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Io’THE THEORY OF ABERRATIONS OF QUADRUPOLL FOCUSING ARRAYS
IX, ION OPTICAL DESIGN O HIGH QUALITY EXTRACTED SYNCHROTRON
BIAMS WITH APPLICATION TO THE BEVATRON
Philip Francis Meads, Jr.
Lawrence Radiation Laboratory
University of California

Berkeley, California

May 1%, 1963
ABSTRACT

in Part One we formulate in a general way the problem
of analyzing and evaluating the aberrations §f quadrupole magnet
beam systems, and of characterizing khe shapes and oﬁher properties
of the beam envelopes : the neighborhood of foci, We consider
all aberrations, including those due to misalignments and faulty
construction, through third order in small parameters, for
quadrupole beam systems. One result of ﬁhis study is the develop-
meat of apalytic and numerical téchniques for treating these
aberrations, yielding useful‘expressions for the comparison of
the aberrations of different beam systems. A second result of this
study is a comprehehsive digital computer program that determines
the magnitude and nature of the aberrations of such beam systems,
The code, using linear programming techniques, will adjust thé
parameters of a beam system to obtain specified optical propertiés
and to reduce ﬁhe‘ﬁagnitude of aberrations that limit the
performance of that system. We examine numericaliy, in detail,
the aberrations of two typical beam systems,

In Part Two, we examine the problem of extracting the
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proton beam from a synchrotron of "H" type magnet construction,

We describe the optical studies that resulted in the design of

an external beam from the Bevatron that is optimized with respect.
to linear, dispersive, and aberration properties.and that uses

beam elements of conservative design; The design of the beam is
the result of £he collaboration of many people representing several
disciplines. We describe the digital computer programs developed
to éarry out detailed orbit studies which were required because

ol the existence of large second order aberrations in the beam,
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I. INTRODUCTYION TO PART dNE

As the complexity of modern physics experiments increases,
more sophisticated beam systems are needed. The aberrations of
quadrupole magnets limit the performance of many beam systems,

An object of this theoretical study is to formulate in a general
way the problem of analyzing and evaluating these aberrations,

and of characterizing the‘shapes and othexr properties of the

beam envelopes in the neighborhoods of foci. Another purpose of
this study is to generate, fox the use of experimenters, a
comprehensive IBM digital compufer program which will determine
theAmagnitude and nature of the aberrations of beam systems
consisting of quadrupole magnets. This code also pr§vides the means
to reduce the magnitude of the aberrations that limit the perfor;
mance of a beam system,

In the decade since their use was first proposed
independently by Christophilosl and by Courant, Livingston; and
Snyderz, the quadrupole lens has become the standard focusing
device in)beam opticse

Quadrupole magnets have two planes of reflection
ahtisymmetry. Symmetry arguments demonstrate that there can be
no second~order aberrations in beam systems possessing éhis
symmetry. The calculation of aberrations is restricted to beam-
systems having the quad;upole symmetry, Thus we exciude bending
magnets which already hgve second~order aberrationse

There are five classic third-order aberraticens in light
optics, where the lenses possess rotational symmetry. Described

by the Seidel coefficients, these five aberrations are spherical
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aberration, cona, astigmatism, curvature of field, and distortion.3
Owing to the relaxed symmetry, beam systems consisting of quadrupole
lenses have an additional cleven geometric aberrations, making
a total of sixteen aberrations of third order.

Burfoot classified the additional aberrations that might
occur in electron optics, where the classic rotational symmetry
is replaced by two plane reflection antisymmetry,4 He determined,
from geometric symmetry considerations, that a total of 16
distinctive aberration types could occur. He described several
of these figures, with the objective of recognizing, by inspectién
‘of the image, a particular aberration if it should dominate. He
did not attempt to describe figures resulting from the presence
of more than one type of aberration, nor did he include any of the
chromatic aberrations,

Reisman examined the possibility of using a strong-focusing
lens as a sustitute for a rotationally symmetric projector lense5
A quadrupole doublet may be adjusted to provide focal points and
focal planes which are at the same position in both symmetry planes;
‘'such a lens is optically equivalent te an axially symmetric lens.
It is always the case for such.a lens that the focal points are
imbedded within the lens, thus restricting its use. He solved
analytically, to third order, the equations of motion for this
particular doublet cqnfiguration‘ neglecting all end effects,
He concluded that the aberrations of such a quadrupole doublet
were of comparable magnitude to those of a good axially symmetric
lens,

Bernard and Grivet solved analytically the linear
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equations of motion for a symmetiric doublet, adding an impulse=-
correction term which corresponds to the action of infinitely
sharp fringing fieidsu6 Their assumption is appropriate to a
Very weak lens in which the slopes of trajectories are small,

The effect of the infinitely sharp fringing field is to abruptly
alter the slepe of trajectories passing through the lens. They
examined the effect‘of this correction upon a paraxial line image,
determining that the image was ”smegred" in the particular cases
investigated.

Septier has experimentally measured the detailed fringing
field'shape for a:quadrupole magnet 150 mm long with a hore of -

40 mm jr"adiusn'7 His paper contains the results in gréphical form,
showing the dependence of the three fielé components upon the
coordinates. The magnet measured was constructed with poletips
of circular contour,

Gri&et and Septiér traced several initially parallel rays
through the same symmeﬁric doublet considered by Bernard and Grivet,
numerically dntegrating the equations through third order? This
was first done on an analeg machine and then repeated on a digital
computer. They found aberrations comparable in magnituae_to thése
obtained by addingvthe impuise«correction term, This validates
their assumptién that those aberrations which are highly dependent
upon the slopes of the t;ajectories may be neglected in a weakly
excited symmetriec doublet., This method is slow and does not readily
yield the dependence of the total éberrations upon the initial
displacements and slopes. The chromatic aberration is less than

the aperture aberration for this lens when used in their linear
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The work described above has been collected by Sgptier
in a treatise¢ oo strong-focusing lenses,g The worlk is divided into
four sections. Theoretical linear properties of magnetic and
electrostatic quadrupole lenses are covered in the first section.
Section Ii is a review of previous work on the aberrations. of such
lenses, as descriﬁed above. Construction of these lenses and field
meaSureménts condugted upon them are next réported°, The final
section reviews experimental results obtained by using quadrupole
lenses. lA particularly comprehensive inclusion in this work is'g
list of 101 references°

In the present paper the aberrations are freated by
studying the'thirdnorder‘terhs in the powef~series expansions of
‘the displacements and slopes necar the image plane in terms of the
relative momentum and_the displacements and'slopes at the object
planed Almethod of successive approximations is applied to the
trajectory equations which generate explicit expressions for the
coeffié;ents of terms through third'order in the expansions of the

.diéplacements and slopes. These calculations are valid for any
beam system that possesses the previously mentioned two-plane
reflection antisymmetry. Fforty derived coefficients characterize
the third-order geometric aberrations. In Chapter VI we show that
the canonical nature ¢f the transformations that carry the
trajectories between two points restricts the number of iﬁdependent
Eoefficients'to 16, the number determined by Burfoot from symmetry
arguments. An additional 16 coefficients describe the chromafic

aberrations of second order, which satisfy the quadrupole
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symmetry, and those of third oxder, If the characteristic length
of the fringing fiela of a quadrupole magnet is much smaller than
the geomet;ic mean of its effective length and its focal length,
abérrations due to fringing fiedls may be separated from inherent
aberrations of the magnet. These aberratioﬁs are characterized
by 16 coefficicents that depend upon the detailed shape of the
fringing field.

Real beam systems may fail to produce pure quadrupole
fieldsv owing to mechanical limitations. Nonalipgnments and
rotations of individual quadrupole lenses introduce additional
éberrationsu The effects of these aberrations are calcﬁlafed in
the present work, Knowing these effects, one may prescribe
tolerances‘in positioning each quadrupole magnet in a beam system
which, if satisfied, insure that displacements in the trajectories
due‘to nonalignments will be smaller ithan inherent aberrations of
the beam system.

Real quadrupele magnets frequently contain several
troublesome harmonics in the magnetic field which produce
aberrations higher than third order. In section H of Chapter V we
derive the approximate magnitude of displacements in the ttajectories
induced by each harmonic,

The maximum displacements due Lo aberrations are
calculated for all trajectories whose momenta and initial displacements
and slopes lie within specified symmetric bounds. Root-mean~-square
displacements due to the aberrations are calculated for three
models of the occupied region of object-plane phase space. Thesé

rms displacements are useful quantities for comparing the aberrations



of a number of beam systems. Numerical calculations imcluded im
this thesis demonstrate that the rms displacements are smaller byv
an order of ma@nitud@‘than the meximum aberration displ&ceﬁ@nt@e

Because of the abérfation@g it iz not gemerally poseible
‘to obtainm a tfu& lime or peint image of a point source from a beam
system. The location and size of the "“region of least confusion®
(i.e. the "best image”) is calculated for systems with a point
gource., The resulis delermine &hé beat location for a resolving
glit and the degree of maass or momentum resclution that camn be
attained, The width of thisg regiom may be as small as one fourth
the width of the beam at the paraxial image,

The detailed imaging of an axial point source is discussed,
All possible image shapes are classified amd d@&cmib@do However,
because of the grea@ variety possible in theses images, gquantitative
;reaults.are obtained frem the computer program.

In‘{he examples quoted, it is shown that the inherent
aberrations of the quadrupsle beam systems constitute the limiting
factors in their performance. It should be easy to realize the
tolerances needed to make the aberrations dune to misalignments
and higher field harmemics smaller tham the inheremnt aberrations,

Numerical calculations were made on several beam sysiems
which differed.only im separation of the constituent quadrupole
magnets; the magnification and focu&iﬁg properties were the same
for all systems. In every case examined, ali the aberrations were
smaller for systems with larger separatioms, evem whem the differ@nt
admittances were takem into comsideratiomn.

The digital computer program previously memntioned
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calculates all the aberration coefficientis derived im thias thes&ﬂg
including the coefficienis relating to the tolerances in magnet
construction and placement. The code calculates all the linear
prnpertie@ of & wide variely of beam systems., By use of the
powerful methods of linear programming, all parameters Ofla beam
system may be adjusted to meet any empecified optical propertiess
phyaic&lly‘unre&l solutions are precluded by constirainte placed
upon each parameter, The code will.alaq adjust parameiers to
reduce the aberrations of a beam gysiem,

Many resulis ars presented graphicelly by use of the
cathﬂdemray tube (CRT) display of the IBM 7090 computer. Much
quantitative and gualitetive detail about the aberrationms is
contained in plots of the projectione inth@ three coordinate planes
of representative groupe of trajectories leaving the beam system.
Beam-profile plote and phase-space plets complement the printed
output deacriﬁing the linear beam properties., The accuracy of
numerical calculation of the aberration ceefficients has been
verified by application of 28 relationships derived in Chapter VI,

In Chapiter LI we discuss the linear properties of beam
systems, including the properties of the beam envelope. The syﬁmetry
properties characteristic of gquadrupele magnets are discussed im
Chapter XXX, Imn Chapter IV we derive the equations of motion from
a Hamiltonian in which distanca along the optic axis is the
independent variable. The @uccessiVQWappraximdtiona method of
golving these equations ag the tupid of Chapter V. Relations
between the coefficients ¢f aberration are derived in Chapter VI,

In Chapter VII, we discusas the character of the aberrations. The
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computer program resﬁlting from this study is described in Chapter
VIITI., Appendix I contains the detailed expressions for the coef-
ficients of aberration, using & symbolic notation introduced in
Chapter V. Instructions for operating the computer program are
contained im Appendix II, BSeveral sample calculations are presented

in Appendix III.
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Tl LEINEAR THEORY
A beam-tiransport system generally consists of an

array of magn@t@mop&icai elementa, é@paw&ted by drift spaces,
designed to achieve certein desired opitical properties. Fof
a given systom, there oxists & cemtral trajectory, the optic
axis, which provides reference points for the displacements
and slopes of other irajectories. Throughout the first part
of thia paper, the ﬂpti@ axig is identified with the z axisy
di@pl&@@meﬁts from this axis are measuwred along the ¥ and y
mxésa The =z axig is & straight line except in a bendingbmagn@ﬁg

The equations for x and y ag functions of z are

called the trajectory equations. For the commonly used

beam elements {quadrupole magmets, drifi spaces, sand bending
magnets) the differential equations im x and y in the firset

approximation are of the type

x4 elz)ox = a(z)on , {(IL-1)
and y" o+« Blz).y = b{z)°n g (T-2)

here A = (pmpg)/p@ where Py is the design momentum of the

beam system; primesg refer te differentismtion with respect to
%, That the % and y equationsg are Independent im the first
approximation meansg that motion in one plane is independent
of motion im the other plame to this approximation. This
simplification is obtained only for beam systems im which the
constituent magnets are arranged with their principal axes
correlated, as described im Sectiom F of this chapter,

Another type of focusing element used is the solenoid,

which does mot have this property for any orientation because
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trajectories rot&&@ about the = axis within an axial fleld such
as that in a solenoid, However, the solenoid may be included
within the class of elements listed above provided itms placement

is restricted to peints where the beam is rototionally symmetric,

A, Repregentation of a Lens System

In each of the two plames, x and y, the optical properties
of the beam system for the design momentum are completely determined
by any two linearly independent solutions of the trajectory

equations. Given x and x' at =z we can then determine x and x!

419

at any other point =z, (similarly for y and y'), Let us choose the

2
two independent solutions t@vsa&iﬂfy the following conditions at Zyt
. = . "z =®
xa(zl) = b, X (al) 0
' (L-3)
x@(zl) = O and x@“(zl) = Lo
Then at any other point 2 we have
x(z) = x{=z, ) x (=) + =x*(z.) = (a)
1 <] X o
(Y:-4)

¢ . 9 p (N - 8 f o
X (z)~“x(zl) %, (=) +x (Zl} % (=) ,

or, in matrix notatiom,
X(2) f 20 ><@<aa3) (me)
(w:’(i?ﬁ?) : We i) oKL (B 55@'(53,‘3 (1-5)

The matrix im x@ and x@ ia called the x transfer matrix

between zl and z. The determinant of ithis matrix is the Jacobian

determinant of the transformation between y and z, XIm & non-
dissipative system, Liocuville's theorem requires that volume in
6n-dimensional phase space for & sysiem of n particles must be

conserved, To first approximatiom, the equations of motiomn of

each particle are independent of all others, the motiom im one
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one plane is independent of the motiom in the other two, and the
components of momenta are proporticnal to the slepes x' and y',

Thus Liouville's theorém for 6n-dimensional phase space reqﬁiras
that the area occupied by the Eeam in two-dimensional space of x
and x*' be consérvedo The Jacobian determinant of the transformation
must therefore be unity; hence the determinant of the transfer
matrix is identically equal fo unity., Thus a transfer matirix

always possesses an inverse (which.in this case is the matrix

that takes the beam backwards from z to Zl)“ It is easily

verified that TlS = T,.T where T i the transfer matrix

23712° 13

between Zl and 23 while le and ng are the t?ansfer matrices

between z, and z, and between z, and =

1 o o 9 respectively,

As with the thick lems in optics, the linear behavior of
8 moncenergetic beaﬁ transport aystem between two peints is
completely determined by the location of the focal'pointa and
the focal lengﬁh im each plame. There are in each plane threa
independent quantities that determine the optical behaviorj they
may be thought of in terms of either focal points or matrix elements.
- To discover the relationship between matrix elemenis and the location
of the focal points, it is necessary to calculate the location at
which an incoming parallel beam is imaged on the axis amd that
at which a source on the axis is imagediinto a parallel beam, The
focal length is then determined by applying the Newtonian lens
equation qpsfzﬂ with p the distance from the image focal point to
the image and q the distance from the object focal point to the
object. Let zO_be the location of the object focal point and
zZ, the location of the image focal point, If (T) is the transfer

matrix between the points z, and Zny then
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b greab
5 & - (l-6)
(T) = hjm 2 . where & = By - B and b = By Bgo
5 L

Three equivalént representations of & lens system have
boen presemted, together with the r@l&tionshﬁﬁ between them}
these representations are in terms of_(a)ilin@arly independent
solutions of a differential equations, (b) transfer matrices, and
{(c) cardinal points. As stated previously, we have been eaﬂsidering
the trajectories im the twe planes xz and yz wmeparately. The t:
tranfer matrices and the cardinal points in general differ im the

different planes.

B, The Deam Envelope

In characterizing the behavior of a group of trajectories,

the concept of a beam envelop@ ia of great value. The beam

envelope.is that surface which encloses the entire beam and

which is tangent to at least one trajectory at every poiht.
Before one can work with the envelope, it is necessary to define
the region in phase space occupled by the beam; this regiom varies
with z. As long as we are dealing with independent motiom im the
two planes, we can consider the product of the two-dimensiomnal
phase spaces in each plame. A convenient representation of the
curve im x-x' space t&at containg the beam is an ellipse, for

if the bounding figure is an ellipse at one value of z, it is an
ellipse at all values. Confining our attention to the x-z

and the x-x! planes, we mote several properties of the envelopes

that hold independently for the y-z and y=-y°' planes.
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In what follows we shall require the bounding phase
gpace figure toc be an ellipse. Because of Liouville's theorem
and the stipulated indepemdeonce of the x and y trajectory

equations, the area of the phase ellipse is a constant that is

independent of . The met of trajectories that forms the bounding
phase-space ellipse at one value of z forms the bounding figure
for all values,

The displacement of a particle passing through a drift
space is changed in propertion to the drift distance while the
slope remains constant, The corresponding effect on the phase
ellipse for a group of pdrticles is a shear in the x direction,
It is apparant that any phsse ellipse can be sheared to an
upright ellipse by drifting some distance either forward or
backward.
changes the slope of a trajectory while not changing its

displacement, is to shear lhe phase ellipse in the x' direction,

- C., Beam Widths

A point along the optic axis at which the éhase ellipse
is upright is known as & wnist; at this point the envelope has a
minimum width in %, We may paraﬁeterize an upright ellipse as
follows:

X = X COB Q, %' = %' sin e, 040<2%, (1t-7)
Let us assume the beam to have a waist at the entrance to the beam
system, with maximum.displa_cementv and slope given by % and §'9

respectively, If T,, is the transfer matrix to some other point,

ij
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then the maximum displacement and maximum slope at that point are
given by
2 2 =2

2o 2 2 2 —2
= T ¢ v =
xmax llx * T,BX and j(max = 121x

2 =2
v -
+ X%t (-8).
This result is easily obtained by differentiation with respect to

the parameter @, Since the transfer matrix fer a drift distante

. . 1 = )
zZ is given by Tij = ( 7>9 the equationm for the beam envelope in
O 1

a field-free region containing & waist with maximum x and x' equal

to x and %', respectively, is x(z)a = %2 4 22;@2 (-9), im which
z is measured from the waist. The envelope is thus a hyperbela in
a fieldwfree regioho

Conversely, let us assume an upright waist at the input
to the beam system, With X at the input corregponding to the size
of the source, we are able to determine %' mo that none of the
trajectories will strike & boundary at any point within the beam
system, provided the source is smaller than the apertures.

At every value of #zy the beam may be thought of as having
come through a field-free region from a waist, If, because of some
intervening focusing element, this waist deeg not really exist, we

will demnote it as a virtual waist, The study of the beam envelope

18 thus reduced to knowing tﬁe location of all the virtual waists
and walists and fheir respective widths.

To determine thé transfer matrix between any twe arbiirary
points, we may proceed by locating the virtual waist geen by
each point and then determining theltransfer matrix that carries
one virtual waist into the other. We now know the transfer matrix

between the two virtual waigts, and the drift distance between
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each of the original arbitrery points and ite virtual waist. We
multiply the transfer matrix between the two virtuai waints by the
matrices appreopriate to the two drifi spaces to obtaim the degired
transfeor matrix.

If x, and %“1 are the maximwuwm displacement and slope at

1
M cos @ ' (M/%) min @ )
Zy then the matrix (Fi-10)
' (/M) sin @ (/M) con ¢
produces an upright ellipse at Z, with maximum width §é = M §1 and

slope §§ = (L/M) zi s provided there is am wpright ellipse at )0

Here rs %1°f X and @ is ap arbitrary angle whese significance

1

can be seenm by operating wilh the matrixz upon the ellipse at 318

¢ b ¥ ) .
M cos (M/r) sin ﬁkf%xl cog @\ {M x, cos {o-&)

., -
(/M) sin @ (1/M) casm %y &xi“ @in Q; xlﬂ/ M sin {(Q-@)

Thus # corresponds to a rotation of points on the ellipse about the
gllipse’s center, and the matrix provides the apecified transformation.
We have determined the most general transfer matrix which carries

one upright ellipse imté another upright ellipse; the parameters M

and » are determined by the ellipses., It should be moted that M,

the ratio of waist widthe, differs from the magnification (which is

defined only if z, is the image of ml)g they are the same only for

2

@=nt where n is zero or a positive imieger (n=l corresponds to the
first image of the source, n=2 corrvesponds io the second image, osole

Ir Tij is the transfer matrix that takes the upright

ellipse at =z, to some arbiirary point =, then one is interested in

1

knowing the location and width of the equivalent (virtual) waist



-16-

that would produce the observed ellipse at z by a pure drift. If
d is the distance from z to the virtual waist and X is the maximum

displacement at this waist,; then

-2 2
g Tpy Xy Ty Ty (ff-11)
e ) 2 = 2 '
T X +  TE %!
211 22%1
SRRk :
A WA | ([~12)
and X = : - °
2r 2, g2 2
2171 221

‘Note that d=0 if » = - Pll ?1/ Tl?

D, Dispersive Systems

If we now broaden our attention to include beams having
8 sgpread in momenta aboul the design momentum, pO‘ and dispersive.
systems, then it is convenient to abandon the 2x2 transfer matrices

in favor of 3x3 transfer matrices operating on the columm vector

(X):{i' , Where A B (pmpo)/pe The bottom row of a 3Ix3 transfer

A

matrix is the same as the bottom row of the unit matrix, since

the momentuﬁ of a sihgle particle is not changed by any of the

beam elements considered in this paper (of course, we exclude those
particles which are lost by collision with a.wall)p If there are
no bending magnets in the beam system, the right-hand column is
ghqjsame as the right-hand column of the unit matrix (in this case,
there is no advantage in the 3x3 matrices over the 2x2 matrices).
For mZElSSK, the maximum displacement and slope at any point are

owan

increased by the dispersive terms 1T13| a and iTzSI A, respectively,

where Tij is the 3x3 transfer matrix to the point in question,
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It is obvious that the Ix3 transfer matrix also has a determinant
of unity. The third column of the matrix provides all the needed
. information about the first-order dispersive properties of the
system, The third célumn of a transfer matrix for a quadrupole

magnet is the same as that of the unit matrix,

i, Circular Apertures

Provided that all the apertures encountered by the beam
are rectangular, we may separate the occupied region in x, y, x',
y' space into independent products of regions in x-x' space and
in y-y' space, If the beam is bounded at any point by a circulaﬁ
aperture (as is frequently the case when beam pipes are involved)
thgn we may no longer make the separation into two independent
bounding figures; We now introduce a model for the four-dimensional
space which corresponds to a dbuble wgist and is very useful for
compariﬂg the effects\of various types of aberrations.

Let Tij be the transfer matrix in the Xx;plane between
z. and z, with Uij the corresgponding transfer matrix for the y

1
plane, All the trajectories that lie within the hyperellipsoid

(I[-13)

i
fod

' 2 z G 2
1 | 9
at Zl defined by Xy ‘g&l %/yl Yy
R \5 \5 R
Tll le Ull U1z

lie within a circular aperture of radius R in the x~y plane at

z. In parametric form, the equation for this hyperellispsoid is

L LT . .
Xy= X, cos @ cos Q@ , 3 x,' cos $ sin Q, )
(-
. T . | el T -
Yy = ¥y sin g cos V¥ Yy y,' sin # sinV¥,

with x, = R/T

1 etc., and 0<@<n/2, 0<6<2n, and O0<Y <2m.

11’
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F, Linear DPropertics of Specific BDeam Elements

To conclude this discussion and xeview of the pertinent
linear properties of beam-transpori systems and their conatituenﬁ
elements, the fellowing list gives the properiies of each type of
element treated, Feor the calculations for each element discussed
below, we will need

(a) the independent parameterﬁlthat determine the optical
propérties9

(b) several useful derived parameters,

(¢} the equations of motion {(i.e., the trajectory equations),

(d) the 3x3 transfer matrices im each plane,

1. Drift Space

The single parameter describing the optical properties
of a drift space is the length of the drift space, L. Additional
parametefs pertinent to the drift space are those which determine
its aperture: width and height for rectangular cross-sgection, or
radiusg for circular crosg-section. A fictitious element to be
used later in this paper is the drift space in either x alone or
y alene; inclusion oflsuch elemente facilitates the treatment of
beams in which a waist in the x plane does not coincide with a
waist im the y plane,

The equations of motion in a drift space are x"=0

and y"=0. The transfer matrix for either plane is
1 L O
T =j0 1 o0 (B-15)
1
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2, Quadrupole Magnet

The necessary parameters are the effective length, L,

(which is generally longer than the physical length, oWing to the
existence of fringing fields), and the field gradient,. G, Three

derived quantities are

\ 0B 4B
e S X e LY LS WS
S Py¢ dy Py¢ ax PyC BT H
. (TL-16)
k= @7, |

and 0 = kL =¢"L ,
By comvention both G and Cé are taken as positive when the lens
is convergent in the x~z plane, A quadrupole lens that is
convergent in the y-2z plane possesses imaginafy values of k and 9,

The equations of motion in a quadrupole are, to lowest

order, x" +@x=0 and y" ~d¢ y=0 (JI-17). The general solutions
- d o ' . - ' o »

are X = X_ cos [k(z_;o)l + (x0 /k) sin [k(=z zo)] (39-18)

and y = Yo cosh Ek(z~zoil+ (yo'/k) sinh LK(szo)Jo Cﬂ;lg)

The case G<O is treated by eliminating all imaginary quantities

by use of the relations cos(i®) Z cosh(®), sin(i®) = i sinh(6),

etc,, which merely interchanges fhe x and y matrices énd changes
the éign of‘@ . The transfer matirices are

cos © (1/k) sin © O
-k sin © cos © 0 | (x plane) (J§-20)
0 0 1

O

cosh © (1/k) sinh ©
k sinh © cosh © 0 | (y plane) (T-21)
0 0

o
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3., Bending Magnet

We first consider a bend in the x-z plane in the x
direction. The significance of the five independent parameters
describing a bending magnet is more casily seen by reference to
Fig. 1, Kach of the parameters is positive, as shown, The
paraﬁeters are

(a) L, the length éf the magnet, measured along the perpendicular
to the entrance edge of the magnet at the point where the optic
axis intersects that edge;

(b) \{ , the angle between the entrance and exit edges to the magnet,
which is positive when the region of magnetic field increases in the

‘negative x‘direction;

(¢) a, the entrance angle (the angle between the optic axis and
the normal to the entrance face), which is positive when particles
with x<0.pass through a longer field region than de those with »x>03

(d) The field strength, B, which is positive when the bend is in
the ﬁegative x direction (for a positively charged particle);

(e) n, the field exponent, which is measured orthogonal to the

. 9
optic axis ( n = B3y ).

These parameters have been chosen ag the primafy‘
parameters because each is independent of the others, with the
exception of n, which depends upon the location of the optic axis,

Derived parameters include:

(a) f s the radius of curvature, wﬁich is positive when B is
positivej
(b) ©, the angle . of bend, which satisfies 6 = o + p = ¥  (W-22)3

(¢c) B, the exit angle, defined in much the same way as a3
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Optic axis
/

X

MU-30403

Fig. 1. Parameters of a bending Magnet.
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i.e., B 18 positive when excess field is experienced by a particle

with x<0. B is derived from the formula
. L .
sin B = ? cos Y 4 sin (Y ~o) (qQL-23)

In addition to the focusing in the interior of the
bending magnet, there may bevfocusing by the fringing field at the
edge, which acts as a thin lens if the optie axis is not orthogonal
to tlhie magnet face. The éause of this focusing in tﬁe X~#% plane
(orthogonal to the magnetic field) at the edge is obvious: a
particle displaced in x experiences.either a greater or a lesser
amount of bending field than needed to turn through the angle 9.
Thin-lens focusing in the vertical plane occurs because the field‘
lines ""bulge" at the edge; if the edge is not orthogomnal to the
optic axis there is a.cpmponent of field im the x direction which
produces a force in the y direction on a particle traveling
essentiaily in the 2 direction., With the sign conventions given

above for o and B, the transfer matrices for the edges arel

x-z plane y-z plane
1 ¢ ¢ 1 0O 0
in: (tan a){? 1 0 : -(tan a)%? 1 O
0O (¢ 1 0 0 1
(Ii~24)
1 0 1 0O 0
out: (tan ﬁ)/? 1 -{tan B)/? 1 0
0 0 1 0O 0 1 °

The equations of motion in the central potion of the

magnet are
2 2

d x d y - -
"ﬁg*(l»n)x:fo ) S+ ny =0 (X-25) .

de 40



The general solution of the x equation is

X = )'c@ cos (Y,0) + xov ,.’% sin (1,0) + 'L%;‘:“ {ﬂlr - COB (A{‘@)] o '@-26)

)
That for the y cquation is y = y cos (VYQ) + 3:2 sin (Vyg)o(n,w.%?)e
Yy

‘/
2
an

- ! = dx
Here zﬁ(lnn)“ %g n%, x ' =

L etc, &

dx
dz

it
i~ ©

The x-z transfer matxrix is

cos (10) .'i'~ sin (40) /B L - cos (0]
- :"?‘1 sin (1,0) cos (V,0) %;-»l%‘ sin () 0) ([-28) .
0 0 1
The y-z transfer matrix is
cos (¥, 0) %L sin (Vy0) 0
: r"gxl sin (1,0) ’ cos (¥9) 0 . (1-29)
0 0 1

which passes to the limit

1 fe o
0 1 Q (§~30) as n goes to zero,
0 0

The total transfer matrix is the proper\y ordered product of the
exit-edge matrix, the matrix for the interior, and the matrix for
the entrance edge.

