of average fouling
10 8
8
4 26
(7]} (%)
© ©
o 6 o
3 3
N 6=0.066729 . 4 0=0.072227
2 4 2
£ £
5 5,
Z 2 =z
0 : 0
0 0.5 1 0 0.5 1
mean(etasf) mean(fouling)

Figure 12: Monte Carlo simulation results for gasifier kinetics and RSC fouling for various
random combination of sensor noise and model parameters error for the Integrated
sensing and control system closed loop system to coal-petcoke blend throughput changes
from 100%-50%-100%.

Finally, Figure 12 shows the time traces and histograms of gasifier kinetics parameter
(etasr) and RSC fouling for the same Monte-Carlo simulations. As mentioned earlier, each
simulation starts in open loop with model-based estimator (EKF) engaged for an hour
before the controller (MPC) is activated. This is required for the estimates of “unknown”
parameters in model (used both for EKF and MPC) and sensor biases to settle to its
steady state values as seen in subplots in Figure 12. Similar to coal fuel cases, without
this open loop operation, it has been observed in multiple simulations that the interaction
between the estimator and the controller may lead to closed loop system instability. The
time traces of the parameters also show that these parameters are estimated more
accurately at the base load steady state condition as compared with the part load steady
state condition or during the transient operations, due to poor observability at part load
conditions. Since the parameters observability is better as the base load condition, starting
the simulation at these conditions also helps in more accurate estimation of these
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parameters. Starting at baseload condition, once the estimation has converged to the
“correct” value, it does not change significantly again on account of poor observability. The
histograms at the bottom of Figure 12 correspond to the average value of corresponding
parameters for each Monte-Carlo simulation. The figures show that unlike the coal case, in
coal-petcoke cases, the average parameter values over each simulation are not very
accurate. The performance of the EKF parameter estimation could possibly be improved
by further retuning of the EKF. Despite this, as shown in Figure 10, the Integrated sensing
and control system has good steady state as well transient tracking performance and is
able to optimize the operational cost within the operational constraints.

5 Conclusions

An IGCC plant is a large chemical plant that is traditionally designed to operate mainly at
steady-state conditions, coupled to a power generation plant, which is intended to operate
in a robust and flexible manner. It is highly desired to achieve high degree of reliability and
increasingly flexible operation in terms of turndown or load-following capability and fuel
changes while achieving optimum overall plant efficiency. This in turn, implies a need for
increasing automation for coordinated and optimized operation of the various sections of
the plant to meet fluctuating power generation objectives. One of the main hurdles in
increasing automated operation of the plant is limited sensing of the critical parameters
available in the real time, e.g., slag viscosity and carbon conversion due to harsh sensing
environment with in the gasifier section. This situation can be improved by using soft
sensors to complement the hardware sensor available in the plant. This program is
focused on developing advanced integrated sensing and control systems to achieve the
objectives of higher reliability and flexible operation with optimized efficiency. In particular,
this program focuses on the gasification section, which is the core section of the plant, yet
most limited in terms of automated operation, due in large part to a very harsh
environment and corresponding limitations on online sensing. Motivated by this, the aim is
to develop a systematic model-based approach for analysis and design of sensing and
control systems, using physics-based models in online sensing and control.

In Phase | of this three-year program a dynamic model of the gasification section was
developed and implemented in Matlab/Simulink® for normal operation. The model was
validated using TECO Polk Power Station IGCC plant in Phase Il of the program. Apart
from this, the key focus in Phase Il of the program was to perform (i) a linear model-based
analysis for sensing system design, (ii) design and implement a nonlinear model-based
constrained EKF to obtain a comprehensive sensing system integrating online sensors
with model-based estimation, and (iii) implement an MPC for optimized operation of the
gasification section during startup pre-heating as well as nominal operation with coal and
coal-petcoke blend fuels. The initial MPC implementation assumed “ideal” sensors (no
noise and bias) and “ideal” plant (no parameter uncertainty). Extensive simulation studies
were performed to evaluate the performance of the model based constrained EKF and the
MPC independently. Using linear model-based analysis key sensor biases and model
parameters were identified. These were included in an online nonlinear model-based
estimation using a constrained EKF. The simulation studies showed that the EKF could
successfully identify the unknown model parameters and provide an accurate estimate of
key process variables that were not measured, but were important for process monitoring
and operation. Similarly, extensive simulation studies were done to evaluate the MPC
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performance for nominal operation at part-load and baseload conditions and for turndown
between part-load and baseload conditions. In one optimization mode at steady-state
conditions, MPC yielded potential reduction of oxygen consumption by up to 10%. In
another optimization mode for transient operation during turndown, MPC simulations
yielded faster ramp-up and ramp-down capabilities by 20% faster than baseline nominal
capability corresponding to the ASU rate limits. The MPC implementation can be
configured for optimization of different objectives depending on the operation mode.
These optimization objectives include carbon conversion, efficiency, oxygen consumption
and power output at steady state, and turndown ramp rates during load transients. This
capability provides for an enhanced robustness and flexibility in the gasification section
operation. Similarly, MPC simulations were used to study the operation with coal-petcoke
blends, and optimization for nominal operation at part-load and baseload conditions and
turndown, yielding similar improvements as with coal fuel.

