skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Induction Linac Pulsers

Technical Report ·
DOI:https://doi.org/10.2172/1005003· OSTI ID:1005003

The pulsers used in most of the induction linacs evolved from the very large body of work that was done in the U.S. and Great Britain during the development of the pulsed magnetron for radar. The radar modulators started at {approx}100 kW and reached >10 MW by 1945. A typical pulse length was 1 {mu}s at a repetition rate of 1,000 pps. A very comprehensive account of the modulator development is Pulse Generators by Lebacqz and Glasoe, one of the Radiation Laboratory Series. There are many permutations of possible modulators, two of the choices being tube type and line type. In earlier notes I wrote that technically the vacuum tube pulser met all of our induction linac needs, in the sense that a number of tubes, in series and parallel if required, could produce our pulses, regulate their voltage, be useable in feed-forward correctors, and provide a low source impedance. At a lower speed, an FET array is similar, and we have obtained and tested a large array capable of >10 MW switching. A modulator with an electronically controlled output only needs a capacitor for energy storage and in a switched mode can transfer the energy from the capacitor to the load at high efficiency. Driving a full size Astron induction core and a simulated resistive 'beam load' we achieved >50% efficiency. These electronically controlled output pulses can produce the pulses we desire but are not used because of their high cost. The second choice, the line type pulser, visually comprises a closing switch and a distributed or a lumped element transmission line. The typical switch cannot open or stop conducting after the desired pulse has been produced, and consequently all of the initially stored energy is dissipated. This approximately halves the efficiency, and the original cost estimating program LIACEP used this factor of two, even though our circuits are usually worse, and even though our inveterate optimists often omit it. The 'missing' energy is that which is reflected back into the line from mismatches, the energy left in the accelerator module's capacitance, the energy lost in the switch during switching and during the pulse, and the energy lost in the pulse line charging circuit. For example, a simple resistor-limited power supply dissipates as much energy as it delivers to the pulse forming line, giving a factor if two by itself, therefore efficiency requires a more complicated charging system.

Research Organization:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
Accelerator& Fusion Research Division
DOE Contract Number:
DE-AC02-05CH11231
OSTI ID:
1005003
Report Number(s):
LBNL-4205E; TRN: US1101250
Country of Publication:
United States
Language:
English