If the entire magnet is physically rotated 180° about
the incoming optic axis (a, B8, Y, B, and .f are reversed in sign)
then the fifst and second columns of the transfer matrix are
unchanged, whereas the third column is reversed in sign.

If the bending magnet is oriented so that the bend is
in the y-z plane, then the above relationships all hold with

x and y interchanged everywhere.
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4; Solenoid Magnet

Two parameters are required to describe the linear
properties of a solenoid magnet; they are the length, L, and
the central magnetic field, B, which is axial in the magnet's

interior. Two derived quantities are of interest:

k:éB/Zpch

0= kL,
If the condition is imposed that the beam entering a solenoid be
rotationally symmetric, the rotation induced by the axial field
(which results in mixing the solutions for x and y) can be ignored.
The radial equation of motion is r" + kzr = 0, The transfer

matrix, which is the same in both the x-z plane and the y-z plane,

1.
cos © T sin Q Q
is -k sin © cos © 0 (F-31)
0 0 1 0

5, Octupole Magnet

We introduce octupole magnets in the next chapter,
Properly oriented octupole magnets in some instances may be
adjusted to reduce the magnitude of the aberrations of s beam
system of quadrupole magnets. The linear properties of an
octupole magnet are the same as those for a drift space, hence

the matrices are also the same.
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IIX QUADRUPOLL SYMMETRY PROPERTIES AND THE MAGNETIC SCALAR POTENTIAL
We continue to refer to the Cartesian coordinate frame
used in the last chapter in which the optic axis coincides with

the z axis and particles travel in the positive z direction.

A, Magnetic Vield Symmetries

The ideal quadrupole field possesses several important
symmetry properties. The magnetic field is antisymmetric with
respect to reflection through both the x=0 and y=0 planes, and
is symmetric with respect to reflection through both the x=y
and x= -~y planes. The magnitude of the magnetic field in an
ideal quadrupole lens is proportional to the radial displacemenf
from the optic axis and is independent of z. The restoring force
produced by the ideal quadrupole field is proportional to x in the
x-2 plane and proportional to y in the y-z plane. Such a magnetic
field would be produced by an ideal magnet possessing hyperbolic
cylindrical pole pieces of infinite transverse extent, infinite
length, and infinite permeability which satisfy the equations
xy:=a2/2 (north poles) and xy::~a2/2 (south poles) where a is the
radius of the inscribed circle. With this choice of polarity,
positively charged particles are focused in the y~z plape and
defocused in the x-2z plane. Reversing the polarity interchanges
the converging and the diverging planes.

The scalar magnetic potential appropriate to the

linear ficld produced by the ideal magnet is proportional to the

.

’ . . 2
-product xy or, alternatively, proportional to x sin 20, where
© is the usual angle in cylindrical coordinates ( x=rx cos O,

y= r sin ©, z=2)., The field produced by a magnet having pole
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piecos of the ideal magnet configuration but finite in extent will
contain, in addition to the lincar field component, harmonic
components proportional to higher powers of x and y. In addition,

all the field componenis, including the linear component, depend

upon z.

To treat real (not ideal) quadrupole magnets; we need &

general expression for the magneic field,

B. The General Magnetic Field

We first introduce a general expreséion for a poﬁential
giving rise to a magnetic field which possesses the previously
stated symmetries, and which approximates the field produced by
an ideal guadrupole magnet; this field will be referred to as a
"pure quadrupole magnetic field." We then consider field componenfs
that may be introduced by failure to achieve the assumed synmetries

exactly.

l. General Magnetic Scalar Potential

In terms of cylindrical coordinates, we choose the

following general expansion of the scalar magnetic pot ¢ ntial V:

o) o

W hosx 8 5 s S Y’le
\/Cv,e,;ﬂ:z Z\« ¥ {-//mn(*) nne -, (%) co } (IE-1)

fAe o Wb
This expression is chosen because the field is obviously periodic
in © with period 2n, is dominated near the z axis by a term in r
that approximates the ideal field, and is nearly independent of =z
except in the regions near a magnet edge.

Applying Laplace's equation,

V =

= 0, (-2)
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we obtain ' ' ,
oD o)
L E Jo? (ﬂm,zn‘*(\“’“//mx] Smné)va M-s«( -,..1);) —lc,os neg =0

WeP Wwee

L

As r approaches zero, terms in the above expression with m=0 or
m=1 increase without bound except for those terms for which m=n,
hence '/(,40‘,,3}{).;:0 for n>0 :md/J:,nf Vshm"-:-a for n>1

Since Laplace's equation must be satisfied at all values

of ry, 0, and z, we have

"
»/LQWZW + (m2~n%}¢4%3=0 for n=0, 1, 2, °°°

” 2 2 ’ o 90
//'”"?«,W + (m“-n )Vm‘y, =0 for n=0, 1, 2, .

. For each n, the lowest-order nonvanishing term which appears

is that for m=n, yielding the following general expression for V3

V(X“9 Q‘, Z) = ) 03@3)
oD GO 2 (2K)
e ). R <5m vse/olﬁ(%) + CosS N6 y(%)}
R ¢ e l,

.

. kel B0
Here f(2k) denotes the 2Kkth derivative of f with respect to z,
(0) 2 . .
£ 2 f, anq/ééaand}%%are functions of z which must be chosen to

fit the boundary conditions and the symmetries of the problem.

2. Pure Quadrupole Magnetic Scalar Potential

We~ firat apply eq. (3-3) to the pure quadrupole field.
All terms in cos nO must vanish owing to the required ahtisymmetry
for reflection through the x=0 plane. Reflection antisymmetry
through the y=0 plane rules out all terms in sines of 6dd multiples
of ©. Finally, the required symmetiry for reflection through either

th x#y or the x= -y planes rules out all terms except those
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_containing a factor sin[2(2£+l)Q] with f=1, 2, 3, °°°, The

general expansion of the pure quadrupole field is

: o) v 7 v 4)
Vi(r,0,2z) = - sin 20 /ug“'j;f s *’55;/4Q - ’””g
1 :
- r® sin 66 Z/f/(,“’ ;\:5 é'” oo 7S
~r*% sin 100 ‘{//,o - v qm-4)
+ , o
Only the leading term of this expression would appear in the
potential of an ideal quadrupole magnet of infinite extent; this
term would be independent of z. The higher-order terms iq the
coefficient of sin 20 appear as a consequence of the finite extent
of the magnet in the z dircction. The higher harmonics in @ are
“induced by truncating the poles of an ideal magnet in the x and y
"~ direction. An object of much effort has been the design of
magnet pole-~face contour-and coil placement so that these higher
harmonics are minimized. Quadrupole magnets have been construcﬁed
for which the contribution io the magnetic field due to the higher
harmonics is less the 0.5% of the contribution due to the sin 26
term at maximum radiﬁs°
Dropping terms that do not contribute to the trajectory

equations when trucated to third order in the displacements and

slopes, and expressing in terms of x, y, and z, we have

';’”5 V(x,y,z) = -xyC%?(z) + {—5 (x* + yz) xyC?”(z) (I-5)
0 |

where i) =g//%;(z)/poc o
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3; Thef0ctupole Ficld Component

I. .It may bo'dosireéble to congider quadfqpole‘magnets tﬁat
possess al% symmetrics listed above except for reflegtion through
the x=y ana x= ~y planes. Such is the case in quadrupole magnets
that have been shimmed in such a manner that the reflection anti-
symmetries are preserved, and in octupole magnets oriented so thaxl
the x=0. y=0, x=y, and x= -y planes are planes of reflection anti-
symmet)f"ye The terms in the scalar potential possessing antisymmetry
about each of the four plancs mentioned are those in sin 4kO,

k= 1, 2, 3, "°°. Including these terms yields the scalar potential

e . R T SR | 220 Wy L eee .
S;E V = mxyd?(z) 5 XY (x"+yT) (=) - = XY (x my ) 7(z) + ’

where &p(z)i lé £ NEIN , S (rﬁwG)
: . poc/ 4 .

4, Failure to Achieve Quadrupole Symmetries

Finally, real bean systems may fail to achieve the above
symmetries owing to nonalignment, rotatiomn, etc. Therefore, we
add several terms to the scalar potential which will be used later
to calculate the tolerances permitted in the construction and
plac;ment of the constituent magnets in particular beam system.

Truncating to fourth order, we have

. o ” i ‘
V(r,0,2)=— M (F) =¥ smO [ = F "] —vcos o (1~ 15 P"]
. 3 ¢ 2 .
= ¥?* Sin 26 L/«/:f %//3‘ ] -y cos 20 YQV;"# % P
U520 - P, cosZe -y sinto - YW, cosde  (111-7)
3 /LQ {

In terms of x and y,

' 1 2 2o 2 2
SEE Vix,y,z) = mxyé?(z) + fﬁ xy (x"+y )4’(;) - % xy (x7-y YV ()
0]

xy §P(z) = yud (2) = x P (a) (xP-y®) A (z) +SL(2)
¢IE- B)
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These extra terms are assumed to be unwanted and therefore
smalliy in particular, the following assumptions have becen made.
The coefficients/éé,lé , and M are assumed to be smaller by at
least onzorder of magnitude than the coefficieny/éfo The terms in
sin 39 and cos 30 (sextupole terms) are not the result of‘a simple
displacement or rotationj they are treated separately as field
errors in the same way as the GO and 100 terms are treated5 The
term in cos 40 is also treated as a field error, since it does not
satisfy the baéic‘quadrupole antisymmetry. However, the sin 40
term is treated with the pure quadrupole field terms, since the
_sin 40 term may be adjusted in some instances to reduce objection~
able aberrations duc to the 20 terms. The coefficiehts'gz, l{ 9
and/é4 y are assumed to be smaller by two orders of magnitude than
/Aé, which is consistent with the assumption made throughout this
paper that the r2 sin 20 term represents the dominant field
Icomponentu

As an example of how these terms may enter, considér the
field produced by a qqadrupole; the potential is given by Eq.
(III—S) with x and y réferred to the magnet's axis of symmetry,

If this'magnet is now translated so that its center axis is the
line x= Ox and y= &y, and if the magnet is rotated about the optic
axis by an angle ¢ (positive when the maghet is rotated in the
direction of increasipg 0), the added terms in the scalar potential
take the values /({/ﬂ X Pz ’ Y= é\/" Py,

S&= @ [ cos 20 ~1] ) A= .:‘{é;(z\ s 20 . (III»-Q)

Here'éx.éy, and W are assumed to be an order of magnitude smaller
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than the displacements and slopes of trajectories to be considered,
The term in $L gives rise to a uniform z component of

the field which can occur as the result of tilting a particular

magnet so that the axis of symmetry of the magnet ceases to be

parallel with the optic axis.

C. Symmetry Restrictions on Aberrations

Returning to a field which possesses reflection antisymw
metry about the planes x=0 and y=0, let us consider what types of
terms may be present in the expressions giving the displacements
and slopes at any chosen point in terms of the displacements and
slopes at some initial point (the object), Since a linear relationm
ship is assumed to dominate (this is the lens assumption), we are
'justified in expanding ¥, ¥y X', and y' at an arbitrary value of =z.
‘in a power Series in X, s x0°g Yoo yo' and A taken at 2z (the initial
point),

Since the tfajectqries_cannot depend upon the coordinate
system in which they aré represented, we find that all even-order
terms in the displacements and slopes are absent in the power
series as a consquence of the reflection antisymmetry; The same
reasoning demonstrates that the expansion of x cannot contain any terms
that are odd in Y, oF y0° nor can the expansion of y contain any
terms that are odd in x, ov xoég Thus the following terms are the
only terms, to third order, which may appear in the power series

expansions; these terms are grouped according to aberration type

Aberration Type Terms in x and x' Terms in y and y!

generalized 2 . 2., 2 : . 2.,
dispersion Axo’ a Xo0 Axo » A *o Ayo' a Yor Ayo 0 A Yo



generalized
spherical
(aperture)
aberration

generalized
coma

generalized
astigmatism

generalized
digtortion

Linear terms

Yor yoa (ID:“.IO)

Thus there are many more terms to be considered than in.

light optics, where complete rotational symmetry rules out all third-

order terms except seven corresponding to the five Seidel coefficients

and two chromatic aberration terms, the seven classic optical

aberrations,

Although a total of 40 terms appears in third order

for x, x', y, and y' (excluding dispersion terms), only 16 of these

coefficients are independent, as is shown in Ch. VI. The classical

aberrations of light optics are described in most textbooks on

optics, such as that by Jenkins and Whitea3

The expressions for the coefficients to the 40 aberration

terms are derived in Ch, V.

The equations forcthe coefficients, in

terms of the symbolic motation introduced in Ch, V., are listed in

Appendix I,

The significance of the aberration coefficients is discussed

in Ch. VII,
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IV, THE EQUATIONS OF MOTION
In preparation for derivations preéenﬁed in Ch, V, we
need certairn results which are obtained from the following
derivations of the equations of motion, A single charged particle
of mass m énd charge e, undexr the influence éf a magnetic field, Eﬂ
possesses the following Lagrangian, L, and Hamiltonian, H,

2 e = ¥

1
L= 5mv™ « = Ay 0 .(wil)
1 [+ e'*]Z R
AR EE L (1v-2)
‘ ol 4
wheregﬁ ='? = (%, ¥, %) and'§ = FHRA

As long as the only force the particle experiences is due to thé
field, B, the velocity of the particle will be a constant of the
motion; the nonrelativistic equations of motiom that would be
derived from either the Lagranéian or the Hamiltonian given above
may be extended to relétivistic particles by merely replacing the
mass m by the so-called "relativistic transverse masgs,"

4
mr‘r:m(lmvz/cziz’0 Through the rest of this paper, the symbql m
will always refer to the transvefse mass. The variational
pfinciple known as Hamilton's principle from which both LaGrange's

equations and Hamilton's canonical equations of motion are derived

is generally stated in terms of t as the variable of'integrationa'

2 o ta
§lLdt =3 |®dF = Sl Hd=0, (s
, N . %,
To obtain the trajectory equations, we replace t by z. the variable
méaéuring disténce alohgsthe optic axis, as the independent variable.
For all the orbits of interest, the transformation from t to =z

is single-valued, with a well~defined derivative everywhere, We may
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then rewrite Hamilton's principle in terms of z as the variable of
integration. From this peint primes refer to differentiation with

respect to z, and dots to differentiation with respect to times

ﬂﬁg{- . %5%% .o We now proceed
t v ia
é j"»d“f § Le rSj }i,o‘& KLK'?KM)'PVi’H«%szgO 9
+, - (1V-4)
i}af“i?‘(‘%’x ‘9'\/ )“@“”(Kﬁn*vgy*g ) (1v-5)

==z,

Having made this transformation, we follow the same procedure, which
reduces this variational principle to the equations of motion in

the case of the standard Lagrangian or Hamiltonian, yielding

890 ., 4 3L, 4 k2D
3% It dx  ~ , d=z 3y 3y s dZ gt
4 n
<=3 P«'”“%ﬁ‘ ) ste- VD)

In terms of z as the independent varlable9 the canonical momenta are

Po= 3% = mutandty R S A

Py= %L;-: mvy' (e Y 5 e £ By , (1v-7)

FQifahih“Vx"“‘E ©

Two easily derived relationships are

= %2(1+x'2+y°2), (Iv-8)
. .
o . 2 2 e 2 e, 2 Z
mz= [nxv -»(px - ch) - (py - cAy) J (1v-9)

In terms of the canonical sct of coordinates and momenta, the
Hamiltonian becomes
M= x'Pty'F ~t'e - 3 ‘ ,. (IV-10)
2‘/-: .,[;sz - (Px~ %Qx)z"»(?y‘ & ny)l']a-" %Az= - Pg (Iv-11)
Applying the modified Hamilton's equations for x (IV=?7), we obtain

o = (P~ £h)/mz | (1v-12)
2= x' = /
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y = (Py=2A) /mz,
..él;: v LQV’/\E - C\D:G ""'%A"S& - (P‘/ ”%Ay)?’] 9
Y.

Q'L Ay 6 ean
Thus Py =5 7 via Lm MERA VS Y)Qy Sl mz > %x( ? )
IV-13

the latter reducing to

BA,
d NIV Mx e .,,)%%h;&cf’» 5y L2 A
é? WV o & - = 3% (Iv-14)
and then fo
[ “C\QK* e Ay . : »
Cla}’ya&’)xn . vagyﬂ 2, (F}( -~ Ax‘) B Cf.;,’r 2 6‘5‘2 . (1V-15)
™ Z. @ EYS _

el dA OA JA QA '

+ = ey QPSS [Pt S [ ek .
- Using § VXA and = i X0 4yt . (1V=-16)
%

we obtain (l+y'2)x” - XUy ly" om Bgz (l+x'2+y°2).;mBy+y"Bz) (IV-17)

L 2 2 2%
Similarly, =x'y'x" + (l+x'”)y"z;gg (L4 Tay ™) (mevaz)o (1v-18)

Solving for x™ and then y', we obtain

"o el v 22 { - X i2 RV RTE Y -
X i (L4 ey ™) (Lex )By xty Bx Ly Bz} .
i
wo. WE. 02 32‘ 3-,{ 02 4t 9 . -
y'te o (L+x"+yt™) , (L+y ')Bx +xty By +xX'B_ b o (Iv-19)

These are the exact trajectory equations for a particle under

the influence of a magnetic field, E: That they are identical to
the equations obtained from first principles confirms the
cprrectness of the procedure and the choice of new canonical
variables.

The expansions for .the magnetic field components, in terms
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of the scalar magnetic poetential (XXI-8) are

-_gm __’_"___?__"(SV_' - . 2 ] - 3 " 2 3 o‘ao'
pOCBX'“pch;"y%) xTye /4 =y B /12 +xZyW -y Y/3 ayddep +2%X ) + 0

e ) 3 2 3 2 coe
MPOC'B,)’ = XPp -x"@/12 =Xy PS4 /T xy W +xé¢zw ~2y4 + R
e o a0
Pgt B, = xyd' Y+ o (1Iv-20)

With the insertion of these fields and the trucation of terms of
fourth order and higher (fourth order of smallness im x, ¥, %', ¥'),

we obtain the following equations of motion:

. 2 .
=3 FQ/2 ~xy P2 ryxty ' henyy P +xy%@"/4 +x3¢"/12

x" 4 ex

i

mx5W/3 +xy2W - &P = Ty I . (1v-21)

i

3yy'2¢72 +yX"2¢72 =Xy ' RVP wxyx P mx2y¢%@wy%$“/12

“ys\y/?ﬁ +x2y ¢+ \/5‘?‘ + +2x A0 R (IV-22)

y" “"@y

With respect to the terms in/@é&’,szg and 29 the folldwing
assumptibns have been mades:

(a)yﬁ49;9; and /] are piecewise constant functioés in this
approximation;

(b) rgﬂ”, rzp"v r%ﬂ", and r's' are smaller than third order
and may be dropped;

(c)wjxgﬁf, and rd are of higher order im "smallness" than rdp
which gives rise to the main field, In V, C. we discuss fnrther the
relative orders of magnitude of the terms in the equations of motion,
These assumptions restrict the application of these equations only
to situations where the displacement or rotationm of ahy
qﬁadrupole magnet from the correct alignment is small compared with
typical displacements and slopes of the trajectories. Any fluttier

in{}%,;; 9 or;lis assumed to average to zero to third order
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in the parameters of smallness,
For pure quadrupole fields, the equations of motion are
x" + bx= ~3xx’2472 uxy'2472 +YX'Y ' XYy &
Xy Sn/a +x%r/12 + 0(5) (1V=23)
y"* = py= 3yy°24?/2 +yx'2‘?/2 =XX 'y b exyx !
mxzyé'/4 «yqé"/lz + 0(5) (IV«24)
In the next chapter we solve these equations by an iterative method

to obtain expressions for the coefficients of aberration.
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V, THE CALCULATION OF THE COLFFICIENTS OF ABERRATION
In order to scparate most clearly and to characterize

the different aberrations in a beam system, it ﬁill be our purpose
to obtain the coefficients in the power-series expansions of,the
displacements and slbpes of a trajectory at some arbitrary valﬁe
of z (such as the image) as functions of the initial (object plane)
displacements and slopes, Ve further would like to separate
aberrations that depend upon the shape of the fringing field from
those which’appear even in an ideal model magnet with infinitely
sharp fringing fields. Finally, we shall examine the effect of
misalignments, rotations, and othef defects in the constituent

magnets,

A. Separation of Equations

We first turn our attention to solving the equations of
motion for particles in a pure quadrupole field Eﬁqsa (Iv-23) and
(IV~24)3 . These equations are expressed in terms of the function_
4Xz), which is proportional to the radial field gradient along the
2 axis. Applying the method of successive approximations to the
equations in x, we obtain three equations,; one entirely linear,
one containing all the dispersive and fringing field effects, and
the third containing the aberrations that are cubic in the initial
slopes and displacements. Only'the x~z equations will be treated
explicitly here, as the corresponding equations in y can be obtained
from them by interchanging x and y and changing the sign of ¢>o

Let x =X, + X + xa, where

C

X " +03;x =0 : . 3 (v-1)

x " o4 g = wé(x X o+ A% +¢ )(x X, ) (v-2)
c 3
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x%u +(<h-+‘§>c )xBam3xx 2¢)’2-=jxy '2¢/2+yx 'Y rxyy ' +xy2¢"/4+x3¢"/12+° ey
o | (v-3) -
A:(pwpo)/p and Q’is given by (X1~16), '

The gradient:function 4%3) has been split into two parts
Pl2) =P (2) + P (2) 3 | (v-4)

'étz (Yphi simple') is a piecewiée congtant~stepmfunction§C?c
("phi complicated") describes the fiéld behavior in the fringing
field'régionse The functionv<?c, is assumed to vanish well. inside
a magnet as well as in the fieidmfree regions, For reasons to be
given later (V. D.), the locations of the discontinuities in 4%(2?

FPY .
are chosen so that the integral, 4 QE(z) dz, vanishes when taken
o ! [ . .

v

_over any fringing field region, (between 2y and g, such that
; = DY = v - 4 ' s
Cz(zl)z ¢(z2)*.ch (z) 42 (z,)= 0, Figure 2 shows cc%(z),and its
division into C?; and iio The graphs are taken over a single
. quadrupole magnet.
-In the event that the fringing fields are very large, this
sepdration_need-not be made; greater accuracy is thereby achieved
at the loss of the desired separation of the fringing-field
effects. When rétaining the separation, we shall show that the
solutién to Bq. (V-=3) is not affectedywithin the approximation
already made, by taking the limit d?i»é% (corresponding to‘negléctipg
the detailed shape of the fringing field in these terms) .

B, The Integral Equations of Motion

In order to proceed to solve equations (V-2),and (Vé3)
by the method of successive approximations, we form integral
equations by;means of Green's functions, we define two Green's

functions, one appropriate to each equationj the Green's functions
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Physical : ' Physical
""’"exytent”"’" ) - eztent"{

(o) - (b) . (c)

MU.30404

Fig. 2, The gradient function over a quadrupole magnet;
(a) ‘the total function, %(z); (b) the step function,
¢S(z); (c¢) the difference function, ¢c(z)°



wd] -

: z .

satisfy %5@, i (2%) + CZ”QCZ)%{CTZ’ME‘}") o {7 $) (V-5)

and éi’:'iz ggg (z5)y + {:43}5 QZH’%C.-Z:‘?}C(;{C::M S(z-{;) yrespectively, (V-6)
Z 4

Green's functions can be constructed from pairs of
linearly independent solutions of the equations. Let xso(z)
and xse(z) be two linearly independent solutions of Bg., (V-1) for

which the initial conditions at the object plane are

x o (0)=1y x  (0)=0, x_ '(0)=0, and x__*(0)=l ’o. (V-7)

[

Any solution of (Vmi).may be written as

-

x (z)= x(Ol) x (z) + x'(0) x ‘(.zs) o - (V-8)
S sa S0

Furthermore, the Green's funciion is

i

g(z,3)

xso(z) x

2

) o ) fo
e(,,)) Dhse(z) xﬁm(fg) for ggzv

i

g(z8) 0 . for ¥>z . ' v‘ (V-9)

Since the equation does not contain terms - in X', the Wronskian,

‘B’ 80 80 ~ se

‘w(xse“xso)" is cbnstapts Weax x ' wex % 181

‘éimilar independent solutions, X and xgg.will be
defined for .the equation x" «+ (C%+<Q)x 50 o (Vfib)
such that the generalﬁsolution can b; writien

x(z) = x(0) xe(z) + %' (0) xO(Z)g' . : (V@ll)
while the Green's Yunctidn»for Egq. (V-10) may be written as

| 8. (2,5) = x (z) x (§) - xe(z) x () . ofory<z. (le%?
The implicit solutions of ({/;2) ‘and (V-3) written

as integral equations are

. |
x-'c(z): f gCZ,‘S)Lxgcgn X090 ] Z q‘?cgv,:) r B %(S)}E ds \ (V=13)
’ .0 ] o

’ z - z. ‘ | ’ | ‘ .’
X ()= | AT by byl gy Sl il ds
(V-14)
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where - Ci?) = Q?(S’) @ Cg () + <L) and x=x(%) = X 4K x>, etc.

C. Parameters of Smallness

Let € be characteristic of the magnitude of the slopes
x' and y'; we assume that € is small compared with unity. For
each magnet, we define & characteristic length,

(g, (V-15)
where Q is the effective length of the magnet and f is.the absolute
value of its focal length, Then x/L and y/L are considered small,
of the order of magnitude oF €, |

Furt'herB A z(pmpo)/p is assumed small compared with unity.

Let h Be a characteristic length of a fringing field,
such as the half width of the fringing field. Then 4 =h/L is
assumed small compared with unity when we separate‘#into @% and 4%»

In the treéﬁment that follows, all terms are of third or
lower Qrde; in these three parameters of smallness, €, A, and A R
aré X‘etaipedg while those of higher order are dropped, for example,
A289'€39 and‘gae are retained while ﬁerglﬂAgsg.and <ﬁeg are
droppeda | |

Some magnets in use barely qualify for the élassification
"quadrupolé magnet," since the characteristic length of their
fringingvfield is the same order of magnitude as their effective
léength. This is due to their large apertiure-to-length ratio. 1In
$uch magnets the approximation made above with respect to the
extent of the frihging field is invalid and may easily be
.abandoned 6& réplacing QZbyc? and then dropping all terms in 4%
in the finalAexpressionso One then loses theiready identification -

of the effects of the fringing field and also loses the calculational
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advantage of simple known first-order solutions.