In Phase Il of the program, a sensing system integrating available online sensors and real-
time model-based estimation, and an MPC were designed and tested separately through
extensive simulation studies. The main focus of Phase lll of the program was to integrate
the designed sensing and control systems to obtain the overall integrated sensing and
control system and test out its performance. In this effort, first the underlying physics-
based models were updated to a common version, and then the EKF and MPC were
coupled and re-tuned extensively for good closed-loop performance of the integrated
sensing and control solution. The physical model has many “unknown” parameters, e.g.,
gasifier kinetics, RSC fouling etc. The EKF provides estimates of these parameters as well
as of outputs important for efficient and safe operation like the gasifier temperature,
carbon conversion, slag viscosity etc. in the presence of random sensors noise and bias.
This integrated solution was tested through Monte-Carlo simulations with random
combinations of sensor biases in the presence of model parameter errors. The simulation
was designed to test performance of the integrated sensing and control system for Net
electrical output and syngas pressure setpoint tracking as well as minimizing the oxygen
use at the part load condition, with coal as well as coal-petcoke fuel blend while respecting
all the operating constraints like ASU rate and minimum carbon conversion etc in the
presence of random and unknown sensors noise and bias and unknown plant parameters,
e.g., gasifier kinetics and RSC fouling factor. For the coal slurry operation the MPC
additionally maximizes net electrical output at the base load condition.

The simulation studies show that the steady state as well as the transient tracking
performance of integrated system is good despite the presence of sensor and modeling
errors. Further, the integrated system provides the capabilities to the turn down 20% (ramp
up) or 25% (ramp down) faster than the nominal operation while maintaining all the
operational constraints. The integrated system also enables the optimization of various
objective functions depending upon the current operation mode, thus providing operational
flexibility. More specifically, for example, in the current setting, the MPC maximizes the net
electric power output at base load condition whereas it minimizes the oxygen usage at the
part load condition. Again in the framework of current studies, the Monte Carlo simulation
studies show that the system net electrical output could be increased by about 2% of the
nominal value at the base load condition with coal slurry. Further, the oxygen consumption
could be reduced by 7-10% at part load condition for coal slurry. With coal-petcoke blend
fuel, the oxygen saving was a bit less at around 3-6% - this is in part due to the more
constrained operation with petcoke owing to the higher carbon content. The EKF also
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estimated the unknown model parameters like gasifier kinetics and RSC fouling. The
estimates were good at baseload conditions, and deteriorated a bit during transients or at
partload conditions. This is due to the fact that the parameters are more observable due to
the higher sensitivity at baseload operation with higher throughput. The parameter
observability is reduced at partload operation. Due to limited observability it is not always
possible to estimate the unknown model parameters and compensate for sensor noise
and bias accurately. Nevertheless, the integrated sensing and control system using EKF
and MPC works very well for steady state and transient tracking as well as optimization.

The simulation studies have shown promising results for the EKF and MPC
implementations individually as well as for the final integrated EKF & MPC solution. These
results can be used as the basis for pursuing a future implementation of the developed
sensing and controls solution in an IGCC plant, in a staged manner. One option could be
to implement the EKF first using available online sensors in the gasification section and
mature its performance in plant application — validating both the underlying model and the
model-based estimation solution. Thereafter, MPC can be implemented and integrated
with EKF to achieve the advanced sensing and control solution, first using in an “advisory”
mode to aid operators and then in an automated closed-loop mode as the technology is
matured in plant application. In a separate direction, the developed advanced sensing and
control solution for the gasification section could be expanded or integrated with sensing
and controls for the other sections towards an overall plant control system for optimizing
the overall plant operation.
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