D. The Dispersion and Fringing-Field Torms

We turn first to Eq. (V=13) whose solution yields the
dispersive and fringing field texrms. The term x, can be written

as the sum of the expressions

2 - o
Ta= Y‘,Cgam*v - b Ko0fds = - So\;xgé"?‘*’ Ko dS K2 Ks 89 [ K4S | (v-16)

Z . | . .
= 2 S‘ = $es) Xy wds, | | | (V-17)
| cF b (o) WK.C9) IS |
I= — go X (%,3) ¢, L) Ke s _ (v-18)
N o %09 d | o
s A.g'ocg Cz%) $,08) ¥ »es, (V-19)
I = ZQ’ (Z §) d (5) Kt dS | o (V-20)
e JA 0 & ’ “ - : |
. . z \ ' 4 '
: - AS 5% $.00) XS 5. (v-21)

The integral Ih contains two parameters of smallhess9
thus X, has at least one component which is of second order in
magnitude, We will show that, under the assumption'that 2 is

a small parameter, I is the only second-order term in xcw

b?
Integrals that contain 4% as a factor have contributions
~only in the fringing field regions. These integrals may be split
into sums of integrals taken over each magnet entrance and exit,

A typical term in the integral Ia is

Lz o - i | _ .
| I 43'(5')}(5&?) Yol ds= J‘Ch._\t(so\(sc d‘g:ZIn ) (V-22)

S, e ) L
' 59 -LK-‘ ) . :

- where the sum is taken over each entrance and exit. At each
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fringing field, the integiand may be expanded aboﬁt the point of
discontinuity in ¢ . Lets and Y, be the ends of one fringing field

region with'§;<"i.'+w Then we have

Zi g

I = S d? ‘<so$<se€15’
k ZK«

.. S C"’)EKS"I Xsﬂl 3 <‘<sm)<se‘} l “;“(Xsc,xge)ﬂ - "} ‘J‘S

Teo (v-23)

—a

However, the integrand has a discontinuous second derivative, hence
~r-

I = XSOl ng\ \E‘CP Jg—{ﬂ (K‘ioXSL)l g' "c‘f’ ‘J.ﬁ:
+3‘(Ks@)<.se) L, _e j"‘ﬂacj’o].s . L (XsoXsed

%t ‘
. ] (v-24)
594‘& X .g Cpﬁdj @

Ve now 1nvoke the deflnltlon of the locatlon of the

discontinuity in c? which was chosen so that g P, AE’ 6 . Using °

x v +<;x =0 and x_ " +<°x =O, we have
S0 s0 se

$ ¥
I, = CK%‘){’O%oKse)! +(><5°><se)l fs ¢ d7 - <><,,,><'sa\o g;éa‘h‘fﬂé‘% (V-25)

where the coefficient ckﬂkz depends only upon the detailed shape

of the fringing field, The expression for this 'shape coefficient"
S

et ck N QP(S <{>Q;’)o] < —‘( v n2, |  (v-26)
Let us determine the order of magnitude of this expression
"for a typical example, A good approximétion to the actual |
fringing.field,shape is the "bell shape," for which
b=,  for T< ~nh/4
c@:ﬁ%\»«(‘-ywk/ﬂv)‘/h‘yz for §y-nh/4 | (V-27)
% =0 at the effective ends, and h is the "half.width . Figure 3

shows the parameters used in the calculation of the shape coefficient

‘for the exit'fringingvfield of a quadrupole magnet. One half of the
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Fig. 3., Calculating the shape coefficient with the bell~-
shape curve,
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ﬁégnet'is shown, The functton 4?, as ﬁhown, obeys the "bell shape"
formula, With this model9 we find c, A 2: h (1w /16)/2'”h /5, (V-208)
vThe compargble coefficient for the other end of the magnet is
just the negative of the one above,
To calculate the order of magnitude of the terms in ¢,
we should compare them with the‘comparable terms in€% s For
an example; consider
it :
e Bl | (v-29
.£C%¥ x4z :
with the integral takeq over one magnet, .Applying (Vm25) and (V-26)

to the expression for R , we obtain (V-30)

chz ‘%ﬁ(klxz) ' lz« - (xyx,) lz:% ch ?(x x )'X

R=

‘Z (xyxy) (zymz)) : é?s(xl-xznzzwzl)_

where f is the average value of the function f; defined by

T nzébf dz g(bma)"lg We approximate further, using Eq. (V-1):

2 3
mh_c‘% (x4%,) 0

~-h° 2
R VA . S C (V-31)
~ e &f
.4%2 (xlxz)' | 4

. “s/
. 3 o )
This demonstrates that 7= % = h(9f) = h(éz) is the appropriate

paraméter of smallness for treating the fringing field terms,
We are now in a position to evaluate all the integrals

appearlng in xc:

ZL Ck/)‘tc % ] {35 C%(Z‘?) X (‘S)] . ZK% (V-32)

cendﬂ ) _ .
I = A SPe(28 )K,DS(S)XS(S) a5 . | | (V-33)

1= 0Xe)
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2’2 o o y }' 5 — .

= A°/%as () glzys) S a¥P (Dg(x,X) (v-34)
. » 2 '
I =O(A G)‘
e.

L
1_=0(s%4%c),
£
The integralé Ic, Ie,_and va being smaller than third ordef,'

are dropped. The remaining integrals are readily evaluated.

"y
‘E. The ¢ Aberrations

All of the integrals in the expression for x> (Veld)
are continuous, as<@ has not been sepafatéd into ¢%+_c e
Consequently, we may integrate by parts to élimingte'the.terms in
| #’and‘#u; this has ﬁhe advantége of leading to increased accuracy
agd simplicity;of.subsequent numerical calculations. The preéegce-
of the Gfeen's function‘poses_no difficulty, as it ié readily.
expressed in terms of X and X, (V-12)3 we retain g in the
expressions only for b;evity, All the integrated terms resulting
from the integration by parts vanish, since ¢ and its deriyativeé
all vanish at the end points,'which have been chosen to Jie well

outside of any field region. Thus we have
Sc?dxy\/ JSAS ﬁ) c;*(,,,xy '~7‘:,<)c»§’
TS AP T T
o YR _..4\ »-‘_,_,. » (- K - X AS
=B"‘${< »y+.}w]( ﬂ-gqﬂ:’ 7 K'Y= 7R K™ Exyx)dy + Sdeac W kY 7RV s

Z
_Q§J?C,(ny,\., %).(cbcﬂcuq}(\_/ ”?XXIJ"’LX/\/)'{”“?CS("qX\/ x3)g\o
Z
SC‘W (4™ ”X)*Soswdé P ) goésc?gécxxwv"),
wheve & = @ng) KQZ'-)X@(\,.)«—' ec:a\xg,’cg)

1] ; ' - e ‘/;.‘ _'—-"'; ”"'.""
K'emoxr o, Y gyt oo, ofls e (v-35)
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The integrated term does vanish., The entire expression for x? is
%l 2 (e L3 2 o,
x‘*‘::&ﬁ@g{( X' 5 )+ 4 S’Qdng X' (34 y2)
'{»f“af? bof (=-xxFoxyTExlyy)
) (V-36)
Each of the terms in x° is already of order 53, hence
we may drop x> wherever it occurs in the integrands without
affecting the solution to third order.
If the fringing fields are small, i.e., if A is
‘truly a parameter of smallness, then we may feplace @’by ¢%+ #% 0
x by x +x_ , etc. and then keep only the terms in 4%9 Xgo X' |
ys, and ys'° The terms dropped are of order 3839 A§3 at most,
We have now put all the terms giving the aberrations into integrals
éf prodqéts of the first-order solutions multiplied by piecewise
constant functions DN~33)9 (V-34), and (VwSG)] , and a fringing field
term which is evaluéted from a sum of products of first«ordér
solutions multiplied by "“shape coefficients" (V-~32), Kach of the

expressions may be explicitly evaluated from known functions.

F, Octupole Terms

The same Green's-function approach yields the
contribution to x due to the octupole fields (III-6), if any.

These terms are added to xa; they are
o 2 3,
FPe(28) ey (s) ax . (V-37)
o B

In evaluating these integrals, which are already smali (of order
83), we replace W(S) by the mean value of {/ , which is then

piecewise constant,
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G, Tolerances

In addition to the components of the magnetic field which
have eitiliecr the quadrupole or the octupole symmetry, wé maylfind
others present owing to misuliénment of magnets, etc. - In developing
the equations éf motion, we included these effects in the terms in
ALV %, andk L(IV-»ZI). (III~8)]. The treatment is exactly the

same as for the other aberration terms., Let x, and Y be the

t
contributions to x and y, respectively, due to these terms}

then we have

x,= -.,Szééo gxdf-ﬂgis g+ 3 S;A gy ds,

2 Z Z | ‘ o '
y =S‘ sef yds +§gPleﬁgx s, ' (v-38)
t [=
Fach of these integrals may be separated into a sum of integrals,
each of which has coniributions from only a single magnet. Hence

we obtain the effect of misalignments, etc. of each magnet

independent of 'the rest.

H. Higher Harmonics

Real quadrupole magnets frequently contain éeveral
troublesome higher harmonic components corresponding to n=3, 4,
5, 6, °°°, 10, °°° in the general scalar magnetic potential
expansion given by Eq. (III;:’;)o Let us now consider the effect
of these harmpnics. Keeping only the lowest-order term in each
harmonic, we may‘write the increment in the scalar potential due
to the higher h;PmOniCS as

[8.0]
5 20%A2)1 (2) sin (004§ ) . (V-39)

—=AV(r,0,z) = -a
: n=3

Pp€

Here ¢= r/a, a is the maximum radius, £ are arbitrary functions
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whose significance will be seen below, and én are arbitrary phase

angles.,
The field components due to this potential increment are
©

e . n-1 . ) , ,

e AB = a I ¢ fn(&)éﬂé) sxn[5nwl)®+gn] 5

0O n=3

e P p-1
—— 8B =al Q £ (2)Pz) cosl(n-1)0+8 ] . (v-40)
Poc y n=3 n - n-

Since the mégnitude of the pure quadrupole fieid at maximum radius
is (poc/e)aé> » it is clear that f is the ratio of the maximum
field component, due to the nth harmonic in the potentialglto the
maximum pure Quadrupole component.

The displacements due to these field components are

e

ti
H

fzg as .

bx= [ g (28)
kth magnet

AB  d¥
y

o
=)
(@)
[
2

O
) <« e
= -~ i\
Ay +£? gy(zib) e B_ ds

. = W fgas
Po¢ * kth magnet (V-41)

The integrals are taken over the kth magnet, and AB is the average
field increment experienced by the trajectqry of interest. These
integrals have already been calculated (V-38); they are the same
integrals as determine the displacements in x and y due to displaéing
and Tg be the coefficients

0. Mk

that detcrmine the effects of displacing the kth magnet (Ax=T. T

b

the kth magnet from the optic axis. Let Tg

and Ay:Tg %% )o We express the displacements due to the higher
harmonic terms in terms of the coefficients

o]

0o n-1 .

bx= aTy 3 £ 9" sin [(n-1)esd T,

0 n-1

¥ - ° V"'42)
hy= aTz 2o fn_? cos [ﬂn 1)9+5n] (
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We now have the effect of each harmonic for different regions of
fhe kth quadrupole. Phat is, for any radius, r=¢a, we can
calculate the displacements due to any harmonic component in the
field, pro?&ding we know the fractional wagnitude of.that
component and the phase anglec appropriate to fhat harmonic, . Qf'
course, we have neglected all but thé lowest-order effect for
these components. Lacking specific knowledge of a particular field
componént, we can specify the upper bound on the effect of that
component. This calculation can be repeated for each quadrupole

magnet in the beam system under consideration.

I. Symbolic Expressions

In the subsequent paragraphs, we introduce a usefulrshort;
hand for the independent functions (V-7) and those integrals which
are required to evaluate the aberfation coefficients. All of the
coefficients may be evaluated from sums of integrals whose integrands
are proportional to combinations of the fouf independent solutiops
to Eq. (V~1) and the corresponding equation in y, and the
derivatives of these four solutions.

Let the eight-element‘array,ﬁf denote the independent

k?

funtions and their derivatives:

X, (2)=x_ (2), X (2)=y_ (2), Ay(2)=x_ (2), A (2)=y_ (2)

Q{s(z)=xsé(z),;36(z)=ysé(2), ﬂ§7(z)=xsé(z), ﬂ%3(2)=ysé(z) o (V-43)
We introduce an array\ph for the initial conditions

ét the object plane:.$&=x(0),(y2=y(0), ¢/3=x'(0)9 ¢a=y'(0).

(=0 (p-p,) /. = f}%; 1. (V-44)
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All of the terms in the oxpressions for x” and ya {with

the fringing field taken out) are of two types:

z
ke bl L C‘?s 9 ALK, ($) X5 Hels) dx,
Z ' .

I ‘PL %’ % S ) 0};(@) ?Q%(ﬁm %ﬁ(*s) 7@?.,&,}?) %%gs;) de,

for m<5, n<5, p<5, and g<B, " (V-45)

We denote these integréls by the symbol

L t;
(mnpq) = j da%%““%ﬁ%p%% cjg ox g QE; %’m ’Ln %P %é' (“J g © {V-48)
> .

o
4
Whether %2 0P<¢lis indicated depends upon whether all the

indices are less than five or not {(equivalent to selecting the |
power of é’which puts the integrand into diménsionless units).

YWe Write

xa.(z,) = 2__ iji(Z) &piqu)l{ ’ (V-47)

FIA At TS

where the coefficients iji are sums of integrals multiplied by
one of the four indepéndent functions (V-~7), evaluated at z.

The terms comprising x, are also sums of integrals
with the exception of the fringing field terms, We also introduce

a symbolic expression for these integrals:

Z
(mn) = L ‘i‘?g(%b A, () () ds ) (V-48)

2 5 |
(mn 1 pa) = go0;3«d‘os(w’,‘(m(s)&cf)yoéfdang)%Pc~§) Kesy o

The fringing field sums are denoted by

s 22 D (2D X (Zie) a (V-50)

mn~ oW { S
Ging
Q, [ cjds)

% [ 51[ 05i 2 661
. - 2 { U ’/ ) Ve
Then we have x = {:] ( C /5\ +C k‘s ‘!U +C q/ ] ( 51)
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where C and C are the coefficients for second-order and
third-order dispersion terms, respectively; C661 are the
coefficients describing the fringing-field effects.,

As shown in Ch., III, reflection symmetry forces
certain coefficients to vanish. For.example9 there can be no term’
. 2 . .
in x(0)7y'(0) in the expansion of x>, although there is such a term
, . a . 411
in the expansion of y ; hence the coefficient C appears only
in the expansion of ya° In fact, for any combination of indices,
it can be proven from symmetry considerations that the coefficient
corresponding to those indices can appeér in only one of the

. a a \ - a

expansions, that for x  or that for y . We combine x and.xc
TV-47) and (V-51)] and write

x=\2/12’21(z) _+¢3703(z) +Z cHik(y, )V L,)J\V

1tkejeito Iy

y=$%,(2) + V2, (2) + Z ¢t (), RV‘!-) (V-52)

1$KEisie 6

with the following 'rule of thumb" for determining in which
expression a particular coefficient Cijk belongs: excluding indices
of five or six, if (i+j+k) is even then 13 55 a factor in the
expahsion of yy if (i+j+k) is odd then it is a factorlin the
expansion of X,
A complete list of coefficients and expressions that
yield them are found in Appendix I.
The octupole integrals are denoted by
Z | '
<i jlan> = g‘ Wes Ao Z X IX(5) ds . (V-53)
° . .
We denote the displacements due to the nonsymmetrical

field components/i/, P §¢n and ?\ by Xy To lowest order in
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these e¢ffects we have
- P - &f
t_ M é‘:’f LT« T, e A
X ""% T 7 (\/)i A+ :j/;]l g)‘& r e [;(‘“/)3 b < Te q{! ) (V=54)

- 4
me-?. 4
yba p T V, ) * “'"‘”T “! Mﬂ U, (V-55)

‘a"’ A

. . - i

There is a set of telerance coefficients Ti for each quadrupole
A%

magnet in the beam system. The tolerance coefficients on magnet

: , . t .
placement required to insure Ix | < T s, where T is the
max max

maximum aberration due to permissible tolerances.

<o Nuiicrical Methods of Calculation

ALl the coefficients of aberration may be calculated
by summing a number ofvterms? each of which consists.af three
factors: (a) a numerical factor, (b) one of the functions Q%(z)

(i=1, 2, 3, or 4), and (c) an integral of ome of the types mentioned.
The coefficients describing the Ifringing field differ only in that |
the integral is replaced by a sum,

A digital computer code for the IBM 7090 digital computer
has been written which includes the calculation of the coefficients
of aberration within its scope. The entire scope of the code is
described in Ch, VIIX, and iits operation is described in Appendix XX,

In calculating the aberrations, the code must evaluate
numerically’lIS inteérals talken over the beam system E}G of the
type (mnlpq), 6 of the type (mn), 72 of the type {(mnpq), and 19
of the type <ijkm>;], in addition to 14 integrals required for
the tolerance coefficients, which must be integrated separately
over each magnet in the sysiem,

The total number of terms to be iuimed and summed is‘2449
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exclusive of the tolerance coefficients. An additional 244 terms
are summed to evaluate the 32 coefficients in the expansions of
the slopes, x' and y'.
All the terms invthe expanSions.of x' and y' are the
same as the corresponding terms in the expansions for x and y (V-52)

except that the factor Z&(z) is replaced by its derivative‘;ti (z).

i+4

We have xf(z)m%&?%(z) +@éﬁ%(z) + zzi, Dijk(Z)%ﬁ¢é¢£, (V-56)

J$ICEFSEE6

v O LS L . : . ijk
and xt'(4)= Ds gﬁﬁé o , etc.3 the coefficients D are

obtained by differentiating the equations for Cijk (Appendix I)-with
respect 2z, | ‘ |

The integrals are evaluated by ten-point Gaussian
integration, which corrésponds to fitting a 21st-degree polynomial
to the integrand and evaluating the integral of that polynomial,
Since there are 16 double integrals to be evaluated, each of the
intervals used in the Gaussian integration must be further
subdivided, In all, the first-order solutions and derivatives,
ﬁk%gﬁ%with i=l, 8) must be evaluated at 111 points for each
quadrupole magnet,

The first-order solutions,;zg(z), are evaluated from the
entrance of the magnet. to each of the 111 points using Eqs. (II-18)
and (II-19)(the accuracy is improved by calculating each time from
the beginning of the magnet rather than from the preceding pointy,
this procedure is just as fast). At each point certain products
afc formed and the code runs through a table of 94 en‘ries which
specifies the factors in the integrands of each integral. The

integrands are evaluated, weighted with the appropriate Gaussian
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fuctgr, and added into the partial sums that comprise the integrals.
After the integrals have been evaluated for the entire
beam system, a second table consisting of 244 entries is consulted,
Each entry in this table lists a factor k, one of the functions
ﬁ;(z)‘ and one of the integrals (mn), (mnlpq), (mnpq), or <mnpg>,
i :
and a coefficient cHE Snto which the product, koﬂi(Z)efG“ﬁdY R
is added, All the coefficients Cijk and Dijk are calculated with
no octupole contribgtions and are listed. The octupole contributions
(if there are any) are then added_into the coefficients, which are
then listed again,
For a beam system comnsisting o¢f three quadrupole magnets
and four dvift Spaces,-the entire process of calculating the
aberration coefficients takes approximately 0,01 minute on the
IBM 7090 cbmputero
The code will also calcplate the shape coefficients and
the locations of the effective ends of quadrupole magnets., The
required input consists of a table .of éxz) at uniform intervals
in z, the locations of the magnet centers, and the physical lengths
of the magnets, The code evaluates the integrals f(bdz and
S zPdz over both ends of cach magnet and the adjacent drift
spaces, I'rom these integrals, the required data can be derived,
If desired, the code will construct the table ofCP(z)
using the bell-shape approximation previously described (V-27),
The locations of the magnet centers, the relative excitation of each .
magnet, the length of the central plateau (constant-gradient region)

of each magnet, and the half width, h, (characteristic of the

fringing fiecld extent) for cach magnet constitute the input data.
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VI, RELATIONS.BQTWEEN THE GEOMETRICAL COLRFFICIENTS OF ABERRATION

In the preceding chapters we have calculated 56 coefficients
which completely describe the aberrations through third order_forv
a beam system possessing two plancs of reflection antisymmetry,
Of these, 40 characterize the geometrical aberrations of mono-
energetic beams; the remaining 16 describe the chromatic aberrations.
(If the scalar potential is separated into two parts, one a step
function in z and the other a difference function, as described in
Chapter V, then ecight additional coefficients are obtained; these
coeffiéients describe the thrid-order effects of the fringing fields,
In this chapter we ignore the fringing field coefficients, They.
are not fundamental, bqt have been included to élearly demonstrate
“the offects of the.fringing fields.) Not all these coefficients
are independent. Burfoot has shown that the third-order geometric
aberrations of a monoenergetic beam system possessing the above
symmetry properties afe completely'déscribed by 16 independent
numbers@4 In this chapter we derive 28 relationships, of which 24
are independent, among the 40 geometrical aberration coefficients
in the third-order terms in the power-series expansions of X, Y,
x'y and y' in terms of X s yo,'xo‘9 and yo'? These relationships
are defived by making use of certain Poincaré integral invariants
which expréss the fact that the transformations carrying the
trajectories between two points are restricted to the special class

of canonical transformations.

A. Number of Independent Coefficients

Burivot's method of classifying aberration types follows

a classical method of treating aberrations. This is fully
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described in Chapter 16 of the book by Zworykin et aloll

Instead of expanding the displacements, x and y, in
a power scries in the object plane displacements and slopes, this
iethod describes the trajectories in terms of a pgwer series in
X0 yo, X and ya, The latter two quantitics are the displacements
of a trajectory at the aperture plane. The aperture plane is
defined as a planc in field~freec space near the image plane. All
trajectories are straight lines between the aperture plane and the
image planc.

It ig well known that the system of trajectories issuing
from a monoenergetic point source are all orthogonal to a particular
family of surfaces,; on each of which Hamilton's characteristic
function takes a constant value. For each trajectory one value
of Hamilton's characteristic function, W, corresponds to the
Surface orthogonal to that trajectory at the point where the
trajectory intersccts'the aperture plane. If we know the value of
W as a function of the coordinates of the source and the coordinates
of the interscction with the aperture plaﬁe of trajectories
issuing from that source, then we know all there is to know about
the optical properties, including aberrations, of the beam system
considered,

Since the family of surfaces described above must also
have the symmctries of the quadrupole magnet array, the power-

series expansion of W in terms of X v Yo X0 and Y, may contain

(o]

only terms of even power. The trajectories are determined by the

11!

and oy of W, cvaluated at x and y . Thus
gy a a

a a

<y
=

. . it
derivatives

(el
s

3

third-order terms in the image-planc displacements are derived from
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fourth;order terms in the power series:for W, Since there are only
186 independent fourth-~power combinations of X, Y1 X, and Ya
.that contain at lecast .one power of x& or.y, and satisfy the
symmetries, there can be only 16 independent numbers describing
the geometrical aberrations of third-order.

In IXX. C. we listed the 20 third-order terms that describe
the geometric aberratiods to that order. The coefficients to
eight of these terms are derived from the following four terms in

. 2 2 2 : 2
o We . -
the expansion of W: * ya s X Y XY 5 X X , and yoyaxa ..{ four

oo a’a o*a¥a
terms frqm differentiating with respect to X, and four from ya)o
Thefe are three numbers characterizing genefalized spherical
aberrations, four numbers charaéterizing generalizedvcoma, five
numbers characterizing generalized astigmatism, and four numbers
characterizing generalized distortion. In s&stems possessing

rotational symmetry, these 16 independent numbers reduce teo five,

B. Derivation of the Relationships

We now return to our description of the aberrations,
which employs coefficients of the third-oxrder termS'in the power-
scries expansions of x, y, x', and y' in terms of xo"ea yo', xo0
and Yo We derive the desired relationships by utilizing the
Poincare integrél invariants, using the coordinate frame introduced
in Cha?ter IV, With z as the independent variable, the canonical
coordinates.and'momenta are X, y, t, P py, and pt; the expressions
for the canonical momenta are given by Eq. (IV-7), These

quantities are the Cartesian coordinates in our six-dimensional

phase space. The magnetic field is assumed to vanish in the
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neighborhoods of the object and image planes, so that the following
expansions are valid in these regions

2 2 ® 0@ . !
Mvx® (L-x'"/2-y'"/2+ ), -
(Vi-1)

i

Py

Mvy? (l~x°2/2ay'&/2+”°)0

i

Py

The Poincare invariance theorem states that the integral
o 3 .
J= éf igl dqi dpi 0 (vi-2)
taken over any arbitrary surface in phase space, is invariant
undexr all canonical trasforﬁations, such as the canonical
trahsformation'that takes the coordinates from their initial
values to their final values. Similar invariants exist for intggrals
taken over any even-dimensional subspace of phase space,
The‘method we usc is an adaptation of the proof of
the invariance found in the textbook by Goldstein,12 We may
calculate an invariant im terms of the initial coord}nates and
slopes at the object.élane and also in terms of the coordimates and
slqpes at the image plane. ' We can then express the invariant at
the image plane in.terms of the initial coordinates and slopes,
‘using the power-series expansioné of the image-plane coordinates
and slopes in terms of the object-plane coordinates and slopes.
Equating the value of the invariant at the image plane with the
value at the oﬁject plane, we:obtain the desired rela{ionsﬁips
betweeh the cqefficients as required by invariance.
Points on a two-dimensional surface may be located by two
curvilinear coordinates. Let u and v be any curvilinear coordinates
appropriate to the arbitrary two—dimensional surface on which we

evaluate the integral to obtain the invariant. In terms of u and v
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the integral may be written

3 2(q;.p,)
Jzﬁ{né_ Ty ow dv (VI-3)

Ve now see that, owing to the invariance of the integral over an
arbitrary surface, S, the integrand must be invariant., The

integrand is the Lagrange bracket of u and v,

a(q.,p.) |
M -aawml l — )
ij . a(u,v) B {\l, vgqu ° (VI 4)

Although we bave been referring tovan‘”image” plane,
there is no need to restrict the subseduent discussion to systéms
that form a point image of a point source. Let there be a line
"image parallel to the y axis at z# and a line image parallel to
the x axis at zy, Kither of these images may be virtual,

At some arbitrary peint =z, in a field-free region, we
expand the displacements and slopes of a trajectory, obtaining

., to first order Yj%yow\(ﬂ}G)J

' (z) = x '"/m %x /f o x(z)=m x +(z-z )x'(z) .
o o "x 0 X (VI-5)
y'(z) = yo'/n'nyo/fys y(z)zn Y, +(Z~zy)y'(z) .

'Here m and n are the magnifications in the x~z plane and the

y-2 piane, respectively, and fx and fy are the two focal lengths,
Letting the superscript a denote the correction due tQ

aberrations, we find the corresponding expressions that‘include

the aberrations are

Ce)e ' e A : . '
x'(z) X /m XO/LX_+ x (xoj Yor X5 0 Y ), (VI-6)

- nr 1 LY ' '
x(;) = mox_ (2 zx) x'(z) + x (xo. Yor X' yo Yo

In restricting this discussion to monoenergetic beams,

we Llimit oursclves to surfaces in phase space on which K is a
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constant, Thus we shall always have

3(t, ~B) _
3, v C O | (VI~7)

In “he subsequent derivations, we shall have ocassion
to use the following properties of Jacobian determinants; these
properties are casily derived, If a«, B, and € are three arbitrary

functions of u and v, and if x is a function of « and B, then

0(a,8) | _ 8(8,0) _0a 3528 da ,.
2d(u,vy T da(u,v) T Qu dv  Ou dv ! (VI-8)

D 3 (s :
ggia+ifﬁl = a égi’sg + gg;’ig (where a is a constant), (VI-9)
d({x,e) dx d(a,e) = Ox 8(8,¢c) . ' :
dlu,v) " da alu,v) T F a(u, vy ? | - (VI-10)
0w, a)

it
o
°

(Vi-11)

O(u,v)

When evaluated 'at the object plane, the integrand of

the invariant becomes

| a(x , p. ) dly , p.)
s %P’V% o - o xo” o Yo 9 (VI-12)

dlu, v) d(u, v)

‘where, applying (VI-1),

8(x , p_ ) a(x ,x ") olx ,y.9
o' “xo L2 o 12 o' o * , o'Vo
d(u, v) = Mv(l 3%, /2 Yo /2 ) 2 (u,v) My X'y, d(u,v) .

(VI-13)
to third order; a similar expression is obtained fromthe term in
Y, and_pyo,

At the arbitrary point z,.the integrand in terms of the

O(x,px) G(y,py)

o, At

initial conditions, is 1= . ' (VI-14)
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a(.s.“)px) 9 o O(X,X')
where FICED Mv (1 =3x'7/2 -y'7/2) FICRON . .
' (VI-15)
A (x,y") d(x'y') :
~Mvx'ty' ETGT;TM ~x'y! (Zmzx) ET:T;Y“ 9
B (x,x") _ (x_, xi') . a(x_,x'™) 1 8(x ") 1 3 (x ,x2)
dlu,v)  dlu, v) 8 (u, v) M5 lu, v) L atu, v

0(x,y") m'a(xo’yo') 'm‘a(xo’yo)

LI

B s e e and
3 (u,v) ™ atu,v) B Ie atu,v '

a(x"y')_‘l G(XO',yO')‘ 1 a(xo"yo) 1 a(Xo’yo') 1 a(xo’yo)

[Speeai [y - ES

®

nf

mn -x_a(u,V) fxfy dlu,v)

3 (u,v) A3 (u,v) mfy a(u,v)
these expressions are'obtained from Eq, (VI-1) and Eqav(VIm6) using'
Egs. (VI-8) through (VI-11).

Let'D be the difference between the integrands
evaluated at the two points. As stated previously, this integrand

is an invariant and D therefore is identically zero. We write D

d(x,p )

&

. aly,p,)  8(x_,p_) aly ,p ) |
as D=Mv e R o X . o2 v r, (VI-16)
au,v) o (u,v) 0 (u,v) d{u,v)

Bach of the aberration terms can be expanded, using (V-47)
(this expansion is not made until later for reasons of brevity),’
and each term can be written so that the only Jacobian determinants

- remaining involve pairs of initial parameters., We write D as

0(x ,x ') a{x v ) d(x ,y ')
D= My 45, 0% i s — 00 g oo , |
d{u,v) 0{u,v) o (u,v)
- o (VI-17)
.a(xogyo) a(xo‘,yo') iﬁyo,yo')

#g, e b § oS 4§

]

6

t a(u,v) d(u,v) d(u,v) “ v
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The integral, J, is invariant over any two-dimensional
surface in phase space. Among these surfaces are those on which

two of the four parameters Xov Yoo xo', yo' take constant values.

‘On such a surface only one of the six Jacobian determinants in
Eq. (VI-17) is nonvanishing. For example, consider the surface

X z a and y,' ¥ b. Here we find that the coefficients of

Sl, S2, SS' SS’ and SG cach vanish as the Jacobian determinants
contain constants. Thus, for this choice of surface, we sce that
84 £ 0. By applying this argument to other surfaces, it is clear

that each of the coefficients S, , S S49

1 27 S

39 SS, and S6 must o B

vanish identically.
Let us now group the terms withing these six expressions
‘as follows:

2 ' ,02 2 v2’
XX '+ 8 L x +»Sl4yo + 8. Y, , (vi-18)
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S35 3lxoyo.+ S32 xoyo' " 333 xo'yo * SS4 xo'yo' }

S4= 21%0%0 ¥ 842 xoyo' ¥ 843 xb'yo * 544.x0°y0' }

S.5”"“'851.’“03'0 Y Bgp XY, Y Sgy XV, ¥ S5y XY

Sg” Sslx02 * 8ga X% ' * Sgz X'+ Sgy y02 * S5 Yo¥o * Sssyo'-2
'Since. the region of integration is completely arbitrary,.

Sl through S can.all vanish 1dentlcally only if each of the S, ij =0,

These conditions yield 28 relations between the coefficients of
aberration, of which only 24 are independent. The derived

relationships, in the notation introduced in V.I1. Ethe aberration

cqrfections are expanded, using Bq. (V-47) 3, are

SR mpott Lzt +C$ll/fx w3/2fx2 =0 (VI-19)
slz=2m1)331 +2C ll/ﬁ +2c331/fx +3/mf_ =0 ,

513=3mr>333 NI S 3(m°-1) /20" = 0,

S R a2 ml/2fy2 =0,

815: mD432 +0421/m + 43“/f +l/nfy = 0

5, = 443 ot C44z/fx . (n2«1)/2n2_,

521~2mD221—2nD211 oc??l/p m2C21l/fy~n/fx2fy+m/fxfy2+L/fx2fy2?O,
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.szsfszszz o2t szz/fx~0321/fy+n/mfxfy—Inysz/mfxfyz.=0,
g™ mD430~nD4 43“/1’ ~¢* /fyml/mfx+;/nfy+L/mnfxfy =>O,
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853- 2C /n /m ~L/m nfy = Q,
= 2C433/ 443/m +L/m n = 0,
54
. 411 211 411 2 B
Sle nD +C / +C /fy ml/2fx = 0,
' 431 321 431, _
Sgo= nD +C " /a  +C /fy +l/mfx = 0,
) )
= nD433 332/ +C43$/f +(m“»l)/2m2 = 0,
63 y
22 2 2 2
s = a2 43c®%2/m wc*2r L3/08 % a0,
64 : Yy
442 422, . 442
SGSf 2nD /n +2C /fy +3/nfy = 0,
556" sap it o4y +30444/fy +3(n"=1)/2n" = 0.
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These 28 relationships, derived from the Poincare integral
invariance, are a cdnsequence of the assumed symmetry of the beam
system and the requirement that the transformations between the
object plane and the plane at the arbitrary point z be a canonical
transformation. In Chapter V we have derived the expressions for
the 40 coefficients appearing in the above relationships. We may
now apply these relationships to any numerical values of the
coefficients we may calculate, in order to verify the accuracy of
our calculations. This is a powerful checl, as these relationships
in?olve the five first-order quantities m, n, fx’ fy° and L
in addition to the aberration coefficients.

These relationships are satisfied by the aberration
coefficients calculated by the 7090 computer code in every
instance checked, In most cases, the relations are valid to fiyé
of six significant figures., As we are easily able to test the
accuracy of the linear calculations of the code, we are nowlable
to completely ver;fy the aécuracy of the aberration calculations.

The expressions through S yield one relationship

51 54

between the four coefficients describing generalized- spherical
aberration, one relationship between the six coefficients describing
generalized astigmatism, and two relationships between the six
coefficients describing generalized coma., The remaining independent
terms agfee with the distribution described by Burfoot.

The other 24 conditions we have derived relate the
‘coefficients in the expansions of the slopes x' and y' +to the

coefficients in the expansions of the displacements x and Y.
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VII, THE CHARACTER OF THE ABERRATIONS

In the preceding chapters we have developed powér-series
expansions of the displacements of irajectories that have passed
through a quadrupole magnet beam system, The aberrations of such
a system are described by G4 coefficients, many of which are not
independent. In addition to the aberrations of a beam system
possessinglthe two~plane reflection symmetry properties assumed’
in the aberration calculations, beam systems with real quadrupole
magnets have defects due to their failure to achieve exactly tﬂe
assumed symmetry. These defects can be characterized by further
coefficients. We have referred to a digital computer code that.
calculates all these coefficients, but we have not yet examined
the qualitative and quantitative effects of the aberrations. This
we shall now do,

We are interested in aberrations only in a region where
the displacements due to linear terms are small, We therefore
restrict our discussioh to the neighborhood of an image or a waist
produced by the beam system, The actual character of the beam in
such a neighborhood is strongly dependent on the distribution of
the trajectory points in the object-plane phase space, because
some components in the displacements, which are cubic in the object-
plane parameters, may be dominant in such a neighborhood.

A complete solution would provide the exact shape of the
three-dimensional beam envelope near the image, but a more practical
description, even though not quite so general, consists of the
knowledge of the projections of the envelope on each of the

coordinate planes. In addition to the projections of the envelope,



-69-

our description must consider the distribution of trajectories
within the envelope. In most applications a system in which
relatively few trajectories suffer large aberration displacements .
would be preferred to one in which many trajectories suffer
large aberration displacements, even though the maximum displacement
due to the aberrations might be the same for both syétemsn
Finally, we would like to represent the aberrations by a few
characteristic numbers in order that we can compare several beam
systems, The maximum displocements due to the aberrations and
the root-mean-square displacements due to the aberrations are goo¢
quantities for Qse in making comparisons. For beam sgystems in
which a line ox a point image is desired, one would like to
know the width of the best image attainable when aberrations are
considered, |

In the remainder of this chapter,; we calculate the
average and maximum aberration displacements and the location and
size of the best image attainable for a given beam systemj we also
examine the effects of aberrations on the image of a point source.
"In the course of these discussions we refer to two sample problems
which have been solved by use of the digital computer code,
Significant portions of the computer.printouts obtained for these
examples are reproduced in Appendix IXIY, together with instructions
for further interpretation., Instructions for using the code are
given in Appendix IIX.

The first example conéists of a beam system composed of
a symmetric quadrupole triplet which is adjusted to provide a point

image of a point source, the symmetfric triplet being located midway
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between the source and the image, Obviously, unit magnification
is obtained in both planes in this example, We then examine the
imaging of a small circular diffuse source by this system.

The seccond example consists of a quadrupole doublet
which is adjusted to provide é Iine image of an incoming parallel
beam in one plane and a parallel outgoing beam in the other planc,
'or each of these examples, we determine the coefficients that
dominate the aberrations displacements and then calculate the
tolerances permitted in positioning the magnets so that the
aberrations due to failure to achieve quadrupole symmetry are

smaller than the inherent aberrations,

A. The Average Aberration Displacements

In this section, we calculate the maximum and average

displacements due to the aberrations obtaining expressions that

engble us to compare the contributions of the different cocfficients.

of aberrations. We first must stipulate the occupied region in
phase space. For this purpose, we introduce three models. Some
calculations result in celatively simple expressions for one model
but not for others., £ach of the three models represents a reason-

able approximation to a real beam distribution.

l. Models for the Occupation of Object-Plane Phase Space

As stated previously, we always assume an effective
source at the input to the beam system, since this assumption
entails no real restriction, We restrict the distribution of
trajectories to those which are symmetric with respect to reflection

through any of the five coordinate plancs in Xos Yoo xo', yo'. A
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space,

Model #1 is a rectangular distribution with cach '
coordinate ranging between a minimum and a maximum value
independent of the other four coordinates. For this model,
we ha;e | (VII-1)

»x;xoéx, m§<yos§, w;°€xo°g§', my'gyo'gy‘, and ~K§A$X o

This model is used by the computer program to evaluate the maximum
displacement due to aberrations,

Model #2 is the product of elliptical distributions in
X=-x" space and y-y' space with A talken asvzero, This model is
appropriate to a beam system bounded by rectangular apertures@
We parameterize this distribution as |

x = ;&gcos Q, xo' = ;O'g“sin 0, 0£¥LL, 0ge2n |

- — (VIX~2)
= o % i S 2
Y= yoqcos a, Y, yo'qsln &, O(qél, and 0<@<2xn,

Although helpfﬁl for éomparing with model #1, this model is not
usced by the computer codéa

Model #3 consists of a hyperellipsoid in X xo', Yoo
ana yo' with A taken as zero. As mentioned in Chapter IT, this
model is appiropriate to a beam limited by a circular aperture,
which is usually the case when beam pipes of circular cross
section are employed. The code uses this model to calculate the
rms aberration displécgments‘ We parametrize this distribution by
X = ;o cos @ cos O, x0'= r ;O' cos ¢ sin 8,

Y, T ;0 sin ¢ cos¥, y '=r ;ol sin @ sinvY, (VIX-3)

O

0g#<n/2, 0£6<2n, 0K¥<2m, and O<rgle
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2, Normalized Aberration Coefflicicents
As cach of these models involves the maximum values the
parameters can attain (i.e., xo), we find it convenient to normalize

the aberration coefficients by multiplying them by such powers of

X yo, xo', yo', and & as are required 1o scale to a space in

which each parameter achieves a maximum value of 1.0 and a minimum

value of ~1.,0. VWe denote the normalized coefficicents by an

- e 205 A o
glllzclllx 39 cO%% C004y0' A2° and

underscore, for exanple,
o v =

421 421~ — — - o . .
D = D yo’yoxo° With the coefficients in this form, we may
immediately compare the relative effect of the various coefficients
acting upon the beam described by this object-plane phase space

distribution,

3. Symmetry Groups in Displacement lExpansions

In the expansion of x in terms of aobject-plane parameters,
we may separate the terms according to the reflection symmetries

about various coordinate planes:

& 2 z 2 22 2 ) 2 551, 2
xl= . (Clllx N CSJIX 2L ly . C44ly 12, b0, )
o o (o) o) 0
432
. f
+k0 (C yoyo )
(VIX-4)
2 2 2 2 2
x '(Csllx . CSSSX 2, C322y . C443y = C553A )
o o o o)
. 421 ,
+xo (c yoyo ) o

The first line is antisymmetric under reflection through the plane
x0=0 while symmetric under reflection through any other plane
containing two coordinate axes. The other three lines have similar
properties. Nopice that, with the exception of the dispersion

terms, the first two lines contain only terms in spherical
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abefration and astigmatism. This separation, arising from fhe
symmetry properties assumed in the five-dimensional object-plane
space, appears in each of the later results of this section, 1In
the expressions for maximum and mean aberration displacements, this
separation into symmetry groups demonstrates that the distortion
and coma térms contribute in exactly the same way as the spherical
aberration and astigmatism terms. If the corresponding terms

111 33 432 421 ..

v

were equal (i.e., C zg3 , C = C

) then the distortion
terms would- contribute exactly the same amount as the spherical
aberrations terms, and the astigmatism terms would contribute
exactly the samé amount as the coma terms toward the maximum and

rms aberrations.

4, Maxinmum Aberration Displacement

Let us calculate the upper bound om the magnitude of the
displacéments due to the aberration terms. It is clear from.the
symmetry properties that for model #l we must replace each
parameter by its maximum value and take the sum of the absolute
values of the four limes to obtain the maximum displacement, given by
a < IClll N 9331 N C22l . §44l . g551x . l£432’

(VII-5)

This value is obviously larger than the maxima that would be
appropriate either to model #2 or to model #3, Note that the
symmetry sceparations have occurred as discussed above, The maximum
displacement |yai is calculated in exactly the same manner,

We obtain an upper limit on the beam width at the image

a
by adding ix | to the maximum obtained from the terms that arec
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linear in'xo and xo'; this limit in generél is larger than the
maximum displaccment actually obtained in a typical beam,

Only a very small proportion of the trajectories will
suffer aberration displacements ncarly as large as Ix*l . The
rms aberration displacement to be calculated next has been found
to be an order of magnitude smaller than this maximum displacement in
the‘examples mentioned‘aboﬁeg The rms value is the more interesting
figure in applications in which the quadrupole magnets are placed

to form a point or line image on a scintillator or regolution slit.

5., Root-Mean-Square Aberration Displacement

The rms displacement is defined as the square root of
the average of the squares of the displacements of a representative
set of trajectories given by the following ratio of integrals

taken over the object-plane phase space:

. (VIX~6)

Ly [000 (M) Pae
S0 dt

Here ?(ﬁ)d@ is the number of trajectories originating in the
volume olement.d€¢1t@ . The denominator is the total. number of
trajectories considered. We restrict g(f? to have the same
reflection symmetry as has been imposed upon the three models of
the object-~plane phase space, so that the expression for (xa>
separates into the four symmetry groups, each term being positive
definite and containing only coefficients from a single symmetry
group. This result follows because the cross—-terms beiween terms
in different symmetry groups must integrate fo zero; every
contributiog is balanced by an equal contribution with opposite

sign.
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We now evaluate the rms displacement for model #3.

The transformation Jacobian for this choice of paramcters is

a(x WY WX '$y ')
0 le} 0 [e] - r3 % %! y y1 cCoS ¢ sin ¢° : (VII°7)
a(ra ¢v.0s )

If we assume the trajectory density functibn,‘P s Lo depend ohly

upon the dimensionless variable r, then (vii-8)
- 1 3 n/2 , 27 27 a 2
< a2 XX yoyl 4)dr r P(r)4) d¥ cos ¢f sin ¢ %) d94) a x (r,s,0)
A Llar 22000) [ 2ag ¢ sin'¢ [2 a0/ "d
0"0 Yoo % y 0 cos ¥ sin 0 0 °

Upon carrying out the indicated operations, we find

; o ) 5
xd - X {F39333+9311+C443+C3“2)2+6(C333)2+2(9311)2+2(g443)2

480 - X &
42(9322)2 +(9'432)2
+(39111+9331+9221+g?41) +6(9111) +2<9331) +2(9221)
L
2(c* 2 L (*2H 27 (VIT-9)

ot

59w =¥ ar
Here I = T if Y(r) & constant the I'=1, as has
1 5
4) g(r) r- dr

i

been assumed in all the: examples quoted below.

Note thét the four symmetry groups separate as discussed
above., The additional symmetry between X0 Y, and xo'9 yo' is
expected, since the expansions for xa and ya are similar and the
coefficients are labeled . in a symmetric way. This symmetry may be
described by stating that the expressions for the maximum aberration
displacemenf and_mean'aberration displacement are invariant under
the permutation of indices: 12345 -—> 34125, What this means is
“that thehspherical aberration and astigmatism cohtriputions are

as important as the distortion and coma contributions, respectively,
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in determining the characteristic size of the aberration displaceé
ments provided the normalized coefficients are comparable in
magnitude,

The expression for <xa> reveals the relative importance
of the coefficients. For instance, the coefficients 9333 and 9111
are the most important contributions; these terms correspond to the
contribution from xoésand xos, respectively.

For a numérical comparison of the maximum and rms aberration
displacements, refer to example #1 in Appendix III. This system
consists of a symmetrical quadrupole triplet of 8 in, diameter
aperture, with elemcnﬁs ha?ing lengths 16 in., 32 in., and 16 in.,
~respectively.. The separation of elements and the eicitations are
adjusted to produce a point image of a point source, with source
.and image symmetrically located at 275 in. from the triplet. The
maximum‘slopeé of irdjectories that can pass through an 8 in, bofe
beam tube are ;o' = 14.3 nmc, ;o' = 9,30 mr. Let us assume a
source 1.30 in. in diameter and a relative momentum spread
A= 2.5 x 10—40 We find that the maximum displacements due to
aberrations are 0.94 in. in the x plane and 1,35 in..in the y plang;
these figures do not include the Second-order chromatic aberration;
terms. The rms aberration displacements, when model #3 is used,
are <x } = 0,053 in., <yé>= 0.073 in.. If we next assume a point

source with xo', yo', and A unchanged, we find the maximum

a

displacements are 0.54 in. and 0.77 in. in the x and y planes,
‘respectively, while the rms displacements are 0.050 in. and
0.068 in.. We discuss these examples at length at the end of this

chapter,




7T -

We can also calculate the rms aberration displacements

for the other two models. For model #l, we find

2 3 - 2 47
<¥ﬁ> zfg%-§(2g3 3+g311+g443+9322+9553)2+2Lg311) +2(2443)2
[ade SN}
(gzza) " (9503)£+2(g432)2
_ ' (VII-10).
+(2C111 m331+9221+g441 c 5512 Z(CSS])? a(czzl)z
+2(9441)2+2(Q551)2+2(g421)2 z .
“ For model #2 we find
{2 . 192 g(30333+g311+2g443+2g322)2+2(g443mg332)2
6(g333)2+2(g311)2+2(g432)2 |
(VII-11)
+(3g111+g331+29221+2g441)2+2(0321«c441)2 :

11152 331)2+2(g421)2}

+6(C +2(C

By inspection of these two expressions, we can determine fhe
,relativé importance bf different coéfficients for the different
modéls,' Continuing with the point source in the aﬁove examble,
we find (x*) = 0.161 in. with model #1 and {x") =0.102 in. with

model #2,

B. Region of Least Confusion

In classigal optics fdr rotationally symmetric systems,
the best image, known as the '"circle of least confusion', is not
-generally found at the paraxial image plane but at another value
of =z, Quadrupdle'béam systemé, lacking the rotationél symmetry,
do not_gene;ally fofm a "circle" of least confusioh;fhowever9 -
thefe is a region of least confusion near the paraxiél image where

the beam width is a minimum,
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F'or a paraxial point image, the best focus in the x-z
plane is usually found at one value of z, whereas that in the y-z
plane is found at another value, For a liné image, we are
interésted only in tﬁe region of least confusion in the plane
érthogonal to the image line. We wish to determine the width of
Ithe region of least confusion as well as its location, If our
purpose is to use the béam system to provide a momentum or mass
resolution; we place the resolving slit at the region of least
confusian. ‘The smaller this region, the befter resolution we

attain,

1. The Beam Envelope Near an Image --Single-Parameter Trajectory

Distribution

If z is measured from the image plahe, the equation
for the family of trajectories issuing'from a point‘source'and
restricted to single values of yo"and Ais

0. (VII-12)

J 3
vy =y Y i .o
CEXO,(X92}~X ex dx0 hzxo /m o+ 0(4)

AS x&' varies the family of trajectories is swept out. In Eq,
(VII;;2), m is the magnification? d and h depend upon'yo' and A,
and ¢, d, and‘r>represen£ spherical and chromatic aberration
‘.contributions,

“In the absence of aberrations, all the trajectories

would lie within the envelope formed by the two extreme trajecfories'

- o '
E%?_; , = 0 and %2; , = 0. The aberration terms alter the envelopg
.o o

'in the region near the image plane;. in this region the envelope is

defined by the characteristic points of the family of trajectories.
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IThefcharacteristic point is defined by the intersection of the

- e :
trajectories SE;,:O and €£Q'+dx° =0, or equivalently by the

o 4 = : i
equations EE%9=0 and %;QQ Q, (YII~13)

o »x'z
The caustic is tangent to the extreme trajectories at some value

of # which we will call z. and tangent to the z axis at =z

1 ‘2

Between z, and =z

1 the caustic exists, and at every value of =z is

2
tangent to that trajectory for which ixl is a maximum,

We eliminate’x0° from Equations (VII-13) to obtain the

equation of the caustic, xzm«(4/270)( d + )i\z/m)‘S o (VIIfl4)

At this point it is convenient to introduce the dimensionless

' 3
R )
parameters (= x/cxo\xand kyﬁv(w+$)? where %=z/mc, - (VIX-15)

w=d/rc + 3;;2/4h$ and v=h/§;2 >0 . This choice of parameters
‘yields relatively simple expressions and at the same time avoids
dividing the results into‘a number of separate cases according
to the sign of m and the sign of ¢,

In terms of these parameters, the equation for the

caustic takes the form ¢2 =L { 1m§(y)3; : (VIX-16)

The total envelope cbnsists of three parts and is referred to as
the "three-part envelopeo“ The equation for the extreme
trajectories (xo’ = I §o°) is ¢2= (% +%l)20 ' (VI;»I?)
Thé envelope is drawn in dimensionless coordinates in Fig. 4. The .
part of the envelope defined by (VII-16) is between ¥ =-9/4,

Qhere the.caﬁstic is tangent to the extreme trajectories, and

: =0, wheré it ‘intersects the extreme trajectories. The caustic

lies within the extreme trajectories between Q’:O and 'W=3/4§
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Fig. 4. The three-part envelope in

dimensionless coordinates.
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it is iangent ot the z axis at \U:S/IL9 the paraxial image for this

‘choice of h, d, and ¢, The minimum beam width, the region of least

confusion, occurs at \V:Ov wheré the caustic interseﬁts the
extreme trajectorics,

Between (W, 8) = (~9/4, 2) and (W, ¢g) = (0, 1/4) the
envelope is defined by Eq. (VII-16); elsewhere, it is defined by
the extreme‘trajectorieSA(VIIW17)°

The half width of the region of least confusion at \U=O
is @ = 1/4; this is one-~fourth of the‘haif width at the paraxial .
focusl(q)z 3/4). The bhalf width of the beam at the other énd of

the caustic (%’: ~2) 'is twice the width at the paraxial focus.
Since x= c¢§;33 it is clear that the beam widths at these points

depend enly upon the coefficient ¢ and the maximum initial slope
;: ; these widths do not depend upon the coefficients d, h, and m,
However;_the location.of the paraxial focus does depend upon d and
r, and, in addition, upon c¢. If mec > O, the caustic will be on
the upstream side of the paraxial focus, and Vice versa,

We will illustrate the three-part envelope by giving
numerical results for the double~focusing triplei reférred to
previcusly. Consider a point source on the axis with no momentum
spread, énd assume that the trajectories are constrained by a
slit to lie entirely in the x~z plane. For this exampie c;Jsz 93;3
-= «0,162 in. The half width at the paraxial image is 0.162 in., -
while the half width at the region of least confusion is 0.041 in.

Here m= -1, b=1l, and d=0; hence w=0.000154 and z= (55434)%
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The location of the region of best focus (97=o) is
2=(55434) (~0,000154)= ~8,53 in. These figures may be verified

by referring to cathode-ray tube (CRT) plot 742 in Appendix III.

2, The General Beam Envelope Near the Image I'or a Point Source:

We now consider a more general situation in whicﬁ we have
"spreads in yo' and A as well as in xo°a For each choice of yo'
and A, we obtain a unique value for both d and hj the envelope
obtoined by varying xo' differs from the three-part envelope
discussed above only invscale and in_oriéin of the abscissa (¥ axis).,
Our goal is to obain the envelope that contains the entire beam

in the region near the image plane for the range of parameéters

Y, 'Sy, 'Sy by ~B<Agh.

.;;O'QXO'Q;O'; -
. As yo' and A are varied within the stated bounds, the

barameters w and v vary within the bounds mggng and O<X<v§;°

The parémeter w deterﬁines the point where_the caustic is tangent

to the 2z axis, and v is a scaling factor. TFor any value of w, all

the trajectories for wxo'gxo'éxo' and vEvgv lie within the

three-part envelope: ﬁzzgngi;(w+gijs for ~9/4g7(w+§)go,

oy - ) (vir-18)
7] ziz + v(w+5)} elsewher‘g0 -

(As v and w are not necessarily independent, we may have
X<§(w1)gv(wl)§$(wl)<; for a particular wl),

A variatidn in w now merély translates this envelope
along the ¥ axis. The total envelope, containing the entire beam,
éonsists of a portion of the three-part envelope with w=w for
f;fo and a portion of ‘the three-part envelope for w=w for ‘S{S",,

where Sl is the intersection of the envelope for w=w with the
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envelope for WEWe (VII-19)
- We now define \J as \Vmg(£+gp) and,intrgducelAWEv(ﬁ;E)>05

The quantity N deﬁerminés whether the total'enveiépe consists

solely of two pairg of.extreme trajectories or whéther it contains

'a‘cautic region. TFor Ay}4w the total envelope consists of two

- pieces, both of which are pairs of trajectories; éhis is the case

when the disbersive effécfs completely overshadow the spherical

.abgrratibn effects. The envelope is given by

= G oD? sor kW),

(V11-20)
2 1 2
N m(2¢~AW+W) ihrvg%,
where Qg is the location of the regionm of least confusion;
11 9 | , ,
% - "’Z‘”EAW.< -2 | - (VIX-21)

if AQ<<4,(but M4 0), the total envelope consists of
three pérts9 the additional part being'a'caustic because of the-

spherical aberration terms

5 | 9
¢ o= (:]i"’*‘ky) for (‘{U\g "’Z” 9
¢2.=1'1;;(1 m%(\y)s for m%sq) <\, . (VII-22)

gdz: (;lﬁkl) +1N})2 for (Vgﬁl)a o

"Here‘ﬂg the location of the region of least confusion, is given by

(1.”.;*\’/0)3 = (1 +§£%+%A§U)2 ; | . (viI-23)

this equation has the approximate solution
= -2/3 0 +14/384  (AU)Z - (a9 °/384 . (VIX~24)
In Fig. 5, we plot both the minimum half-width (at>the region of

least confusion) and (the location of the region of least
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Fig. 5. The determination of the location

and size of the best image.
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confusion) as functions of ALVQ Figure 6 shows the composite
envelope for oW= 5/8,

: ' L
¥or any value of AY , the minimum half-width, ¢ ,

is given by @ :%4-QG « a0, ' (VII-26)

We have now determined the‘location of ihe region of least
confusion and the beam width at that point for a beam issuing from
a source én the axis with a spread in momentum; If the purpose |
of the beam system is to produce a line imagé at a siit for
momentum ox mass resolution, we have determined where the slit
sheould be placed and the resolution achieved.

The power-series expansion of x near the image for
tpajectories issﬁing from a point source gﬁqo (V«SZ)} is

3 4 2 5 _ '
x.= C x '+ C 43x 'y = + C53Ax U CSbsAzx ! +0663x !
o o Vo o 0 o

-

+zax0°/m + z-DSdAxO' + 77 ' (VII-~26)

with z again mcasured from the paraxial image plane. .In terms of

these coefficients, we find ¢ = CSOJi whence x= 9533, h=1+mAD53ﬂ
Wik 5732, o . ’
a = ct4d S O3+ .c®9%% L %% ana : (VII-27).
4431 . Cb3
': - ) ::._.....-—-a . o o ¥ . . . .
AV 03331 + 2 0333 + . The loQatlon of the reglon‘of leést‘

confusion is given by

§ - 663 53 443
_o_m_ 333 )3 .7 = Lz 1
47T & Va 57 338 "I 333 YT EES * for A <4,
X . S = = = (VII-28)
' _ 3335 ’ 9663 . 9443
and by z = = [ ~l - +(s z) 555 b for A 4.
: x ! ( C C
o . - -
14 WAY BEB
Here s=1 if. C**°c%%%0; s=0 ir ¥ >0,
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Fig. 6. The composite envelope,
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3, Example of the Region of Least Confusion

For an example, let us return to the'doublemfocusing
triplet referred to proviously; we now consider a spfead in yo'”
x ' and A, We have.§o'=0.0143, §O'=O,0093 (do'. . mined by the
8 in. bore), and A=0.00025, The normalized coefficients calculated

333 3 3

by the digital computer are C° °=-0.1621, CT 20,3768, C°°=0,000301,

and ¢%5°

-8 . :
= 10O ~. We calculate AQ): 2.36, which shows that the
total envelope consists of three pieces., TIrom Fig. 5, we determine
S @* = 1.2 and Q)o= ~l.4., The minimum half width is then

1.2 ¢33

=0,19 in.; the region of least confusion is located at
zZ = ~24 in,. vThe family of trajectories corresponding to the
values of §ol‘ ;0', énd Iy given above is shown on CﬁT plot #34
in Appendix IIT.

Prdvided_the momentum spread is less than + 1.13% in
this example, there will be a three-part énvelope, the middle
piece being a caustic of spherical aberration type. A larger
momentum spread will result in the entire caustic region
being buried within the extreme trajectories.

.As another illustration, we give numerical results for
the doublet system described above which provides a line image
275 in, from the doublet of an incoming paréllel beam. The two
quadrupole magnets are 16 in. long with 8 in. diameter apertures;
they are separated by.9,25 in. o study the envelope in this
example we reblace xo‘ by X yo' by Yoo C333 by‘Clll, ete.,

‘because the'irajectories-forming the envelope all have zero
initial slope but vary in initial displacement., We consider

- a monoenergetic beam with §0=§0=300 in., We find g;ll= -0.017 in,
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221 ) :
and C = ~0,072 in.j the beam half width at the paraxial line

image is the sum of the absolute values of these two numbers,
or 0,089 in.. AVY, their ratio is 4.25; thus the envelope consists
of the extreme trajectories only. Ve find #*= AW2 = 2,12; hence
.‘thevminimum beam width is 0.0361 in.;§L5~2°38. The quantity

corresponding to m may be determined Trom the expression for x

Clllx 3
o

2
. , . 221x y "= z x /f + °°°, where
near the line image: x= C oY o 0/ !

+
f is the focal length 6f thé leﬁs, We replace m by ~f in the
'expression for the location of the region of least confusion,
obiaihing z= -6.52 in.. This agrees with the graph, CRT ploﬁ

#51, in Appendix IIX, IFor comparison, the calculated rms
displacement a£ the paraxial image is 0,00785 in.

FFor more genéral objectmplane distributions; calculation
of the width and loca£ion of‘tﬁe region of least confusion becomes
‘more complicated, gengrally involving all the coefficients of
aberration. The compuier plots representative sets of trajectories
t§ scale, thus allowing easy determination 6f both the width and
the location of the image of least confusion from the resulting
graph; All the preceding formulas, whic¢h have been presented
for the xmz‘plane, hold for the y~z plane when the éppropriate4
substitutions are made.

Having discussed the projection of the gnvelope on the
y=0 plane, and (by symmetry) the projection of the envelope on
the x=0 blane, iet us now turn our attention to the projection
of the envelope on planes near the image that are orthogonal to

the optic axis.
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C. The Aberration Figure

In classic optice for rotationally symmetric éysﬁems. a
point source on the optic axis is not imaged to a poiﬁt in an
uncorrected system, because of spherical aberration. Rather,

"the sét.of trajecéories that form a given angle with the optic axis
at fhe source are imaged on a circle whoée,radius depénds upon’

the ihitiél slope and also upon the point qf,observationo ‘The
image of a point sourcé produced by a beam system lacking
'gotationa1 symmetry is generally more complicated; The image
produced by a quadrupole mégnet system retains the two-plane
reflectioh symmetxry chéragteristié of the‘magnetsn In this section,
we analyZe'theishape of the figure traced out by thelportion of

thé beam from an axial point source which passes through an elliptical
aperture. The pa?ametric equa£ions for the group of trajectories
that pass through thié aperture are x0=y0=09 xo'= §o“ cos O,
yo'i§6°sin 0, éna A=0, . . (VII-29)

At the paraxial image plane the linear tgrms vanish,
yielding, for the aberration figﬁre traced out by this group of .

trajectories, the equations

X = QSBO cos3 Q@ + 2443 cos © sin2®,
) g
y = c** 5in® 0 + ¢*% sin 0 cos”, (VII-30)

with 0¢6<2m,
The scale of this figufe ié'proportional to’ the cube of the scale
of the eilipticél‘éperture; all the trajectories that would pass
through the interior of the apefﬂure region, if the interior
apertﬁre-were removed, would also pass through the interior of the

figure in the paraxial image plane define by the foregoing parametric
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equations.
We may write these equations in the form
Xz 9333COS 0 + (§443 *'9333) cos © sinzO,
y= C444sin o + (9433 - C444) sin O cos29, aE-s)

Since the linegr terms, the fringing-field terms, and the

chromatic aberration ﬁerms arce proportional to xo' in the x-z

plane and.yo' in the y-z plané, wve sce that we may include them
without incrcdsing the complexity of the family of figures to Be
studied. However, if these terms are added or if the .plane of
observation is not the paraxial image plane, the scale of the

figure will not be directly propoftional to the cube of the size okthe
elliptical aperture. To treat the gencral case of the figure

traced out'by the set of trajectories passing through the elliptical
aperture on some plane orthogoaal to the optic axis and near the

image plane,; we must consider the equations

i

X A cos © + B cos O sin2®,
‘ (VII-32)

) 9
C s1n © + D sin © cos Q.

i

Y
;These equations contain four parameters which determine the shape
and size of the aberration figure.

Two of these parameters may be effectively removed by
scaling the x and y axesj; the qualitativershape of the figure is
not changed by this scaling. We set x= (AD+BC)X/2D , (VII-33)

and y= (AD+BC)Y/2E; then

: o
X = (l+g) cos © + o sin" 0 cos 6,
5 (VII-34)
Y = {(1-¢) sin © + o cos © sin O, '
: AD=BC 28D
— o 1 e emrt————— e
where £= Sf and as= e (vix 35?

The shape of the aberration figure depends upon the two
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parameters € and «. Changing the sign of € is equivalent to
interchanging x and y; hence we need only consider positive € to
classify all possible'aberration figurésa
Let X=r cos § and ¥ = x sin { ‘ - (VII-36)

then we find

2 2 : 2 ' g
r =€ +(/2+1) +2¢ cos 20 ~a(l+a/4) cos& 20, (VII-37)-
dr .1 . '. |
aa%:a.§3a+4)m cos 20 ~ 4¢| sin 20 ) (VII-~38)
g op) /2 - '
and ol ~1 +{a+2)(l+e cos 20)/r . . (VII-39)

: providing tan @ is defined., By exavaming these equations and the
equations for X and ¥, we can determine the desired characteristics

of the aberration figure as function of the parameters o and €.

1, Illustrative Aberration Fipures

We first notlte some distinctiVe figureé thafvare obtained
for.certéin'integfal“thues of ihe tw& parémeterag‘sevéral |
figureé are reprpduéed'in Fig@.BO

With €=0, we obtain several highly'symmetrig figures.

A cirgle is obtained With-mzo, corresponding to the pure sphericél,
aberration characteriéﬁig'of systeﬁs with rotational éymmetryo |
.A cifcleHis also obtained with az=wds howe\ffarp this‘circ{e:ﬁas thé
vinteresting property that ¥ is swept through three'rgyolutions

* when Q'adv;nces through one revolution”'>Wi€h a==2 the figure i§

a rosette with the tips of the leaveg lying on the‘éoordinatei
axes. 4As lol ~é>fn’~é'rosette is obtained which is rotated 45°
r;lativg to ﬁhé‘rosettexobﬁuined with o= =2, |

As;the'piané of pbserVation is moved further from the

image .plane, o is diminished, becoming small in comparison withf‘_
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unityj the resulting aberration figure approaches an cllipse with
semiaxes of lengths l+e and l-e respectively. As « is increased

in comparison to l+e and l-e, the complexity of the figure increcases,
with as many as four loops or leaves developing in the figure.

We now turn our attention to classifying figure types.

2, Classification of ipure Types

As the parameters £ and a are varied, the aberration
figure varies assuming shapes intermediate to the characteristic
special cases described above. Iipure 7 shows the division of
the €, o spacc into 22 regions, each of which yields a character-
istic aberration figure, The significance of the curves that
divide these regions is discussed below.

The number of loops in the figure is determined by the
nunber of roots in the equations X(0©)=0 and Y{(©)=0. 'fhere are no
loops if the only roots to these equations are © =0, /2, m,
3n/2, °°°, in which case the aberration figure may be considered
a distorted ellipse with a maximum extent in the){ direction of
1+e and in the VY direction of l-eg. Jor l+e+a<0O, X also vanishes

:11/20 Y=0 has

at sinzG = (1+e)/(~0) here Y= (2+a) E(l+e)/(»a
additional roots provided either -o>1l-e>0 or -a<l-e<0, X and ¥
will both vanish at the same © provided a= -2 and 0<e<l, yielding
a generalized rosctte. These regions have been separated in PFig. 7
by the appropriate straight lines.

Another distinctive feature of the aberration figures

is whether they are concave or convex at the X axis and at the

Y axis. for 2a>e+l, the figure is concave at the X axis; it is
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at the Y axis only for 2u>i-e.

A rosette~type figure is characterized by the fact that
rn(o) has four maxima and four minima in the interval 0£0<2w. This
is characteristic of all figures in the region for which
ldel I(a+2)2—4la The curves separating the €, o space into
regions with four maxima and minima and region with two maxima and
minima are the two parabolas shown on Fig. 7.

Finally, for -4<cg0, r2$(1+e)2 everywhere on the figure,
and r22(l«6)2 for o0 or ag -4,

With the above criterea, the figure corresponding to any
pair a, € can easily be drawn. Figure 8 is an array of figures:
for six different values of ¢ (that is, =0, 0.5, 0.75, 1.0,

2.0, and 3.0) and 12 different values of a (that is, a= -6, -5,
-4, =3, =2, -1, -0.25, 0, 0.25, 0.375, 1.0, and éao); the figure

is in three parts, 8a, 8b, and Bc,

3. Incoming Parallel Beam to Point Image

In the discussion above, we have been referring to the
image of a point source on the axis, so that xO:O, yo:O, while
xo' and yo' were variced, An incoming parallel beam, passing
through the same elliptical aperture and then focused to a point
(for paraxial trajectories), produces exactly the same types of
aberration figures on plancs orthogonal to the optic axis and close

to the image plane., For a parallel beam, we set xo‘:yo':O,

X = §o cos O, and Y= yo sin ©, and scale as before. The
0
R . ; A1l 221 ) .
cocfficients involved are those of X and Y, (& y C , etc.);

the same separation into figure types applies.
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. Remarks on the Geﬁoral Figure Types

In the above pages, we have discussed the considerations
that lead to a great many distinctive figure types., Although some
quantitative statements were made about the size of the figure,
complete expressions for the maximum extent in the x, y, and radial
directions would have to be divided into so many cases that this
type of description would havé little usefulness. As an alternative,
the computer ﬁrogram was equipped to plot the aberration figure
to scale, thus immediately showing quantitatively every character-

istic of the figure.

D. Concluding Remarks on the Two lxamples

In the previous parts of this chapter, we have examined
the projections of the beam envelope in the neighborhood of an
image. We have also developed expressions for the maximum and rms
aberration displacements, which are usceful for comparing
aberrations of different beam systems, In this section we compare
the aberrations due to misalignments, etc., with the inherent
aberrations. We also discuss an improvement in the point-source

to point-image beam system which reduces the aberrations.

1., Tolerances

The measure of tolerances required is that the effects
due to misalignments, etec. should be smaller than the maximum
aberration displacement. We use example 7#1, the double~focusing
quadrupole triplet with unit magnification in both plénes to
illustrate the use of our results, In this example the maximum

aberration displacements are 0.94 in. in the x direction and 1.35

'
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in, in the y dircction.
The most important tolerance coefficicnts (V-54) for the
middle magnet are
0 ¢

0 5
0= 5,61, T. = -10.3, T° = =14.7, T e -4500.= T

1 9 1 1 and

3
2
" S .

L,= 13.1, If x and Sy are the displacements of the middle

magnet and ® its rotation, the displacements introduced are

Ax

i

5.618x =14.7 @y  -4500 wy ' +°°°
° ° ’ (VII-40)

Ay = -10.3 &y +13.l(»xo + 4500 wx o+ Tt

Thus, a displacement of 0,17 in. in the x dircction would displace
the image by an amount equal to the maximum aberration displacement
in the x dircctionj a displacement of 0.14 in. in the y direction
would displace the image by an amount equal to the maximum
aberration displacement in that direction.

A rotation of 1.3° in the second magnet will smear the
image in both directibns by an amount equivalent to the maximum
aberration displacements. This damages image quality more than
the simple displacenent caused by the shifting of the magnet.

The smcaring in the image due to the higher harmonic
components present in this magnet is |

cd

Ax = 5.6;«-/:31‘ ?n“l sin [_(n—l)(-)+§> 1
n n (VII-41)

4 o .
< n-1 ~
and by =10.3 &1 § cos \.(n—l)msn] ,

where a= 4 in. . If these effects are to be less than the maximum

aberration displacements then we must have
©

nz3 fn < 0.035 , “That is to say, the total contribution

to the magnetic ficld at full radius due to the harmonics must be
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less than 3, 5%.

It is important{o note that all the above figurcs have
been based on a comparison with the maximum aberration displacémcntso
A comparison wiph the rms displacements would yield tolerances that
are swaller, by an order of magnitude,

The corresponding tolerances for the first and third
magnets are slightly larger than the tolerances stated above for
the middle magnet. Ior example, T?: ~3.80 for both the first and

he third magnets.

Since nonc of these tolerances should prove difficult to

meet, it is clear that the inherent aberrations limit beam system

performance in the example considered.

2, The Reduction of Aberrations

In IIXI.2.4 it was neoted that the introduction of octupole
magnetic field compondnﬁs frequently can be used to advantage to
reduce offensive aberrations. Although we have tried to do so
with the computer code in the ‘examples described above, the results
were poor, Improvem;nt of the lincar programming techniques used
in the code could probuably enable it to prescribe octﬁpole field
components in a beneficial way.

The triplet magnet used for the calculations in
example #1 may be replaced by two doubletsy this is equivalent
to splitting the center magnet of the triplet into two magnets.

The cffect of separating the two doublets up to 150 inches while
maintaining the same lecation of the sburce and image points was
studicd with the code. For cach separation the guadrupoles were

readjusted so as to retain the double~focusing properties with
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unit magnification in both planes. A separation of 50 in. reduces
the distances to the source and image from 275 in. to 250 in., thus
increasing the maximum slopes of the ttajectories that pass
through the magnets without encountering a wall along the way.

With equal solid angles, the aberrations for the system with a

50 in., separation are¢ 25% to 30 % less than the aberrations for
the system with no scparation.

Even if the aperture of these magnets remains filled, the
avberrations are reduced as the separation is increased. The
tolerances in displacing a magnet are relaxed by about 4%; since
the same figure applies to the higher harmonic influence, those
tolerances are recduced by‘the same amount, The tolerunces on
rotating a magnet are relaxed 13%, The maximum aberration
displacements are reduced about 5% though some coefficients are
reduced by as much as 30 % (ngs, C444, and Clll9 for example).
The maximum aberrations are reduced by small amounts because the
maximum slopes permitted are larger than in the case with no
separation between the doublets., Other than the increased power
requirements, the only cost in this separation is that of replacing
one 32-in. magnet by two-16 in. magnets. In this exanple the
excitation of the center quadrupole magnets is increased from 1,79
kg/in., to 1.86 kg/in., and that of the other quadrupoles is increased
from 1.95 kg/in. to 2.05 kg/in..

The effects of changing the separation of the quadrupole
magnets in a triplet were also studied with the code. The
quadrupole mapnets in example #1 are separated by an effective

length of 8.5 in,. If this separation is increased to 20 in.,
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rctaining the image and object drift lengths at 275 in., the
aberrations arc reduced by 30% to 35%) the power requirements are
also reduced, since the gradients are 20% smaller. IXf the
scparation is eliminated, the aberrations are 60% to 70% larger
than those described in example #1l; the required gradients are
incrcased by 34%. The solid angle admitted by the quadrupole

magnets was assumed to remain unchanged in these illustrations,
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VITE, IBM 7090 QUADRUPOLE ABERRATION PROGRAM
To ecaieulate aberrations and other properties of beam
systems, a computer program has been written for the IBM 7090

digital computer,

A, Propram Scope

Known as '"4P", this program calculates first-order
optical properties, dncluding dispersion, of an arbitrary beam
system consisting of no more than thirty of the following types
of beam elementis:

(a) drift space;

(b) quadrupole magnet;

(g) octupole magnet;

(d) bending magnets with bends in either plane, with arbitrary
angles of centry and exit, and with an arbitrary field exponent;

(e¢) pscudo~elements, which provide a drift space in one planc
but not in the other, providing a handy device for specifying
properties that occur at a different location in the x-z plane
than in the y-z plane;

(f) solenoid magnets;

(#) any other type of element whose optical properties are
described solely by fixed 3x3 transfer matrices in cach plane.

In addition, the program calculates all the aberrations,
through third-order in the previously defined small parameters,
of a beam system consisting of quadrupole and octupole magnets
and drift spaces. The teolerance requirements on placements and
construction of all constituent quadrupole magnets are also

calculated. Convenient and easily interpreted output is provided
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Ly «a {lexible complemient ol cainode-ray-tube Dlova,

Lhe program 1s eqaipped Lo execute very :eneral
variations oi «ll designated paramelers of the beam system in
ordeirr to obtain, as closely as possible, desired first order
optical propertics while restiricting cach varied parameter to
previously determined bouncs., In addition, the program will scck
to minimize objectionable aberrations while keeping the first-order
propertics unchanged, Many other features of the code allow the
widest latitude in its application while retaining simplicity in
its use,

Control of the flow through the program is specified by
a scquence of "CALL cards'" that are putl in a mnemonic format
similar to mnemonic computer instructions. Input and guiput
options are mainly controlled through a series of internal switches
that are sct by a singlc card and that may be independently changed

alt any time,

B. Lasic Computer Required

The present version of the program is designed to
operate under the FORTRAN-II monitor on a 7090 computer equipped
with scven index-registers, a cathode-ray-tube (CRT), and a
dircct dntﬁ clock on channcl D. The code is approximately cone~
half i"AY coded and once-half [FORTRAN coded, with IFAP coding on
most of the highly repetitive calculations and on the supervisor

routines.

C, Required Input Data

fhe input data necded to calculate the first-order
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optical propertics of a beam system consist of the appropriate
parameters of length and field for each constituent beam elements

length, gradient for quu;rupoles;

length, field‘ field cxponent, orientation angles for
bending magnets;

length, field for solenoid magnets;

length for drift spaces and octupole magnets,
iBlements described solely by their transfer matrices require the
input of those matrices. |

A beam system consisting solely of quadrupole magnets
and drift spaces may be completely described by giving the field
gradient as a function of distaﬁce along the optic axis. Given
these data and a minimum of information‘about‘magnet locationéy
the code will c&lculate effective magnet and drift-space 1eng£hs,
effective ficld gradients for the magnets, and the shape coefficiu
cnts requirced for the caleculation of aberrations. An additional
feature provides for the construction of the field-gradient
function, given the location and."-ngth of each quadrupole magnet
and the "half width" characteristic of the fringing field of each
magnet

A subsidiary feature of the code provides for direcct
“integration of the differcential equations for several trajectories
by using the field gradient function, @(z).

1f it is desired to alter the parameters to cffect a
desired optimization, then the following additional data are
required:

(a) list of the parameters that may be varied including
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designation of parameters to be varied together;
(b) wminimum and maximum constraints upon each paramecter to
ve varieds

(¢c) list of conditions to be satisfied, the desired properties,

D. Output Procduced by the Program

1. Field Data

When the beam system parameters are derived from a
gradient dunction, either given or calculated by the code, the
codé plots graphs showing the gradient function and showing the
separation, for each magnet, into a step function and a difference

function.

2. Linear Properties

The primary output desecribing the linear properties
-consists of a full degcription of each element in the beam system
and the 3x3 transfor‘mqtrices in cach plane, If desired, transfer
matrices to intermediate points may be provided.

Beam widths may be calculated and listed as well as the
location and size of the virtual waists scen by each element in
the system. In addition, the code may be directed to plot the beam
profile in each plane for the entire system and also to plbt the

phase ellipses, in each plane, between each constituent element,

3. Optimization of linear Propertics

When asked to adjust certain parameters to achicve
specified first-order properties, the code provides the usual data

Yielded by lincar prograwmming techniques. These data include
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initial and final errors in meceting the specificd properties, the
variations made in the paramecters, the dependence of the error
upon the constraints imposcd, and the errors in meeting the

constraints,

4, Aberrations

Additional data needed to calculate the aberrations of
a system including only quadrupole and octupole magnets and
drift-spaces consist of the field-shape coefficients for the
quadrupole magnetis and the third derivative of the magnetic field
for magnets having octupolce field componenis.

The primary output for the aberration calculations
consists of a list of the coefficients describing the tolerances-
of cach magnet with respect to displacements, rotatiems, and
undesired harmonics of the magnetic ficld, followed by a list of
the coefficients in the expansions of x, y, x', and y' in terms
of X Yoo xo”, yo”, and A grouped by type of aberration. These
data are followed by the normalized aberration coefficients
appropriate to the given bounds on the object-plane parameters.
The maximum displacements in x and y due to the aberrations,
assuming a rectangular object space, are calculated as are the rms
displacements, which assume a hyperellipsoid object-plane
distribution,

If desired, the code will plot the aberration figure which
is the image of a point.source on the axis.

A five-dimensional raster of coordinates (x , y , x ',
yo', A) oy be specified by giving upper and lower bounds and

increments in cach parameter, The code will then calculate the
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lincar «ad aberration terms in x, y, x', and y' for cach trajectory
whosce object-plane coordinates are given by one of the points in
the five-dimensional raster. Data may be plotted in addition to
being listed. If they arce plotted, one may specily any or all of
the three projectiqns of the trajectorics upon the coordinate
planes., With the scales given upon the plots, the location and
sizes of the "images of least confusion" may be quickly determined.
The plots also show whether a small or large proportion of the
trajectories is adversely affected by the system's aberrations,
Frequently the virtual sources arce distinctively shown upon the
plots, As all éf these data are highly dependent upon the region
of object-plane phase space occupied, provisions are included for
changing this region and observing the effects of this change.

With the exception of the plots, all the other data are
calculated very rapidly. 7The code initiates a beam system,
adjusts it to provide the specified first-order propertices,; and
then calculates all the first~order properties and the aberration
properties in a fraction of a minute; Plotting is considerably
slower, taking betwcen 2 seconds and a half minute, depending

upon the complexity of the plot.
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APPENDIX I, BQUATIONS FOR ABERRATION COEFPICIENTS
A complete list of the expressions that yield the coefficiénts
of aberration follows. The symbolic notation used is that introduced in

Chapter V, and is here redefined for convenience. The following integral

types are referred to:

J‘ g(e) Xm(C) Xﬂ({)d@ , for example

(22) = jgéx j¢yegd§,"
0 0 |

f¢(f;x(c>x x(t.;)X()d if mgh ngh pgh,

[ o on(ox o (0ac ar ey mapa >
0 ,

(mip) = [ ¥(E) %, (6) %, (8) %, () X (D)at

VA | £
(mafpa) = f ag x (&) xn(é)ff‘(s’}f ag x () Xn(&,>75m
0 0 .

The -ums taken over the fringing flelds are denoted by

i} ) ] or oxc
Smn = v Ci¢si Xm(Ai)Xn(zi) for example

(a1l fringe fields) Sh2 = }l: c.fs volz )y (=)
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where
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We have

. ‘ -

. ra . - "" ,i,jk . 1 | I
xc(z) o (z) = ﬁg;g - C (z) v Vj Y

1<k<j<i<b

where
po= x(0), ¥y = y(0), Wy e x'(0), W, =¥'(0), -2, yeyel.
vy » r ¥y P T © Y5 T p’ 6T

The tolerance coefficients are defined by:

t on a0 8¢, 1. A2 o . 3 "
,)F -'a Tl + ;62'11 Vl‘l" ¢Tl \l/2+ ¢‘Tl 1]/54‘ aTl Ilfu,

t v, 0 A Lo of 2 Ao D 5 L
3 = - - - ! ~] + y .
VA g '12 + a T2 Vl t }}é [2 VQ + a T2 \1[/5 TQ ’\,Iu
The equations defining the coefficlents are

R 1
C

1 1 ' 1
= 3 Xg(ll‘)-ﬂb)#) - 3 Xl;( LWih2) 5 X2(881m) -5 X)+(86l+l+)

~ H(BBHE) + %, (BB2) + 3 X, (k) - %—xu< W)
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533 1 1 ) 1 . . Y-
¢’ gmb»»—;Xﬁxﬂ)~EMWHﬂ+%xgﬁﬁ)+ﬁWBﬁ
7 ' l / AN j_‘_ ETr
- X;).( [731) + 5 %, (3333) 5 X5<)J)l> )
¢ttt L L1y (2022) + Ly (Lheoo2) - Ly (6622) + Ly (8622) + %, (6622)
I AR SR 2 "L 2 "2 L
oY . oy (o L1 c
- x2(66u ) -~ 5 Xu<‘822> b3 xg(uzed, ,
111 1 1. i 1 . Ly o
C= -3 x5(1111) t3 Xl(jlll) +3 x3(5;11) 5 %, (7511) - x5(5511)
551) - L Ly
+ x1(5))1) % x5<1111) 5 xl<5111) ,
¢P2 Ly (Who2) - X, (h222) + X, (8642) - %, (6642) + = x_(8822) - £ X, (8622)
T - i 2 - 4 - 272 2 7L
- 2x2(86u2) + gxu(8622) - xg(ééuu) + xu(66u2) + 1-x2<uu22>
- x“<u222) s
M % (5310) - %, (3111) - % (7551) + %, (5551) - = % (T711) + % X, (7511)

b (7551) - 2 (7511) + %, (5553) - *5(55351) + %, (5511)

5

- X, (3111)
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Mo K (W022) o X(142) - X, (6648) + F X, (B614) - w(e62) |
+ x2(88u2) + zxu(86n2) - zxg(ééuu) + xu(8822) - x2(88ug)v
- Xu(lﬂ@?_) + Xg(hlmz) 5

R x5(33i1) # %, (3531) + 5 %,(5533) = 5 %, (7533) + %,(7551)
- %, (T731) -|2x3(7551} + 2 (1533) - %5(T721) + xl('77§1)
- %5(3511) +%(3521) ,

o33 _ X, (Wh33) - xu(we) + ;“ %, (8833) - %Xu(8655) - x2<77#u)
+ %) (T7h2) + %, (87h3) - %) (8732) - X, (kh33) + X (b330) ,

¢ o (Wh33) - %, (WBL) - 2 (77hk) + 2 % (75hk) + X (8833)

' 1 3 2 L 23 l

- X5(885i) - %y (87h3) + X (8THL) - X (Mh3F) + X (bh31)

et - -xu(2211)4<x2(u211) - % X, (6611) + %‘x2(8611)4-xu(5522)

- X (5542) - %, (6521) + X, (6541) + %) (2211) - % (k211) ,
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221

1 . k ,

¢ = - wg(2211) + % (3221) + 5 X (5522) - % X, (7522) = %,(6611)

+ x1<6651) + x5(65é1) - xl(6552) + X5(2211) - xl(3221) ,
ch’ll = X (4h11) - %X, (b211) + Ly (8811) 1 X, (8611) - X.(554k4)

AR L 2 T T ey = K055
+ X4(55h2) + x2(85u1) - Xu(852l) - xe(uull) + xu(u211> ;
se2 X (3pe1) - X Ly (7502)

¢ = % (3322) - XB(Baal) 5 %, (T722) + 5 %5(7522) + %, (6633)

- X,(6631) - %, (7672) +%,(7621) = ¥, (3302) + X (5221)
33 fm@ym+X4@y)méﬁw®w+%xg%%>+mmmm

- X (TTHR) = X, (T6%2) + X, (T643) + X, (3322) = X, (4532

Wb . : ' 1 : 1
.C e xB(uull) + % (bh31) + 3 x3(554u) - 5 %, (754k) ~-x3(8811)
+ %, (8831) + X5(85h~l) - % (8543) + Xy (Uh11) - X, (B431)
o2l ox,(4301) - 2x,(3221) + X,(8631) - X, (6631) - 2x,(T542)

+ 2, (7522) + X, (6543) - xh(6532) + X (T641) - %, (7621)

- & (h321) + 2 (3221) ,
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le(uael) - 2x5(u211) - xl(75u2) + x3(55u2) + 2x1(8631)
- 2x3(8611) - x1(65u5) + x5(65u1) - x1(8552) + x5(8521)
- le<u321> + 2x3(u211) s
th(u52i) - zxe(ugjl) - xu(865;) + %,(8831) + 2, (7542)
- 2xé(75uu) - Xn<8532).+ x2(85u3) . X4(8721) + x2(87u15
+ zxu(u321> - X (bi3L)
-24,(4321) +.éxl(u552) # 3%, (Toh2) - %, (T7h2) - 2¢,(8631)

o+ 2 (8633) + X, (T61) - X (T643) + X,4(8721) - %, (8752)

3

+ ’2><5<u32_1>- . 2x1<_u332> )
- Xh(eg) + X2(42) )
X (1) = xy(31)
Xo(hk) - %, (h2)

=%y (33) + %X,(31)
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? L. xu(ze b2) + x?_(helhe) + xu(hz!ez) - xe(uulez) ,
Pt = -, (12]31) %, (32]51) + xy(52]1) - % (35[0
M o Lx (uh]h2) + X, (b2]h2) + X, (h2]kh) - %, (22]uk)
= 2 I 2 TR et
7 . . x (33]31) + %X, (31]31) + %, (31]33) ~ x_(11]3%)
1 B 1 Fr 2
661 - ]
C = = X 8TL = X855 + 2,851
066? = %882 + X856k - 20862 ,
663 . -
c = X853 + XSTL - 873,
and
0661* = = X856k - xu_sée + 2X,,884

e . . 18 (XY
The coefficients in the expansions for x and ¥y are

. : NP . . a
obtained from the corresponding coefficients in the expansions for x

and ya by replacing each X, appearing In the expression by its

k
derivative, Xk+h . I'or example:

Co kb 1 My L 1

" x8(§8u2) + 95 X (i) - % Xg{uhh2)
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Tolerance Coefficients

The tolerance coefficients for the kth guadrupole magnet are
given by the following expressions with the integrals taken over the
‘kth quadrupole, having no contributlons elsewhere.

The tolerance coefficients are given by

0 0 ;

o= X £¢kx5"X3 1{¢kxl’ Ty = %, {¢kxu+xu f¢kx2’
4 k

1. 1

o= % f¢kx5l X31{¢k’(11’ ?2=-2Xf¢kul“m41£¢kx2xl’

2 -

7%= 2xf¢1xx +2x31{¢xx,.1?2::~xf¢ku2+xf¢122y

3 | L3 _

= X LR X TRy s T e 2 LA - 2 S A

Tl‘"; zxf¢ +2xf¢x ot =-><f¢ +Xf¢

1 1&5 NS - A kuu kLLQ"
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APPENDIX II
OPERATING INSTRUCTIONS FOR QUADRUPOLE ABERRATION CODE

The scope of the code as described in Chapter VIII consists of twd
primary functions: (a) calculation of the linear and aberration properties
of" a beam system, and (b) adjustment of specified parameters of the beam
system to provide desired dptical properties. These calculations are
executed by a large number of subroutines which operate under thé directdion
of the program EBESEXEEEQJ it in tuwrn is governed by a sequeﬁce of cards
directing the order of calculations to be performed.

A, Supervisor

1. Call Cards

The cards that control the sequence of calculations_are called
MCALL cards". Each CALL card contains four flelds, the first of which
contalns a ﬁnemonic word of from one to six letters. This word is
- matched against.a,table in the supervisor known as the “call list".

For each name on the list, a lécation in the program is given; this
location may be the entry point of some subroutine or the start of some
calculational sequence within the supervisor. The name given on the call
card must be left adjﬁsted in the field and must contain no blanks. A
Upon récognition of the name on the card, the supervisor transfers control
to the location corresponding to that name. If the name is not containeq
in the call list, that fact is noted and the supervisor reads the next
‘card and again examines the call list.

The second and third fields of the call card each con%ain an integer

whose function depends upon the particular call card involved. The last

field is a print control field which is described, under subroutine



~118-
"TRAP, in section D.4.b. The nams that may Me used on CALL cards are
.+ listed at the end of the next section,

2. Repeating groups of CALL cards

A sequence of CALL cards way be repeated a specified number of times
by means of a subroutine in the supervisor called into action by the
CALL card, REPEAT. The card, REPEAT m n, is followed by m CALL cards.
The‘m CALL cards are stored and each is executed in sequence, the sequence
being repeated a total of n times. TFor example, the sequence of cards

REPEATO2TS

DESIGN

SYSTEM
would cause the execution of 75 iterations of the linear programming
problem set up by subroutine DESIGN, and the resultant beam system is
listed after each iteratlon under control of the SYSTEM card. Further
description of the CAiL cards DESIGN and SYSTEM 1s deferred until
later. |

Following the CALL cards wnder the control of a REPEAT card, all
data cards to be read by the CALL cards must appear in thg order in

Jwhich they will be called. Many CALL cards may not be included in the
domain of a REPEAT card -~ for instance, a second REPEAT card or a
CALL card thét wses date in the second and third fields (these fields are
not read for CALL cards in the domain of a REPEAT), Those cards which
can be used in the domain of REPEAT are so nobted in the CALL list.

Prior to the execution of the first CALL card in the domain of a
REPEAT card, the following line is written; "REPEAT THE NEXT m CARDS n
TIMES . " |

In some instances the REPFAT sequence can be terminated before the

normal exit. For example, if the error in meeting specifications in the
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optimization routines is sufficiently small at the gnd of a given iterstion,
the optimization routine exists to CALL, which executes the next call |
card after the REPEAT seqguence,

When the execution of one CALL card has been completed, the code

reads the next CALL card and initiate execution of this card. This is

.also true of REPEAT cards.

3. The CALL list

The following names comprise the CALL Iist; they are listed in
three groups. The Tirst group consists of those names Whicﬁ may be used
on CALL cards in the domain of a REPEAT card as well as on CALL cards
not in the domain of a REPEAT card. The second group are those names
which should not be used on CALL cards in the domain of a REPEAT card but

which may be used on other CALL cards. . The third group consists of names

- which may not be used on any CALL card but which may be used as reference

names on ALTER, PEEK, and TEST cards.

a. Names that may be used on CALL cards in the domain of a REPEAT card

RKY%--integrates orbits through system using exact equations,

BELL--creates gradient function for beam system using bell shape,

INCHI~-clears all aberration integrals,

SHAPEj—calculates quadrupole magnet parameters from gradient function,
SUML-~forms aberration coefficients without octupole terms,

SUM2 --adds octupole term éontributions to aberration coefficients,
STATE»noutputs aﬁerration calculations, written and plotted,
EXIT«Aterminates calculations and returns control to monitor,
IRST--calculates first-order displacements and slopes of a trajectory,

THIRD~-calculates higher-order terms in displacements and slopes,
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FOCUS~-adjusts two parameters to meet two conditions,
DESIGN=--sets up and executes lincar programming problem to adjust many
| parameters to meet many specifications,
PAUSE-~executes halt and proceed, with clock disconnccted, for operator |
action,
NORM~~calculates normalized coefficients and mean aberrations,
SENSE~-changes program switches controlling various options,
TIME~~writes line showing time remaining for job,
EJECT--starts new fage with heading, shows time remaining,
TITLE--~cnbers new heading‘text,
ALTER~~modifies stored instructions or constants,
READ--enters parameters of beam systen,
hTRACE—~calculates-first—order properties of beam system,
SOLVE--claculates aberrations for system and lists them,
SYSTEM~~writes system parameters and calculates Tirst-order properties,
DUMPC~~dumps COMMON region and exits to monitor
DUMPAL~-~dumps COMMON region and program regilon, exits to monitor,
PREID~=-plots CRT identification preceding plotting, sets IF(10) to O,
POSTID~-plots CRT identification completing film, sets IF(10) to 1,
UNCH-~-punches beammsystem parameter cards,
PEEK--~sets up and execubes snapshot dunp,
VARY--changes the parameters of a single beam-system element,
ABSICN~~assigns dummy variables to system parameters for optimization,
FRRSET~~sets specificatidns to be met by optimization routines,
INITFR~~calculates initial errors in meeting desired specifications,
REFiNE—~adjusts paramebers to minimize.aberrations,‘
NIEWP-~enters new design.moméntum;

SAVE--vwrites current beam-system parameters on select tape;
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NOIE~~reads text and prints on~line for operator inStruction,
OBJECT=~reads object-plane parameters,
SCWRIT«~writes object-plane parameters

SHOW--writes transfer matrices and locations of focal points.

b. Names that may be used on CALL cards nobt in the domain of REPEAT card‘

SCAN==grans five-dimenaiovnal object-plane space, print, plot,
REPEAT~~executes a group of CALL cards several times in succession,
CHANGL~-same as REfEAT except that the parameters of one element changéy
UNLOAD--writes end: of file and unloads selected tape, |

OUTTAP-~-gelects new output tape,

TEST--skips or gxecutes a group of call cards, depending upon test outcome,
REMOVE-~removes selected element from beam system,

INSERT~~inserts additional element in£o beam system,

SAVTAP--selects utility tape for saving system parameters,
RELOAD~~reloads system paramecters from tape, locates "best" system,
SELECT~~assigns two utility tapes for use of SCAN, STATE, and RESCAN

DEFINE--defines an user-chosen function to be used by optimization routines.

¢. Subroutine names thalt may not be used on CALL cards

STEP-~directs stepping linear or abberation calculations through elements
of beam systen,

SIMPL¥, DKL, ISRR, GET, JMY, MIN, NEW, PIV, ROW, VER, XCK-~subroutines in
RS MSUB linear programming subroutine,

SHAPES=~-sets up caléulation of parameters of gquadrupole magnet,

LABEL2~~CRT plotting rOutine called BELL,

GRID-~CRT plotting routine to‘plot coordinate grids,

SOLVES~~calculates aberration integrals and tolerance coefficients;
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CHICHI-~carries first-order solulions through quadrupole magnet,

. INT~~interpolation subroutine,

COEFT-~determines five-point interpolation coefficients,

FP8Il~-calculates bell function in creating gradient curve,

- WRKY -~Runge-Kutta iﬁtegration routine,

W-~calculates highermordér‘terms for Runge-Kutta integration,
WWRK--~calculates derivatives for Runge-Kutta routine,
ABS-~dummy entry point corresponding to location zero,

RESCAN--plots aberration envelopes fram data on utility tapes.

I, . Program Options--SENSE cards

lThirtymone locations in the code are reserved for switches that
are tested by the ?rogram to determine which options should be executed.
Thirty of these switches form the array IF(k), k=1, 30, The other cell
containé a single word, BOOL, which is always interpreted as a collécﬁion
of bits and is usually inéerted into the SENSE INDiCATOR register for ‘
testing.

All these switches are set and reset from a single card which
follows the CALL card, SENSE (which instructs the supervisor to read the
SENSE card). The first thirty columns of the SENSE card are.interpreted
as the thirty integers'IF(k). A blank in one of these columns signifies -
“that the corresponding IF(k) is to remain unchanged; thus only those col-
unns contéining punches change the switch settings.

BOOL is always ingerted as a twelve-digit octal word. Only the
left half of the word is interpreted and stored. The right half of
BOOL can be changed only by the program (or thrdugh an ALTER card).

The word consists of 36 bits or binary digits, each of whiéh may take the

value zero or one. . Groups of three bits are represented by a single octal
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digit. The correspondence is: 000=0, 00l=l, 010=2, Oll=3, 100=k, 101=5,
110=6, and 111=7. BOOL must contain no blanks when entered on the SENSE
éardo

Some of the switch settings are changed by the program, pafticularly
'when‘éonflicts arise.

Also on the SENSE card is the CEIF field; CHIF is a floating-
point number which is used only in the Runge-Kutta integration routines.
, CHIF is the wvalue bf 7z at which a new SENSE CARD is to be read (to set new

output options).

a. Significance of IF(k) settines. The listing of the significance of .
the switches which follows is for ©nvenience; fuller explanations will

be found in the description of the calculations affected by a particular

gwitch.
(1) selects linear programmning problem and is normally zero;
=0 minimizes maximun error and sum of errors,
1= minimizes sum of errors,
=2 minimizes sum of errors and prevents ervors from chahging slgn.
IF(Q) determines recovery procedure from EXEM (normally l),
=0 read-write error terminates current CALL card, reads next one,
=1 code attempts to salvage data and continue calculations.
'IF(B) ‘debug output from WWRK if nonzero (prints derivatives);-
.IF(5) normally zero; subroutine BELL prints PHI(z) if nonzero.
F(7) frequency of printing of solutions under RKY3,

=0 no printing,

=k, kA0 then print every kth Runge-Kutta step.



- Ir(9)

Ir(10)

Ir(1L)

IF(ie) -

Ir(13)

IF(1h)

Ir(15)

IF(16)

Ir(17)

IF(18) -

IF(20)
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number of times trajeclory points are plotted in "Beam Cross-
section" plots; IF(9)=l is satisfactory,

CRT plotting switch; no plotting can be done unless IF(10)=0.
relative intensiﬁy of plotted lines (as the magnet locations iﬁ
BELL and SHAPE plots); intensity is proportional to exp [-IF(11)];
IF(11)=1 is satisfactory.

intensity of grid lines is proportional to exp(~IF(12));
IF(12)=6»gives optimum appearance.

number of times curves are plotted; IF(lB):i is good.

iﬁtensity of trajectories in "Aberration Envelope" plots;
intensity is prbportional to expl-TF(1k)]. IP(L4)=6 is good
provided about 100 trajectories are plotted.

number of times heading text is plotted; IF(15)=3 is good.
normally zero, If nonzerQ; transfer matrices énd error are
printed e&ery ﬁimg the linear properties of the beam system are
calculated (TRACE, SYSTEM).

normally zero. If not zero, the constraint matrix for the
linear programming problems set up by DESIGN and REFINE are
printed.

controls output of DESIGN and REFINE,

=0 minimal oufput printed--initial and final errors and the
arrays INFIX and KOUT,

=]. medium output lists solutions, errors, basls (suggested
output ), |

=2 advances page and prints constraints in addition to above.

normally zero. If nonzero, aberration coefficients are printed

after each magnet under SOLVE, showing partial contributions due
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to that magnet.
IF(21) : controls plotting of phase ellipses under SYSTEM or TRACE,
=0 no phase ellipses are plotted,
=1l phase ellipsés before the first element and after the last
element are plotted,
=2 phase ellipses bebween elements are also plotted.
IF(22) - controls output of beam envelope properties under SYSTEM
#l no oﬁtput of envelope properties,
=1l virtual waists ab the end of the system are printed,
22 virtual waists seen by each element are printed,
=% Or h'~mbeam'widths are printed for entire system
=l or 5 --beam envelope is plotted.

Those switches which are not listed above are presently not used. -

b. Significance of BOOL options. The bits are numbered from left to right

with the sign bit denoted as bit number 1. Following each bit number is the
octal word which place a 1 in that bit. Bits 1-18 are set from the

SENSE card while 19-3%6 are set by the program.

Bit Octal equivalent - Bignificance

1 400000 000000 normally O; debug dump of integral formwlation by
SOLVES 1if 1.

2 200000 000000 normally O; debug dump of partial sums for coefficient

formulation by SUML, SUMZ2 if 1.

3 iOOOOO 000000 normally O; if O, then aberration coefficients
~calculated at intermediate points (IF(20)#£0)
refer to the expansions at.the end. of the system;

“if 1, then coefficients refér to expansions at that



4 0l4O00O 000000

5 020000 000000

6 010000 000000

7 004000 000000
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intermediate point.
normally O; if 1, double integrals for third-order
dispersion terms will not be calculated.
selt Wy STEP; O denotes quadrupole field; 1 denotes
ﬁo quadrupole field in given magnetb.
set by STEP; O denotes ocﬁupole field; 1 denotes
no octupole field component.
if O,.the third column of the transfer matrices
will not be calculated through quadrupoles, if l;

the third column will be calculated.

Bits L-7 are set by the program to avoid calculations that are not needed,

such as calculating dispersive terms when there are no dispersive elements

in the beam system, calculating the gquadrupole components of the coeffi-

cients through octupole magnets, or calcuwlating octupole contributions

in pure quadrupole magnets. Obvious time savings result. We now continue

‘with the listing of the bits.

Bit Octal equivalent

8 002000 000000

001000 000000

\C

10 000400 000000

11 000200 000000

12 - 000100 000000

Significance

not used.

not used.

if 1, then partial sums in the formulation of the
mean aberrations and maximum aberrations will be
listed by STATE; if O, sums not listed.

if 1, linedr and total displacements and slopes

will be'listed for each trajectory in the SCAN
raster by STATE;‘if 0, trajectories not listed.

if.l, abefration Tigure will be plotted by STATE; if

0, abberation figure not plotted.
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16

17

18

000040

000020

000010

00000k

000002

000001

000000

000000

000000

000000

000000

000000
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not used,
if 1, excessive printing for job will nét sSUpPpPress
subsequent printing; if O, printing beyond 2300
lines will be suppressed. |
if 1, calculation interrupted by expiration of time
will be completed (this option is not presently
availabie)° |
if 1, STATE will piot beam cross section;if 0,
beam cross section will not be plotted.
if 1, STATE will plot x~z plane aberration envelope
(requests utility tapes); if 0, x-z plane aberration
envelope will not be plotted. |

if 1, STATE will plot y~i plane aberration envelope;

20

o1

000000

000000

000000

000000

000000

LO0000

200000

1.00000

040000

020000

not plotted if O.

irf i,_control is under call card REFINE (suppresses'
output from SOLVE during iterations).

if O, no octupole fields in system--SOLVE does not
call SUM2, STATEjif 1, there is octupole field--
SOLVE calls STATE twice.

if 1, there is a beam specification at some interior
location; TRACE then calls MIDERR after every element.
if 1, both wulility tapes required for aberration
envelope plots are available and have been written;
if 0, tapes are not avallable (indicates either no
SELECT card or error in SELECT card).

if 1, utility tapes have been requested by STATE
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(request granted by SCAN if tapes are available);
if O, tapes have not been requested.

indicates which utility tape is being written (SCAN)

if 1, too much printing has been attempted under

if 1, more than 2300 lines have been written.
if 1, time is about to expire (<0.15 min remains).

controls calculation of beam énvelope properties by

if 1, at least one print line has been suppressed
because of exceeding 2300 printed lines.
it l,'x and y transfer matrices are interchangea

for current beam element (used for BENDY).

2l 000000 010000
25 000000 004000
through not used.
30 000000 000100
31 000000 000040
current CALL card.
32 000000 000020
33 000000 000010
34 000000 00000k
TRACE; if O, envelope not calculated.
%5 léooooo'oooooe.
36 000000 000001
5. General Considerationsg in Operating Code

The first card in the dala deck must be a MOMENTUM card which con-

tains the design momentum. A TITLE card with the heading text may be

inserted following this card. A SENSE card should follow next since all

switches are initially zero. The suggested first five cards are demon-

strated in the following example.

_X<
8.0
TTTLE

1700.0 1.72 0.1 1.0

THIS IS A SAMPLE PROBLEM BEING RUN ON THE QUADRUPOLE CODE

SENSE

01000000401.6%63001.001LL4000 004527000000
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The sense card should be followed by the CALL card, which‘initiateé
the first calculation."EJECT cards should be freely interspersed among‘
the subsequent CALL cards to improve the clarity of the output . TITLE
cardé may also be inserted to denote different calculations.

All the cathode-ray tube output should be executed after a PREID
card and before a POSTID card. The plots'will be numbered; the corresponding
number will appear on thelprinted output, showing exactly where in .the
calculations a particular plot occured. All plots will be dated and lébeied
with the identification "LP",

Every page of the printed optput will be dated and identified.
The current heading text will appear at the top of each page along with the
page number. |

Utility tapes must be assigned by‘SAVTAP or SELECT before they are
needed; 1f they arelnot assigned, the calculations requiring their use.
'bwill_be skipped.

The card deck should end with one of the cards EXIT, DUMIC, or

DUMPAL, followed by the monitor end-of-file card.
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B. Calculation of Beam Properties

1. Input and Output of Beam-System Parameters

The code ils currently equipped to execute calculationé on
beam systems containing no more than thirty elements. Of the thirty
elements, no more than five may be "black~box" elements whose optlical
properties are determined by (input) transfer matrices. Because of the
number of paraméters that may be varied in a bending magngt, the code
considers a bending magnet to conslst of two elements.

The parameters are storea in six one-dimensional arréys. For
element k, ITYPE(k) determines the type of element (QUAD,ADRIFT, ---)'
and also identifies the transfer matrices used with a black-box element.
The three arrays ZL(k), XPHI(k), and XPSI(k) contain the primary param-.
eters for element k, i.e., those which can be varied. The remaining two
arrays, XCL(k) and XCR(k), contain parameters that cannot be independ~
ently varied. Of course many types of beam elements do not have this
- many parameters.

a. READ, The primary means of entering the parameters of the beam

system is by means of the CALL card, READ, followed by one card giving

the number of elements in the beam system and scaling parameters. This
ca;d is followed by one card for each beam element, giving the type of
element and the parameters for that element (bending magnets, each thought
of as two elements, require iwo cards). These cards, called ELEMENT
cards, are fully described in Section E.5 of this appendix.

Fuach parameter may be entered directly by means of the ELEMENT

cards. If desired the previous value of any parameter may be retained
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~upon entering a new beam system mercly by putting a -1 immediately to
the left of the parameter's Tield on the EIEMENT card.

Section B.l, below, describes the method of calculating the
parameters ol a quadrupole magnet, or series of quadrupole magnets,
given the gradient as a function of distance along the optic axis.

This calculation is executed by the subroutine SHAPE, and the results
are stored in COMMON.

Any of the four parameters effective length, gradient, left
shape coefficient, and right shape coefficient for any quadrupole magnet
in the beam system (including magnets with octupole field components
called MPLUSB types) can be loaded from the stored results of the SHAPE
calculations. The quadrupole magnets considered in SHAPE are numbered
1, 2, 3, *+*; to enter a parameter [rom gquadrupole magnet number %, for
example, a 3 is placed immediately to the left of the parameter field
on the BLEMENT card for that clement. Suppose we wish to enter the
effective length and the left and right shape coefficients from the third
quadrupole magnet (in SHAPE) while entering the gradient directly. If
this same magnet occurs at two different locations in the beam system,
the deck could be as follows:

SHAPE

READ

o7

DRI 300.0 _

QUAD 3 - 2.0

DRIFT =~ 9.75

QUAD 3.0 ~-%5.0 8.0 -8.0

DRITT  9.75

QUAD 3 2.0 ' 5 P

_DRIFT  600.0
SYSTEM

AN
W
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The significance of other cards in this deck is described
elsewhere.

The same means may be used to enter the length of the drift
.space betwveen two adjacent magnets in the SHAPE calculations. ‘The codé
calculates the length between the effective ends of the kth and the
X+1th qpadrupole‘magnets.and inserts this length as the length df the
infervening drift spéce. This 1s accomplished by placing the integef k
immediately to the left of the Zvaield in the element card, DRIFT. An

example of a doublet follows.

SHAPE
READ

Ok . :

QUAD 01 oL ‘ 01 01
DRIFT 01 -

QUAD 02 02 02 02

DRIFT 500.0 .

In the above example, the system analyzed by SHAPE has been inserted as
the beam system. The last element, the 500~inch drift space, had, to be
specified directly, since it does not lie between two qpadiupole magnets,

The first card following the READ card is written in the format
(I2, 7F10.5). The first field contains the number of eleménts in the
beam system, KMAX; KMAX element cards must follow this card. The ﬂext‘
five filelds describe the object-plene phase space, giving the largest
displacements and slqpes in the two planes and the bounds ontép/p. These
quantities are x (columms 3-12), y (13-22), ;T(25~52), vt (%3-42), and
4 (M}»SQ). Thgse maxime are interpreted as the semi—akis lengﬁhs for
the phase ellipes and the phase-space hyperellipsoid in X, X'; Y, and

Y' introduced in Chapter II. They are also the quantities used to

normalize the aberration coefficients to refer to a unit hypersphere in
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the normulized phase space (Chaptcr VIL). Any one « ue five maxima
may be later changed by insertion of the call cur UJECT.. The last
twvo fields on the first card Collowing the R card determine the
scaling to be used in the "beam profile" piot and the '"beam phase space"
plots. The scaling factor for displacemonts (which must be larpar than
any displacement encountered along the beam system) appears in columns
53-62. The scaling factor for slopes.is placed in columns 63%-72 and is
the upper bound of the slopes encountered in the beam system.

Black-box elements, described by matrices, are entered into
" the beam system by inserting the element card MATRIX, followed by thrée
cards on which the twelve nontrivial clements of the two 3x% transfer
matrices are punched. The element card, MATRIX, may contain a length
in the ZL field which will be printed when the beam system is listed but
. otherwise enters into no calculation. Five matrices may be stored and
each call card, MATRIX, must contain one of the integers 1, 2, 3, 4, or 5
which determines where the matrices are to be stored. It is possible to
store one matrix that refers to two elements by this scheme. Of course,
different matrices should not be stored in the same locations. If this
integer is negavive, the matrices are notv read, and the code assumes that
the matrices were inserted by a previous READ sequence and are stored in
the same location. This is consistent with the treatment oflother param-
eters; they remain unchanged when a -1 is inserted just to the left of
the field that would otherwisc have replaced them.
b?' PUNCH. The call card, PUICH, causes the beam system to be written on
the punch tape in the format described above. The résultant cards, when

preceded by a READ card, may be used to insert the beam system for a
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subsequent job. The punched cards are labeled in columns 73%-80 with
the date and sequential numbering. A card containing the current pagé
heading text, for identification, precedes the card sequence. The card,
PUNCH, should be inserted following optimization sequences so that the
optimized sy;tem can Be loaded at some future time for additional
Calcﬁlations°

¢. INSERT. At any time the existing becam systém may be augmented by
reading the call card, INSERT m, which inserts a new beam element between
elements m and m+l of the current beam system. INSERT O place; the new
element in front of the current beam system, while INSERT m with m=KMAX
places the new element after the current beam system.

The INSERT card must be- followed by one ELEMENT card punched
in exactly the same manner as the LLEMENT cards for READ. If the new
element is a bending magnet, then there must be a second ELEMENT card
following the first. If the new clement is a matrix, then three MATRIX
cards must follow the EIEMENT card, MATRIX.

d. REMOVE. Any‘beam element can be removed from the beam system by
inserting the call card, REMOVE m. The mth element is removed and the
following line is written: "REMOVE BEAM ELEMENT 1% (BENDY)." In this
example the call card would be REMOVE 1% and the 15th beam element is‘a
bending magnet. To remove a bending magnet, the first element of the
two should always be the element referenced; removing a bending magnet
reduces the number of elements in the beam system by two.

c. VARY. The call card, VARY, is designed to allow the replacement of
the parameters ZL, XPHI, and XPSI of a beam element. The card contains

the number of the clement. which is to be varied in the first two columns.
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The parameters 2L, XPHI, and XP3I are placed in the same locations as
they would appear in on an ELSMENT card. To change the parameters of

a bending magnet, the card must distinguish between the two elements
comprising the bending magnet.

. 'CHANGE. Fréqpently one wishes to observe the behavior of beam
properties as the parameters of a single beam element are systematically
changed. The call card, CHANGE m n, exccutes a group of m call cards,
in sequence, a total of n times. Befére each executlion of the sequence
of call cards, the parameters of a selected beam element are incremented.
Immediately foilowing the call card, CHANCE, (preceding the first call
card in the domain of CHANGE) a single card appears designating the
element, k, to be changed and containing the numbers to be added to the
parameters of that eiemento The number k is placed in the first two
columms while the numbefs to be added to ZL(k), XPHI(X), and XPSI(k)
appear in the same locations as those in which ZL, XPHI, and XPSI are
punched in the ELEMENT cards. In the repetition aspects CHANGE m n

is equivalent to REPEAT m n. |

g. SAVE, RELOAD. Provisions have been incorporated into the code for

(R

writing the important paramelers of many beam systems on binary tapes
for future reference. Any one of these beam systems may be "reloaded",
becoming the current beam system. The code may be requested.to reload
the "best" beam system, which is defined as the system satisfying the
beam specifications (set up by one of the subroutines ERRSET, DESICN,
REFINE, or FOCUS) with the minimum error. The use of these provisions

is described in Section D.1 of this appendix.
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2. Calculation of the First-Order Properties

After a beam system ha§ been installed by one of the methods
described above, all the desired first-order properties are calculated
when the CALL card, SYSTEM, is read. |
a. SYSTEM. The output obtained from SYSTEM depends upon the switches)
IF(21) and IF(22), which are set by the SENSE card. SYSTEM first
causes the listing of the elements contained in the beam system, giving
the primary and derived parameter; for each element. The total length
of the beam system concludes this part of the written ocutput. TRACE is
then called to calculate the optical propertiésa |
b. TRACE. The primary function of TRACE is to calculate the transfer
matrices for the ‘beam system, TRACE may be called by the call card
TRACE; it is also called by the optimization routines. When called in
these two ways, TRACE normally does not produce any written output.  If
the switch IF(16) is not zero, the transfer matrices are printed every
" time TRACE is called; this provision allows checking of the optimization
routines.

When TRACE is called by the CALL card, SYSTEM, general output
op@ions apply. These range from as little as the transfer matrices,
error in beam specifications, and the virtual waists at the end of the
system to as much as a'complete set of cathode-ray tube plot; showing
the envelope and phase-space ellipses throughout the system. The switch
IF(21) controls the plotting of the phase-space ellipses. The switch
IF(22) controls the listing «nd plotting of the beam envelope. The IF(22)
options include: (a) the linting of the virtu.l waists seen by each

element and the transfer matrices between object plane and cach element,
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(b) the listing of the beam half-widths at five equally spaced locations
within ecach element, and (é) the beam envelope plot.

The beam envelope plot assumes a double walst to be preéent
at the object plane; this represents no restriction, since the pseudo
elements, DRIFTX and DRIFTY, may be used to provide a virtual dou.ie
waist at the object plane for any system. DLach beam element is divided
into five equal barts,.the widths calculated at each of the five locations,
and the envelope constructed of line segments between these points.

If a beam envelope plot is specified by IF(QE), the code resets
IF(21), if necessary, to prevent phase-space plots from appearing at
intermediate'points in the system. If bdth the profile and the inter-
mediate phese-space plots are desired, the call card SYSTEM must appear
twice, separated by a SENSE card changing IF(21) and IF(22).

TRACE calls subroutine MERR, described in Section C below, to
célculate the error in weeting the beam specifications. MIDERR is called
to calculate beam specifications inyolving DEFINE type functions.

The transfer matrices are printed by subroutine SHOW which
also calculates and lists the locations of the focal points.

c., STEP. Subroutine STEP is the master routine.that guides the. calcula-
tions of the beam properties. Coded in FORTRAN, STEP occupies nearly

QOOO1 subscript indicates base of 10 as opposed to base of 8) locations

0 ( '
in the core. STEP operates in three modes: the SYSTEM mode, the TRACE
mode, and the SOILVE mode. Its primary function is to guide the calcula-

tions through the beam system, calling the necessary subroutines to carry

out the requested calculations for each type of beam element encountercd.
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In the SYSTEM mode, STEP lists the current beam systeﬁ as
described above.

In the TRACE mode, 3TEP calculates the envelope data and
executes the profile and phase~space plots. It calls the folloring
subroutines to carry the first-order solutions of the trajectory
equations through the various element types:

(1) CHICHI for quadrupole magnets, octupole magnets, and

drift spaces.

(2) AXIAL for solenoid magnets.

(%) EDGE for the entrance and exit thin-lens effects of

bcnding magnets.

(4) BEND to carry the solutions through the interior

regions of a bending magnet.
(5) MPYMAT for black-box elements. MPYMAT is also called
by AXIAi, EDGE, BEND, and DRIFT.
(6) DRIFP for the pscudo elements DRIFTX and DRIFTY.
(7) JNCHI to initialize the solution vectors, CHI(X) and
DCHI(Xk), at the start of the system.
(8) TFSCHI, which moves the solution vectors from CHI(k) and
DCHI(k) to CHIO(k) and DCHIO(k) before cach element.
All of these subroutines comprisé a single package requirinGIBYOlO
locations in memory. This package is FAP coded and is optimized with
respect to space reqpired and speed of calculation.
| The SOLVE mode of subroutine STEP differs from the TRACE mode
in two respects. The envelope properties are not calculated. The calcu-
lations for quadrupole and octupole magnets are carried out by the sub-

routine SOLVE. Aberrations induced by other beam elements arc ignored;
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the same routines are used in the SOLVE mode as in the TRACE mode to
carry the calculations through these elements.

3. Calculation of Aberrations

a. SOLVE. The single call card, SOLVE, causes the code to calculate
all the aberrations of the beam system. If bending magnets or solenoid
magnets are included ‘in the beam system, the aberration calculations
are conducted as if these elements had no aberrations. The call card,
SOLVE, causes two passes through subroutine STEP, the first in the
trace mode and the second in the solve mode. The trace mode is required
to obtain the final values of the solution vectors which are needed for
the tolerance coefficients; these final values of CHI(k) are stored in
the array SAVCHI(Xk). |
In the solve mode, STEP first initializes the solution vectors

by calling JNCHI and clears the aberration integrals by calling INCHI..
For ecach quadrupole or octupole mapnet in the system, SOLVE is called
to carry the integrals through that magnet. CHICHT is used by SOLVE to
calculate the first-order solutions; one pass through SOIVE requires 111
passes through CHICHI. When the aberration integrals have been calculated,
STEP calls SUML and STATE to give the oulput of the aberration calcula-
tions in the absence of octupole components. If there are any octupole
components SUM2 and STATE are called to repeat the output, this time with
the octupole components.

| When aberrations are being minimized under subroutine REFINE,
the aberrations are calculated in the same manner except that ﬁo output

is produced. When the integrals have been calculated, SUML and SUdMz2 are
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called to calculate the coefficients of aberration, NORM is called to

- calculate the mean and maximun aberration displacements, and SCAN is

called to calculate thé data required by REFINE.

Once the aberfation integrals have been calculated they remain
available to the program until they are recalculated. This is also true
of the aberration coefficients. The normalizéd aberration coefficients
are destroyed Ly.either DESIGN or REFINE; these coefficients can be
restored by entering the call card NORM. The tolerance coefficients,
calculated by SOLVE for each quadrupole magnet, are not available for

use by the program. They are listed as they are calculated.

b, STATE. ~Subroutine STATE lists the aberration coefficients, calls

NORM, and then lists object-plane phasc-space parameters, several derived
quantities characterizing the aberrations, and the nérmalized aberration
coefTicients. BOOL is examined and, depending upon the switch setting
in BOOL, additional output dsta may be provided, primarily as ploté.

The defived guantities characterizing the aberrations listed
consist of:

(a) The maximum displacements and slopes, including the fring-
ing field aberrations and the second-order chromatic aberrations. These
maxima are calculated for the model of object-plane phase space in which
the beam is contained in the region enclosed by ellipses in the x-x' and
y-y' planes.

(b) The maximum aberration displaoements, calculated from the
rectangular model of the objoect-plane phase space using Eq. (VII-5).

The sccond-order chromatic aberration and the fringing-field terms are

excluded.
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(¢) The sums of (a) and (b), which give an upper bouﬁd )
the total beam half-width, including aberration terms.

(d) The root-mean-square aberration displacements calculated
for the hyperellipsoid model of the object-plane phase space by using
Eq. (VII-9).

These quantities arc all availlable to the program for subsc-
quent calculations, such as mihimizing by RLFINE.

Depending upon the setting of BOOL, STATE next calls SCANS to
plot the beam cross section or list the final coordinates and slopes of
the raster of trajectories considered in SCAN (sece c, below).

Following the above, STATE then plots the aberration figure

1f instructed to do so by the setting of BOOL. The aberration figure

is that figure which is traced out by the parametric equations x = xa,
a a a - ~ "—T Kl a - 4N
y=y, x =x (0,0, x) cos 8, y! sin 6, 0) = x (xo,-yo, X0 YL Ab),0$o<£d,

and ¥y = ya(O, 0, x! césve, ;g sin ©, 0). This is the image of an axial
point source in a double-focusing system with an elliptical annular
aperture.

Following the aberration figure, STATE calls RESCAN twice if
instructed to do so by BOOL. RESCAN plots the aberration envelope in
the x-2z plane and then in the y-z plane. The aberration envelope consists
of trajectories in the neighborhood of the end of the system. The
trajectories piotted are those considered in SCAN. In the event that
an error occurs in assigning the two utility tapes required for these
plots, RESCAN immediately returns control to STATE. The tapes are

assigned by the call card, SEIECT m n.
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c¢. SCAN. The call card, SCAV m, is equivalent to the FORTRAN state-

ment, Q = SCANSF(m); both cause the execution of calculations upon a
group of trajectories originating from a raster of points in the object-
plane phase space. The raster is constructed by defining lower bounds,
.XINF(k); upper -bounds, XSUP(R); and increments, XDEL(k) in the five
object-plane coordinates X yo, x‘o, y'o, and A. In each of these
coordinates, we then consider the initial values, XINF(k), XINF(k)+XDEL(k),
XINF(k ) +25XDEL( k), »+ - XINF(k)+{n(k)~1]«XDEL(X)y where XINF(k)+n(k)*XDEL(<)
{, FBUP (1 )&XINF (1 )+ In(x)+1) *XDEL(I‘:). SCAN then performs the specified
calculations on the N = n(1)*n(2)%n(3)%n(L)*n(5) trajectories which are
obtained by including all the possible combinations of the object-plane
coordinates obtained in the sbove manner. Note that if XINTF(m)=XSUP(m)
and XDEL(m)>0 for some m two groups of trajectories are run, one with
the mth coordinate set to XINF(k), the other with the mth coordinate
set to XINF(m)+XDEL(m). If one wishes to include just one value of that
coordinate, then XSUP(m)<XINF(m). XDEL(k) must always be positive,
never zero.

These quantiti=s, together with two others to be defined
below [XMEAN(k) and XDEV(R)] are loaded by inserting the call card, -
OB&ECT, followed by five cards containing the coordinates. The maximum
values of the object—plane_coordinatgs, which are used in calculating
the beam widths and the quantities characterizing the aberrations, may
also be entered on these cards (i.e., E;, ?g, etc. ). Blank fields on

these cards are ignored; the corresponding quantities remain as they
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were before the card was read, To set guantity to Zero, an explicit
zero must appear in the correspohding field. Tollowing reading of thé
cards, the values of tﬁese parametefs are listed in the same order as
“they are punched in the cards. This listing is also produced by STATE ,
and may be written at any other time by the insertion of the call card,
SCWRIT.

The calculations performed by SCAN depend upon the integer
m punched on the card, SCAN m, br that which is the argument in the
calling sequence, Q=SCANSF(m). The possibilities are as follows;

(a) m=0., GCAN calculates the final displacements and slopes
for every trajectory in the set considered. Tor each trajectory, a
line is writteh containing (A and the initial displacements and slopes,
followed by the final values separated into linear and aberration parts
(written as x=.2.34004 + O,QHSOE,.).

(b) m=l. The same calculations are excuted as above, but
the resultant tobtal displacements are both plotted (beam_cross—section
plot) and written on the output tape; If requested by a flag in BOOL
(set by STATE), the final cooydinétes and slopes are writﬁen on the
utility tapes assigned by SELECT., In order not to delay the ﬁapes that
are written at the same time the trajectories are plotted, the printed
output.céntains the final slopes and trajectories, separated.into linear
and {lineartaberration) terms. Plotting may be overridden by BOOL.

(c) .m=2; The calculations are as above;'but there is no.

printed output. Plotting may be overridden by BOOL.
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(d) m=3, The root-mean-square displacement due to both
linear terms and aberrations is ¢alculated. For cach trajéctorj, the
radial displacement is calculated, weighted as described below, and
.added to the others to form the mean displacement.

(e) m=4, The root-mean-square displacement due to the
aberration terms alone is calculated as above,

(£) m=5. The weighting coefficients are calculéted and
stored. This is done once to save time in calculations. The welghting
coefficients used are calculated as follows. Let XIN(R) be the object-
plane coordinates of the trajectory, then if N is the total number éf‘

trajectories considered, the weighting factor w, is

&

I
<
N

il XD §& zx:nN(k)-MAN(lq):}g / XDEV(k)E}

(g) m=6. Calculate aberration function specified on the
condition card with condition no. zero.

The limit on the number of values permitted for each coordinate
is T, putting the maximum number of trajectories treated at 75=3xlo8.
The number of values permitted is not limited for the plotting of thé
trajectories. It is obvious that a great deai of care must be exercised
in the selection of the number of trajectories to be considered, since’
it is quite easy to set up calculations requiring hours to complete
because of the excessive number of trajectories.

The calculation of the mean displacements as described above

is time-consuming. The rms values, calculated by NORM from the formulas
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given in chapter VIL, arce preferable for calculational wuso,
Subroutines FIRST and TUIRD calcuwlate thie lincar and aberration
couponents, respectively, of the trajectory whose objech-plane coordinates

are stored at XIW(k). Tae Fisal displocaacnts and slopes are stored

at XoUD(m) with XOUT(l):xl, XOUT(Q)syl, XOUT(B):X'l, xoum(u):y*l'(linear

varts) XOUT(5)=x", XOUT(6)=y", %oU1(7)=x'", and XouT(8)=y'".

L, alcuwlation from Gradient Plot

An alternative meticd of calculating the optical properties
of -a bean systen thal consists solely of quadrupole mognets and drift
spaces, is the direct integrotion of the equations of motidn using
field values derived From stored values of the wmagnetic field gradient
aloag the z axis. This method is also aveilable to the user of the
code, primarily to check the calculations carried'out by tiae main body
of the code.

e function (z), wiiicn 1s provortional to the field gradicat,
is stored in the arrdy, POT(Lk), K=1l, KKMAX. The spacing in z between
consecutive values in the arroy, DILTAZ, is caterced on the HMOMMSILUM
card. Tae firét valﬁe in tee arvvay corresponds to z=0 (this defines
Z;O)) and the last value in tie array corresponds Lo z=ZiiD. The
dimension of the array is 2000, heice {ZEED/DBLIAZ)<COCO.

“The gradient array is cntered by subroutine BiLL, walch
constructs it from '"bell-shaped" curves for eagh negnet. Provisions
will be made for enterihg this arrey directly should one posscss tae

.

required ncasurements of the gradient as a function of distance along

the optic axis.
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a. BELL. To calculate the gradienh array, the .call card, BELL, ig
entered, followed by one MAGNET card for each quadrupole magnet in the
system., The magnet cards are followed by a single card giving ZEND.
Prior to calling BELL, the system BORE the increment bgtween gradient
values, DELTAZ?.a reference gradient, GRAD, and the design momentum 2R
must have been read on a MOMENTUM card such as the first card following
the XDATA card.

The magnet cards contain a nonzero integer; the location of
the center of the magnet, ZMID(k) (relative to z=0); the magnet's
lengﬁh, ZLONG(k); a factor FR(k) that determines the length of the
central plateau of constant gradient within the magnet; tﬁe "half-
width", of the magnet's fringing field, BW(k); and a relative exitation, .
EX(E). EX(k) is chosen so that the gradient at the center of the magnet
is EX(k)¥GRAD. The gradjent is assumed to be constant in the center of |
the magnet, starting to fall at a distance of FR(k)*BORE from eithér end.
If 272(x)7221(k) -and the plateau region extends between 2Z1(k) and 222(k),

then the magnetic field gradient function for z}ZZQ(k) is given by
: o _ 2 2 -2
PHT (2 ) =5 (1 )¢ GRADAL+ (2222 (1)) 7 /B (1) "] .
The gradient function for z¢z21(k) is given by
_ ' | . 2 242
PHT (2 ) =EX (I )*GRADHL+( 2-221.(k) )~ /BW (k) "17<.

There should be no more than ten magnets in all. The gradient

'afray, POT(k),.is obtained by calculating the gradients separately for
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each magnet and then adding them together. If the magnets are séparatqi
by a distance greater than three times their bore, this is a reasonsble
approximation. If the:magnets are closer together, then the approximation
 suffers to tﬁe extend that there is leakage flux between neighboring
magnets.

The resultant gradicent function is plotted provided IF(lO)zO.
- The physical extenbs bfkthe magnéts are shown on the plot, and the loca-
tions of the magnet centers ace listed., In each fringing-field region
the half—width of the bell curve is shown by a line segment of length

BW(k), plotted slightly above the z axis.

b. SHAPE.  With the gradient array, calculated by BELL, stored in
?OT(R), the program calculates the parameters of the quadrupolé magnets
which produce that gradient. To execute this calculation, the call
éard SHAPE is inserted. No computations other than the direct integration
of the trajectory equations under control of thevcall card RKY3 should
intervene between the call cards BELL and SHAPE; this is because some
of the data needed by SHAPE would be destroyed by some of the other
calculational routines, particularly the optimization routines, DESIGN
and REFINE, which use the array, POT(k), to store the linear programming
constraint matrices.

TFor each quadrupole magnet entered by BELL, SHAPE éalculates
the locations on either side of‘the magnet where the gradient vanishes.
These two points define the region of integration to be used in the cal-

culation of the effective lengbhs of the magnet and the shape coefTicients
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describing the fringing field. This calculation fails if the gradient
does not vanish between consecutive magnets, a limitation in the code
~which will be overcome in a future version.

The integralsq&c?dz and gszdz are calculated by a ten-point
Gaussian integration formula; the integrals are taken over both the
entrance- and the exit-field regions. Trom these integrals, the code
determines the locations of the effective ends of the magnet, which are
defined to be those points which would yleld the same value to the integral

jqq?dz were(@ a constant between the effective ends and zero beyond
then.

The output consists of a listing, for each magnet, of the
~physical length, the effective lehgth, the difference in the two
lengths, the shaﬁe coefficients, the locabtion of the effective ends,
and the region of integration. TFor convenience, the physical and
effective lengths are‘glso listed separately for each half of the magnet.
7MID(k) is taken to be the center of the magnet for this purpose even
though ZMID(k) may not bisect the effective length.

If IF(10)=0, additional output in the form:of cathode—fay
tube plots is produced. There 15 one plot for each magnet considered.
On each ploﬁ, the phyéical extent of the magnet is shown by a pair of

4

horizontal lines, one near the top of the plot and the other near the

5

bottom. The curve plotted is q%, "PHI complicated,” whidr has been
defined as the difference between the actual scalar potential and the

) - \.-\ . 3 (- . " g .
step-function scalar potential, &2 , which vanishes outside the effective
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ends of the magnet. The lelft and right shape coefficients (entrance
and exit, rcspectively) are listed on the plot. The portion.of the
z axis shown on the plot is the region of integration.

The results of the SHAPE caléulations wvould be destroyed
by the execution of any of the optimizing routines, and must there-

fore be used prior to the calling of an optimizing routine.

c. Direct integration of the equations of motion. The code provides

for the direct integration ol up to twenty-five lrajectories using the
Runge-Kutta method. This calculation uses the gradient array developed
by BELL. No optimization routine may intervene between BELL and the
direct integration calculations. Thé Runge-Kutta calculations are
invoked by the call card RDY3. This card is foilowed by a single card
containing DRIN and DROUT, defined as the initial drift distant to the
point z=0 (defined in BELL) and the final drift distance after the point
2=2ND, respectively. DRIN «nd DROUT may be negative as well as positive.
The card containing DRINVand DROUT is followed by cards
containing the inital displacements and slopes and the momentum of the
trajectories to be integrated. There is one card for each trajectory.
These cards must contain no punches in the Tirst two columms cxcept
the last card of the group, which must contain a positive integer in
those columns. The first two trajectories, corresponding tolthe first

two cards, are calculated from the linearized equations

\
x”+g-<9(z)'x:0 and y"—% . C2 (2) y=0.

o . O
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The remaining trajectories are calculated from the complete equations

(to third order).

The trajectories are brought through a drift space to
Z= DELTAZ dpd are integrated from this point to the point Z=zl where
ZEND—M*DELTAZQZlgg ZEND-3¥DELTAZ, They are brought through a drift
space from Zl to ZEND+DROUT. The region of integration is chosen so that

gradient values are always available forthe five-point interpolation
formulas.

“The trajectories are listed before and after both the inital»
drift and the final drift. The listing at intermediate points is undef
the control of the switch IF(7). They are listed at every Runge-Kutta
step exactly divisible by IF(7) unless IF(7)=0, in which case they are
not listed at all. If IF(7)=5, for example,_fhen they are listed a£
z=5H, 2z=10H, z=15H, etc. The field CHIF on the SENSE card permits
changing swihches during the course of the integration. At each Runge-
Kutta step, CHIF is examined; a new SENSE card is read 1f =z 2> CHIF.

The Runge-Kutta method of solution is much slower than the -
Green's function power-series method used in SYSTEM, “rACE, and SOLVE.
Calculation of twenty-five trajectories takes approximately one hundred
times as much time using RKY3, as does calculation of the same trajectories
to third order by SYSTEM, SOLVE, and SCAN(O). In addition, the Qutpﬁt
is much less useful, since few statements about the quantitative nature

of the aberrations can be made from these trajectories.
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C., Optimization of Mursneters

« The code contains three optimizing subroutines; two of these
voutines, DESIGN and REIINL, periorm the desired optimization by the

methods of linear programming (L.P.). The third subroutine, FOCUS5, ad-

Justs two parameters to meet two specified conditions by elementary methods.
The methods using linear prog?amming are very powerful; the number of
~independent variables considered and the number of conditions which ﬁay

be specified arc linmited only by the number of storage locations available
and time considerations. With linear programming, constraints may be
imposed upon the variables to provent the construction of nonphysical

or undesirable solutions.

1. Linear Programming Theory and Application

a. The linear programming problom..

The general statement of the L.P. problem is, "choose a set of
variables such that a given Linear functiénal of the variables is minimized
vhile a set of linear constraints upon the variables is satisfied.”

" Let xj, 3=1, .., n be the set of variables. Let the functional to

be minimized be

n .
no= % c.xY (A-1)
and the constraints be
Y oa, x" =b, i=1,...,m, where m<n

and x9 = 0, j=1,...,n. This is the standard form of the L.P. problem

and is known as the primal problom.

An equivalent problem, known as the dual problem, is the more



useful problem for our purposes. The statement of the duasl problem is,
"choose the wvalues of the variables v, 1=l ...,m that minimize the

functional

n i
= L
X oa,w, 2 -c,, J=Ll, «.uym

The arrays aji, Cj’ and bi are the same for hoth forms of the
problem. The value of z which is obtained as t*  solution to the primal
prdblem-is the negative of the value of y obtained as the solution to the’
dual problem. The relationship between the primal and dual solution
vectors is

W, = - — and. xY = -

Az J oy
i ! | c,

Referring to the primal problem, any set of.the variables,
xl?....,xn, that satisfies the equations of constraint is called a

feasible solution. The feasible solution which also minimizes the linear

functional is known as the optimnl fessible solution. A feasible solution

J

with no more than m of the n variables x% positive (the rest being Zero)

i termed a basic feasible solution; a basic feasible solution for which

exactly m of the variables x9

are positive i1s nondegenerate.
Let us visualize the n-dimensional space of <The variables, 7.
Each of the equations of constraint defines a plane in this space. It

can be shown that the region of this space that satisfies all equations

of constraint is either void, a convex polygon (called a §imnlex), or a
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convex region which is unbounded in some direction. A void solution space

is recalized if there is no Ceacible solution of the problem. An unbounded

region may lead to gia unbounded solution.

The region of the n-dimeasional space, for which the linear
funotional takes a constant value, is also a plane. Farallel plancs
correspond te different values of ‘the linear functional.

A convex region is definqd to be a region for which every point,
lying on the line connecting any two points in the region, also lies in
the region. The family of planes, on which the linear functional takes
constant values, progresses toward a vertex of the convex regilon, with
each succeeding plane yielding a smaller value for the linear functional.
Thug the minimum value of the linear functional (the optimal feasible
solution) will oceur at a vertex or along the line connecting two vertices,
in which case the fl&nes corresponding to constant values of the lin-
ear Tunctional are parallel to the line connecting the two vertices.

If no bound exists in the direction of decreasing values of the linear
functional, then the solution is unboundéd,

It can be shown that each vertex in the convex region of feasible

solutions corresponds to a basic feasible solution. FEach basic feasible

solution corresponds to setiing (n-m) of the x

to zero, reducing the
equations of constraint to m equations in m unknown variables to which
there is a unique solutiony'the vertex. The m columns of the constraint
ﬁatrixy A = |aji|, beloﬁging to the positive % constitute the basis B
corresponding to the vertex.

| The solutibn procedure is to move from an extreme point tb a

neighboring extreme point by replacing a column in the basis with one
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not in the basis. There is a tent to select the column to be replaced;
this is, '"the column to be replaced shall be the one which yields the
greatest reduction in the linear functionsl”. Another test determines
when the opltimal feasible solution has been found.

For further information on the formulation, solution, and theory
of the linear programming problem, one should turn to a text on the>subn

Jject such as that by Gassal3

b.  The Applicstion of Linear Programming to Beam Design
We now turn our attention to the problem of adjusting the para-
meters of a beam system to provide gpeclfied optical properties while

= f (v, v ), K=1, M

. satisfying a number of constraints. Let fk £ bvys Vo

meaoVN

be a set of functions of Lthe variables ngoqua The fk describe certain

optical properties and may be chosen to be particular transfer matrix
elements or functions of the transfer matrix elements. We define a set

) = F._ vhere F. is the desired value of the

of errors, Ek::fk(vloanv . .

N

ine the set N . We def the
Define the set A by ( ME B xk) e define the upper

k=1, M. We define & total

function f. .
g k

bound of the errors to be A; i.e., A =& Kk’
M
crror, B, as follows: B = 5 wkxy + pAh. Here the wk.(wk>0} are arbitrary
‘ Ye=1, ;
welghting factors that determine the relative importance of +the errors Ek;

the factor p(p 2 0) 1s also an arbitrary number that may be chosen to
relate the importance of the largest error to the importance of the weighted

sum of errors. We shall assume the following constraints on the variables;

vt vy £ vy S 2@?, i=1, N.
Our problem 1s to choose the set vl,aovN,'satisfying the constraints

that minimizes B, Trom the definition of B, it is clear that we desire

=0 (E cannot be negative). We will assign the variables VJQOHVN to vary
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An proportion to specified paramcters of the beam system with Vi:O’ i=1,

"~ corresponding to the parameters of the Initial beam system. For small

-

variations in these parameters, L.es, for small vy, We have
‘ N aEk
5 a9 o = o % a - ¥ e ¢ e — . !
Lk(vl vk) Ek(o, 0) Fi%l vy 5"1 + ; k=1, M (A-L)

If this expansion is terminated with the linear terms then the
problem which has been described is the dual problem to a linear programming
problem. The constraints on this problem force the solution vector to lie
within a closed surface, a simplex, in the N dimensional v, space, An
optimal feasible solution must exist to the problem as étated, since the
constraints prevent an unbounded solution whereas there always exists at
least one feasible solution, namely vi:O; i=l, N, that yields the initial-
beam system parameters. Since the actual expansion of the error functions
includes terms of higher order than the linear terms, we need to iterate -
the procedure of setting up'the linear programming problem, solving it,
and making the specified.adjustment in the parameters.

In addition to the constraints A and. ;; already introduced,
more constraints may be added to the pr;;iem to maintain other properties
of the system within certain bounds, Wg congtrain the total iength of the
beam system to remain fixed; this constraint may be relaxed or removed if
desired,

The variables, v,y are brought into the problem as follows.
Letting I} be the gﬁh physical property of the beam system (length, grad-
ient, field, etc.), we set P.= D (l+vi) for some i; the rth physical

o}

property then varies in direct proportion to \f with vi=O corresponding

to the initial valueypr . Tn this manner ve indirectly obtain the error
o}
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functions Ek ; and thus B, as functions of the variables v....v, . Any

1 N
group of parameters may be Torced to remain in proportion by assigning
them to the same variable, vj o

The minimum and maximum constraints upon each Vi<vj and Vi) are

caleulated so that each length assigned to vy will remain within the min-
imum and maximum values permitted, and each field and gradient will remain

less than or equal in magnitude to the maximum value specified.

The standard linear programming tableau for the problem as out-.
lined is shown in table T, The first row of this tablesu is known as the
cost yow. Iiach column except the last one determines one cénstraint in
the dval problem. The N rows followlng the cost row contain the coeffi-
- clents of the N independent variebles v, The next M rows contain
the coefficients of the kj vhereas the last row containg the coefficients
of A, ‘For each column, the sum of the entry from the cost row and the
entries from the other rows, each wmultiplied by the appropriate Vi Kj
or A is constrained to be nonnegative. The last column, called the

"eight hand side" (B), contains the coefficients of Voo Vi

s and
kl xu’
A used to calculate the total error, E, which is to be minimized. The
columns 2N+1 aud 2M-2 constbrain the total length to remain fixed. 1k

is the sum of the lengths which are allowed to vary with the variable Ve

The call card, DESIGN, will cause one linear programming problem
to be set up and solved. Except as noted below, DESIGN will call sub-
routine ASSIGN which reads the variable assignment from cards; DESIGN then

calls subroutine ERRSET which reuads the cards containing the specified



Table

I, Standard linear programming tableau for beam-design problem,

Upper and lower bounds Fix Upper and lower bounds Upper bound
on independent variables [Total on error magnitude on magnitude
ength (define ) of max. error
minimum maximum minimum maximum
3 2N+3 2N+4 2N+3 |2N+4 2N+3
Nt e ?e N+l oo 2N2RMENSZI2NES 0 M| 4M . . . 42M| +2M . ¢ . +3M
- o o o o [ o
cost row 1 i];o XB ° Vl ° Vp . VN o0 E1 ° Eq ° EM —El —Eq —EM 0O, 0 ., O
oE oE aEM -0E -JE -JE
1 ° S ° 1 q o
v 2 11 . 0 , -1, 0 . O|1 1. x5~ ExTan 0O, 0, O
1 1171 avl avl avl BVI BVI OVI
Independent _ _
Variables v perlo. 1 o 1 olyla [P %, %y OE -9y By 0. 0
° ° ¢ ° av av ov av ov oV
(var(p)) P Pl PIo¥, p P P P
vlwilo . o o o . il OF, 8B, OB, -OE, 3B, -0y o o, 0
N ° ° ® ° N[ "Nj OV, avN v, BVN av, avm
AtN+2O.O° 0O . 0., 0;0]O0 i1 . 0 . O 1 O.O-wl,ODO
Upper and lower . o o o ] o o o o -] o -3 -3 © L - - o L] (-] o -] -] . - L o
bounds on error ANwenlo . o . o .0 . olololo . 1 . o]®o 1 . 00 .-w. 0O
magnitUde ° . o o < L] © L4 . Ll . L] - . .
4MM‘N\A‘HOQ‘O. o , 0. 0y0]|O o . 0 . 1 0 0 . 1 0O . 0 , ~w
bound on max, error A NMMalg o o . 0 . ojojoj o . O . O 0 o . 0O I . 1 . 3 l/a

1
(]
1§31
~J
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optical properties that are to be achieved. ASSIGN and BRRSET are des-
cribed later; tkz instructions for punching the cards are given in Sections
59 and ELO of this appendix. These cards are not read (the variable
assignments and specified optical properties are not changed) when DESIGN
1s in the domain of a REPEAT card or when columns 7-8 of the call card
DISSIGN contain a nonzero integer.

After the parameters have been entered as noted above, DESIGN
calls subroutine VSAVE to save the current parameters of the beam system.
Subroutine INITER ig then called to calculate the errors in the specified
optical properties for the current parameters of the beam system. The
constraint matrix is set up next, using subroutine VPRIME which calculateé
the derivatives of the errors in each specified optical property with ree
spect té the variables, vi0‘ In order to improve accuracy, each column
of the constraint matrix is scaled so that the geometric mean of the
column is unity, The first 2N columns are not scaled since they con-
tain two identity matrices, one of which can be used as the initial basis
fdr the solution of the linear programming problem.

The linear programming problem which has been formulated is then
solved by the RAND Corporation linear programming subroutine, MSUB,lu The
entire adjustment, specified'by the solution to the L.P. problem, need not
be made. The code calculates the new error, after the parameters have
been adjusted by % A i=1l, N where the v, are the solutions tq the
linear programming solution. If the erfor is smaller than the initial
error, the parametefs are adjusted by % v, . However, if the error is
largef than the initial error, the porameters are adjusted by % Vi o
This procedure is repeated a total of twelve times with the factor

multiplying the v, increased by‘%-= 2"k if the resultant error after the
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kth adjustment.is smaller. than the error before the adjustment; a de-~
crease in the factor by the same amount is made if the error incressed
after the last adjustment,

If there is no optimal.feasible gsolution (due to an error in input),
the original system is restored and the parameters punched.

The output follows, according to the setting of IF(lS), The min-
imum and maximuﬁ constraints on the variables, the solution, right-hand-
side, current basis, primal solution, and constraint errors wmay be written.
The initial and final errors, the calculated improvement (the error cal-
culated by the linear programming subroutine), and the factor multiplying .
the variables \ (chosen as outlined above) are always wfitten, followed by
the two arrays, INFIX and KOUT;_described in the write-up to the M3SUB
routine.

VARMAX 1s reduced as the solution 1s approached; VARMAX is set to
seven times the maximum adjustment made, if this results in a reduction.

The absolute values of the variables, v are constrained to be less

1 Ed
than VARMAX°

If no optimal feasible solution exists, DESIGN exits to CALL; this
results in terminating the REPEAT sequence if DESIGN was called in the
domain of a REPEAT. This exit will also occur if no further lmprovement
can be made.

In order to execute a second iteration of the linear programming
pfoblem set up dn design, a second DESIGN call card must be inserted.
By placing a non-zero integer in columns 7-8 of this call card, the code

will continue with the same problem. A large number of iterations can be

executed under a REPEAT card; when so execubed, no ASSIGN card or CONDITION
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cards will read. The REPEAT will be terminated before its normal con-
clusion if the code is unable to make any further improvement.

The subroutines which arc used in the calculations controlled
by DESIGN are described in the following paragraphs.
‘§;m§§§£g§y ASSIGN is called by the = subroutines DESIGN, FOCUS, and REFINE
unless these subroutines are executed in the domain of a REPEAT card.
ASSIGN may algo be called by the call card, ASSIGN. This subroutine assigns
the parameters of the beam system, which are to be varied, to the specified
.Vi° Tt also rcads the constraints upon each parameter that is allowed
to vary. The cards read are described in Section E9 of this appendix.
The reading of cards is terminated by a card with -1 punched in the first
two columns. The variable assignment is printed offline; (the index
k of the variables v, E VAR(k) is printed in octal).
b. TRRSET . Subroutine ERRSET reads the CONDITION cards; each of these
specifies one optical property to be satisfied, the desired value of the
specified parameter, and the weighting factor which determines The re-
lative importance of the specified parameter. The group of CONDITION
cards is terminated by a card wilh -1 punched in the first two columns.
The dircctions for punching these cards are given in Section ELO of this
appendix.
¢, INTTER. Subroutine INITER calculates the initial error in each
specificd optical property and prints the desirqd value, initial wvalue,
ervor, and weight for ecach condition. The subroutine returns thé total
error Lo the calling subroutine.
d. MERR. Subroutine MERR is called by subroutines TRACE and STEP and
indircetly by subroutine INITER to calculate the errors in the specified

cmbical properties. I more than 12 conditions have been assigned,
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no errors will be calculated, ag the limit on the number of conditions
permitted 1s 12,

e. VPRIME. The derlvatives needed by the optimizing routines are cal-
culated by subroutine VERIME. TFour point derivative formulas are used;
the functions whose derivatives are required are evaluated Tor VAR(k) =
ZE*VARFIX, =VARI'IX, VARVIX, and 2*VARFIX, VARFIX is set to .0001,

but may be changed by an ALTER card (VARFIX is located at MERR+12M8)Q
VPRIME is called once for each independent variable VAR(k). The deriva-
tives of the specified conditions (set by ERRSET) are stored in the
array DMAT(j). If the REFINE problem is being SOlved, the derivative
of the aberration function being minimized is calculated and returned
in ZEND?

f. VSAVE. Subroutine VSAVE saves the initial parameters; 71(k) is stored

at S7L(k), XPHI(k) is stored at SPUL(k), and XPSI(k) is stored at SPHI(k).
g. VRESET. Subroutine VRESET restores the initial wvalues of the parameters
of the beam system aﬁd then albters the parameters as needed to calculate
the derivatives under VFRIME. VRESET also calculates Vi and ;g from the
constraints entered on the ASSIGN cards.

h. VSKI. Subroutine VSET is called at the conslusion of the optimizing
calculations to make the dirécted.changes in the system parameters.

i. DEFINE. Twenty optlcal properties of the beam system are normally

available for reference by the CONDITION cardse. These twenty include

the twelve nontrivial elements in the t%o 3%3 transfer matrices, and cer-
tain functions of these elements that determine the locations and widths
of tﬂe (virtual) waists. Subroutine DEFINE enables additional functions

tc be constructed when the program is executed. Up to seven functions
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may be defined ﬂy this subroutine. Iach function is defined by a maximum
of twenly arithmetic Qperations° To definetie vihfunction (n=l, a,,7),

the call card, DEFINE n, is entered, followed by three cards which deflne
the function; the function number, n, must be placed in column 8 of the
DEFINE card. The first card following the DEFINE card contains the
éonétants used in -the arithmetic operations., The second card locates the
parameters which are required. The third card contains the arithmetic
statéments which define the function; each of these statements is of the
© form: AQC where @ is one of the operations (+, *, /, ., ~). The format
for punching thege cards is explained in Section Flk, The functions |
defined by DEFINE cards can be referenced by CONDITION cards to specify
some optical property; these functions may be calculated at scme inter-
mediate point in the .beam system, if desired.

J. MIDERR., If any conditions require one of the define functions,

MIDERR is called to caiculate the error in that condition., MIDERR is

called once for each element in the beam system.

5. FOCUS.

A second opbimization routine, that adjusts two parameters to
meet two specified conditions, is called by the call card, FOCUS. The
parameter assignment and condition specifications are entered in exactly
the same manner as are those for DESIGN. If FOCUS is not in the do-
main of a REPEAT card, then ASSICN and ERRSET will be called provided
columns T-8 of the FOCUS card are blank. The assign cards must assign
VAR(L) and VAR(2); no other vﬁri&bles may be assigned. There must be

~exactly two condition cards. FOCUS calls VPRIME to calculate the der-

ivatives of the two ‘specified conditions with respect to the two indepen-
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dent variables. The initial errors are calculated by INITER. The

e uatibnc B «V ahl +ov BLQ = O and I +V §E5+V §l?3-»() 1ved
Q. S A 15 ] (_)Vl 2 ng - 20 [) V‘ 2 bvb" K} are solve ‘
for vy and vgs‘ The adjustments ure made by subroutine VSET. There can

be no constraints on this problem. If the initial error is less than
0.000001 of if an error has been made in assigning parameters or con-

ditions, TOCUS exits to CALL; this will terminate a REPEAT.

4. REFINE.
Subroubtine RIFINE is called to minimize aberrations. REFINE
operates through subroutine DESIGN and solves the same problem except

that the total error ls defined as follows;

) 7 oA ik i bit tont
: 2 vy 5;~~F .Ziwjkj + pA 3V is an arbitrary congtant.

i=1 i J=1
The aberration function, A, 1s defined by a CONDITION card on which the
Tirst two columns are blank or zero; A way be defined as XRMS, YRMS, RRMS,
XAMAX, YAMAX, ... (these quantities are defined in chapter ViI). If
I'(2)=2 , REFINE will minimize the aberration function but will hold thev
speclal optical properties fixed.'
" The other operating instructions for REFINE are the same as those

for DESIGN.
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D. Utility Routines

In this section, we discugs the remaining routines
available to the user of the code. The first group of routines is
designed to enable wide latitude in the agsignment and use ofvtape
units for outpul use and utility use.

1. Tape Manipwlating Routlnes

a._ Outtap..

In the event that a large amount of output printing may
not be used but should be available in case it is needed, provisions
have been made to put this output on a tape separate from the monitor
output tape. The second tape can be saved and subsequently printed |
if the data is needed.

To éhange the output tape to logical tape m, the call card,
OUTTAP m, is inserted: Subscquent output then appears on tape m
provided that that tape is available. Should tape m not.be listed
in the IOU table, the call card, OUITAP m, will be ignored. The
message, '¥¥¥ OPERATOR **¥% DIAT, TAPE C% (LOGICAL 23) TO RECEIVE
OUTHIT ~~ SAVE TAPE. " is printed bbth on-line and off~line to notify
the operator to hang the tape (this example is appropriate to the
call card, OUTTAP23 ).

This card way be followed by the call card, PAUSE, if the
operator has not previously been instructed to prepare the tape.

The output may be returned to the monitor output tépe or
put on a third tape by inserting another OUITAP card.
b. Unload.

The call card, UNLOAD m, causes logical tape m to be

terminated with an end of file, rewound and unloaded. If logical
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tape m is not listed in the 10U table, then the UNIOAD card is

ignored.

Since non-monitor Qutput tapes are not unloaded, each tape

assigned by an CUTTAP card should be subsequently unloaded by
'insgrting an UNLOAD card when the tape is no longer needed.
c. Bavtap,

The subroutine group, SAVIAP, SAVE, and RELOAD, makes
possible storing the parameters of several beam systems so that a
particuldr beam system may be restored for subsequent calculations.
Fpr examplg, one may Qish tovdesign a beam system to meet certain
specifications, and to try several magnet arrangements. He may
optimize the parameters, by subroutine DESIGN, for each magnet
arrangement, storing the resullt on tape. When‘all arrangements have
been optimized, the code may then be asked to restore that arrangement
which best met the specifications.

The call card, SAVIAP m, prepares loglcal tape m to receive
system parameters. The card is ignored if logical tape m is not
Aincluded in the I0U table. Tf the tape is avallable, the operator

.will be notified to hang the selected tape. TFor instance, inserting '
SAVIAPL3 will select logical tape 13 (machine tape B3 for the Lawrence
Radiation laboratory Fortran ménitor) and print the followlng message
on-line and off-line, "DIAL TAPE B3 (LQGICAL lﬁj FOR UTILITY TAPE USE".
It is recommended that utility tapes normally dialed for the monitor
system be used. .

The call card, SAVE, causes the parameters of the current
5eam system to be written on the tape selecfed by the last preceeding

SAVIAP card. While writing the current system on the tape, the code
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checks to see wﬁether it 1s & beltter system than all of the systems
previously stored on the tape. A system is sald to be "better', if
the total error in meeting specifications calculated by DESIGN, FOCUS,
or REFINE is smaller than the total error for any olher stored beam
systeme

Upon completion of writing, the accuracy is checked; if an
error is detected, the tape is backspaced and the writing done over.
This procesé will belrepeated wntil no redundancy check is detected.

In the. event that the utility tape has not been selected by
a previously execubed SAVIAP m card, a SAVE card will be ignored. A
subsequent SAVIAP card will reset the register containing the location
gf the "best" system on the current tape.

e. Reload.

The call card, RELOAD m n, reloads the gﬁh‘beam system from
logical tape m. If m=0 and n=0 (or both.blank), then the best system
from the current utility tape 1s reloaded as the current beam system.
.If the selected tape is not avallable, the RELOAD card is ignored.

If a system is reloaded, the tape and the record read is
printed off-line. Tor example the card, RELOADZ307, réads the Tth
beam system from tape C5 and prints the following message off-line,
"SYSTIM NO. 7 FROM TAPE C3 HAS BEEN RELOADED."

As is the case when the beam systems are wrilbtten on the
utility tape by SAVE, the system read by RELOAD is checked for
accuracy in reading, and will be reread until read accurately.

No more than 12910 beam systems should be placed on one
tanc. If one desires to locate the best sysbem among a greater number
of systems, he should enter a RELOAD card after about 100 systems haye

been stored on the tape, reassign the tape by a SAVIAP card, store the
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system Just reloaded by a SAVE card, and then continue with the

comparisons.

Several utility tapes may be used in sequehce, but the code
will be able to locate the best éystem only on the last tape assigned.
L. Select. |

If "aberration envclopes' in either the x-z or the y-z
planes are to be plotted by subroutine STATE, then two utility tapes
must be assigned prior to enlering that subroutine. The call card,
VSELECT>m n, assigns logical tapes m and n as utility tapes for this
‘purpose. If either of the logical tapes m or n is not listed in the
IOU table, a flag is set which prevents any subsequent attempt to use
the tapes.

An on-line message 1s printed requesting each tape spécified.

The tapes chosen must be distinct, must be on a different
channel than the cathode ray tube, and should not be any of the monitor
input or output tapes or the current output tape assigned by a SAVIAP
card. T'or the ﬁost efficient use, both tapes should be on channel B
since the input and output tapes are on channel A whereas the cathode
ray tube is on channel C. These tapes may be changed at any time.

The tapes greatly speed up plotting the aberration plots,
since the same data must be calculated for three separate plots. Two
tapes are available so that one may be used while the other is being
rewound, eliminating wailing for a tape to be rewound. Writing and
reading of the tapes is fully buffered. While the last record read is
being plotted, a new record is being transmitted. The new record is
then checked for accuracy and reread if necessary. In mcst cases, both
ﬁhe.tape units and the cathode ray tube are in continuous simultaneous

use. The tapes arc always lcft in the rewound position.
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Example: The call card, SELECTA109, will assign logical

tapes Bl and A9 for utility tape use for cathode ray tube plotting.

2, Oubtput Control Utility Routincs

| Several Call Cards control off-line and on-line printed
6utput and’ Cathode Ray Tube Output. These cards and their functions |
are.descriﬁed below,
a, Rject.

The call card, LJECT, starls a new page of off-line printed
output by writing a line of heading which includes the time remaining
on the interupt clock. This card also resets the line count that
determines when a page is full (see h., below).

b, Tinme.

The call cafd, TIMI, causes the time remaining to be
calculated and written on the output tape.
c. Title.

The page heading contains 72 arbitrary characters which are
entered by the call card, TITLE, followed by a single card with the
heading text in columns 1-72. A new page is étarted with the new
heading text. The text may Dbe changed at any time by inserting another
TITLE card.

d. .Noteg

Occasionally one desires to instruct the computer operator
regarding operation of the program. The call card NOTE followed by
a single card with Hollerith text in column~1-72, causes that text
to be printed on—line'and also off-line. If desired, this card may
be followed by the call card PAUSE to halt the computer while the

instructions printed on-~line are carried oul.
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The call card PAUSE halts the computer, with PR 111118 in
the storage register, to notify the operator that some instruction,
to be carried out, has been printed on-line. Depressing the sfart
key will cause calculation to proceed. The.intcrrupt clock is
suspended during the halt.
£._Preid,

When tThe cathode ray tube is used, the film must be labelled
to ddentify it. The call card PREID causes initial labelling of the
film output and should precede all CRT plots., This card will also set
the "switch" IF(10) to zero, thus allowing the CRT to be used.
£e_Postid. |

The call card, POSTID, causes the final labelling of CRT
output and should follow the last plot. This card will also prevent

future CRT use by setting IF(10) to a non-zero value.

h. Automatic Page Advance,

Bvery time a "WRITE OUTPUT TAPE 3" statement is executed,
the program checks to'see whether the current output page is full; if
it is full, a new page is started by the EJECT subroubtine. The curreﬁt
number of lines allowed on a Page is 50; this may be changed by placing
the desired number of lines per page in the address portibn of location
FULL (= TRAP~«238) by means of the ALTER routine (section 7, below).

5. Ixit Routines

When calculations are‘concluded, several. options are
available with'regard to terminating the Jjob.
a. Ixit,

The call card, BXIT, immediately returns control back to the’

monitor.
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The call card, DUMPC, dumps the common arcs of the program
in both floating point and octal formatg after which control is
returned to the monitor.

g, Dumpal,

The call card, DUMPAL, dumps the program in octal with

mnemonics in addition to the DUMPC dumps.

“ b, Print Subroutines
The following subroutines are used by other parts of the .
program and. are mentbioned for completeness.

a. Print Roubinec.

The subrouting CVRT converts up to twelve BCD words to a
binary card image and.then prints this card image on-~line. Control is
returned to the calling routine while The line is still being printéd
_ sé that, in wmost cases, no time need be wasted for on~line printing.

b. Octal Lo BCD Conversion.

Subroutine OCTAL converis & single octal word to two binary
coded decimal words for output purposes.

¢c. Tlimination of Preceding Zeros.

A 16 place table is located at A.. in the supervisor routine
'for use with a CRQ instruction to replace leading zeros in BCD words
with blanks.

d. Printing TOH Buffer.

Subroutine PRINTB will print the TOH buffer on-line, thereby
reproducing on-line the Jast line of off-~line oubput.

5, Test Subroutine

Provisions have been incorporated in the program for a

general conditional branching of program control. The subroutine TEST
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allows skipping or execcution of a number of call cards, depending on
the result of scveral tesls whiéh arc specified.
Tach test specifies a location in the core (relative to
one of the names given in the call list), a value, and a tolerance.
The test is passed 1if the absolute value of the difference between the
number stored at the specificd core location and the specified value
is less than the tolerance. The test is fajled if the difference is
greater than the ltolerance.
This routine is exccuted by entering the call card, TEST m n,
Tollowed by m cards, each of which specifies one test, Whether or not
the n cards following the test cards are skipped depends on the outcome
of the tests.
If all the tests are passed then the next In] cards are
listed and skipped if n<0; no cards are skipped if n>0. If any one
of the m tests results in a Tailure, then the next n cards are skipped
if n>0; no cards are skipped if n<O.
The format of the test card is described in Section E.11,
“below.
EXAMPLE:  The error in meeting the specified beam conditions is stored
at location 70712 by subroubine DESIGN. We wish to plot phase ellipses
for the system only if the conditions have been met sufficiently well;
if the error is less thaan 0.00l, we will plot the ellipses. The

following cards are entered:

SENSE
1 IF(10)=0
TEST OL-%
ABS 70712 0. 0.00L
SENSIE ,
0 IF(10)=0

SYSTEM
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The Tirst SENSE card prevenbs cathode ray tube plotting by setting
IF(lO) to 1. If the floating point number stored at location 707128
is legs than 0.001L in absolule value, the next three cards will be
executed. The SLENGE card Collowing the TEST card resets IF(lO) to
zero, permitting plotting dwring the execution of the following SYSTEM
card. If the number stored at 70712 is larger than 0.001 in absolube
value, the Ehree cards following the TEST card will be skipped (but
listed off-line), and the call card immediately following the SYSTEM
card will be executed necxt.

If any of the TEST cards refer to a subroutine name that is
nou found on the call list, the test comparison specified on that card
is dgnored.

6. Alter Routine

No matter how general a code may be, the user will frequently
wish to change constants used by the code or portions of the code
~itself to accomplish a particular aim, The ALTER roubtine provides for
the replacement of part or all of any instruction or constant in any
subroutine by a word entered in any format on an "ALTER" card.

The call card, ALTER, is followed by a single card which
specifies the subroutine name (any name iﬁ the call list) and the
octal location of the word being altered relative to the subroutine
entry point. The relative location is defined as the address of the
word being modified minus the address corresponding to the spbroutine
name in the call lisgt., To change congtants or other data in COMMON,

a pseudo~subroutine ABS 1s specified; the octal address relative to
ABS is the absolute address of the word to be modified. If the

subroutine name specified is not in the call 1list, no changes will



-173-

be made.

The name and location fields are followed by an octal word
ﬁhat is used as a mask; a bit in any location of this word prevents
the corresponding bit in the word.being modified from being changed.
for Qxample if the mask is T(T{T77700000 only the address portion of
the word will be modified. |

The next field contains a variable format such as A6, ¥8.3,
012, 15, +.. . This format specifies how the new word is to be read.
If one is changing a floating point decimal constant, he obviously
wants Lo enter the replacement word in an E or I format. But if an’
ingstruction is being changed then the O format is more convenient,

A single digit field follows the format field. If This
field is blank or zero, the address of the replacement word is not
relocated. If, however, the field is not blank, the address field of
the replacement word will be relocated relative to the location of the
word being modified. The relocation will be ignored if the address
portion is masked oub by the mask word.

The next field on the card is the replacement word, to be
read by the variable format described above. The variable format
also gpecifies the length of this field.

Immediately following the replacement word, 24 characters
of descriptive text may be added. This text is reproduced off-line
in addition to data showing what was altered. The subroutine name,
the octal location relative to the entry point corresponding to that
name, and the absolute location of the word being modified are printed
off—line together with the octal digits of the word before and éfter
modification. Ixamples of the use of ALTER cards are reproduced in

Appendix TIT.
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7. Peek Routine--~Arbitrary Snapcshot Dumps

A variable snapshol dump may be exeéuted at any time by
inserting the call card, PHIK, followed by a card giving the region
to be dumped and the type of conversion to be employed.

The first two fields on thé card contain the subroutine
name (which must be in the call list) and the octal address, relative
to the subroutine entry point, of the first word to be dumped, exactly
as in the case of the ALTER card. The third field is the address of
the last word to be dumped minus the address of the first word to be
dumped, in octal (this is one less Lhan the number of words to be
dumped), The fourth field contains one of the integers O, 1, 2, or
3; this field specifies the convergsion to be followed: O results in
octal conversion, 1 results in floating point decimal conversion, 2
results in decimal conversion with decrements interpreted as decimal
quantitiecs, and 3 results in octal conversion with mnemonic machine
instructions printed. Thus the card PEEK is equivalent to the Fortran
statement, "CALL PDUMP (FWA, LwWA,T)".

If the subroutine named in the PLEK card does nol appear in
the call list the octal address will be taken as an absolute address.
FEXAMPLE: Some numerical quantities are stored between locations
SOLVESH 624 and SOLVESH654 which are used in calculating the aberration
integrals; we can dump these numbers by inserting the cards:

PEFK
SOLVESbLO2 ibbb30L

Note that 654-62L = %0.
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8. lrror Roubines

The moﬂt likely crrors are those relating to inpubt and
output functions. Most of these errors are detected by the Fortran
input-output routines IO, RiER, WER, or I0S; detection of crrors by
onc of these routines recults in a transfer to subroutine KT after
the crror code and return address have been loaded into the SENSE
INDICATORG. The standard IPortran monitor TXEM routine will correct
some crrors, bub in most cascs, a transfer to IXIM results in
termination of the job.

a, DXiM.

In order to atlempl to continue with calculations, a
separate EXIEM routine has Deen built into the supervisor routine Tor
the code. This routine frints the message, "(EXEM) CALLED...BRUFFLER
CONTINTS ARE..", off-linc, followed by the Fortran IOH buffer in BCD;
this is the card image or oubput line image that was being processed
when the error vags deteéted. The buflffer data is followed by the octal
contents of:

(a) The SENSE INDICATORS; the address and tag portions contain the
crror code while the decrement portion containg the return address.
(b) The LOGICAL ACCUMULATOR

(¢) The MULTIPLITR-~-QUOTIENT; the acc and MQ generally contain the
portion of the input-oubpubt fext which caused the trouble.

(i) Tocation zcro--address of calling sequence

(¢) Location two--address transferred to by the STR instruction
(f) ACCUMUTATOR-—in BCD

() MQ--in BCD

The code then attompls recovery in the same manner as if
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the START key were pressed when under non~monitor control., TFor
further information refer to Appendix VII of the IBM 7090
FORTRAN OPERATIONS MANUAT.

The common errors and the actions taken are as follows:
(a) 0,1 illegal character in formal; treated as end of format
(b) 1,15 2,1; 3,1; 4,1; 5,1 illegal character in data field; the
offending character is treated as zero.

Lvery WRITE OUTPUT TAPE % statement is trapped before it
is executed. Subroutine TRAP tests for too much writing for the
Job; the current limit is 2300 lines. TIf the line about to be
printed off-line is the first lfné to exceed the limit, then the
warning, "EXCESSIVE WRITING CURTALLED" is written and all subsequent
writing is suppressed with the exception of important results. This
feature may be évermridden at any time by inserting a 2 in the fifth
octal digit of BOOL on the SINSE card (i.e. BOOL=BOOL+000020000000).
The limit of 2300 lines may be changed to any other number of lines
by inserting the desired limit in the address portion of location
INTEST (LNTEST:TRAR-?77578) by an ALTER card.

The last field on cach CALL card gives the maximum number
of lines which may bc printed during the execution of that card. An
attempt to frint a gfeatcr number of lines results in terminating the
execution of that CALL card and the reading\of the next CALL card.
If this field is zero or blank, no limit is placed on the amount of

writing permitted under the CALL card.
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These two tests may be used to prevent unforsecn loops
involving Jlarge amounts of writing; their main use was in debuggingl
the code.,

Subroutine TRAP also advances the output page when the
current page is full. Fach page starts with a heading'line) glving
the data and time of the run, the amount of time remaining, the page
number, and the text entered by the last TITLE card.

If the output tape has been reassigned by an OUTTAP card,
TRAP inserts the correct oubpubt tape in place of logical tape 5 called

for in the WRITE OUTHUT TAPE 3 statement.
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I, Tnput Card llormats

In this secction, the exact placement of all data on
the various types of input cards is described. The use of these
cards is described in preceding sections., All lengths arc in
inches, all gradients in kilogauss/in., all magnetic fields in

kilogauss, all momenta in MeV/c, and all slopes in radians.,

1., CALL Card

The CALL card controls the execution of the many

wifferent parts of the program, Its format is (AG, 212, I5).

colunn description of usc

1-6 Name of subroutine or program section called (left
adjusted); the name must be one of those in the call list.
7-8 MREP fieid; integer (right-adjusted),
9-10 NREP field; integer (right-adjusted),
The two fields above are used in REPEAT, CHANGE, INSERT,
DELLETL, VARY, SAVTAP, OUTTAP, UNLOADR, RELOAD, ctc., cagdsa
11-15 LINMAX field; this is the maximum number of lines that
can be written under the contrel of this card. if blanlc
or zero, no limit will be imposed. The field is right-

adjusted,

2. SIENSE Card

The SENSE card controls program options; its format is

(3011, 012, 8XF6.1).

column description of use
11,2,3,°°7,30 IF(k); the first thirty coluwns give the changes

to be made in the switches, IF(l) to IF(30). A blank
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column indicuies that the corresponding switch is not
to be changed. If a switch is to be reset to zero, the
corresponding column must contain an explicit zero.
Refer to AQS for the switch assignments,

3142 BOOL; these twelve columns may contain no blanksjy they
form an octal word which is loaded into the SIENSE
indicators. Only the first six columns are interpreted;
the right half of this word is set by internal subroutines,

51-56 CHIF; this field is uscd only by subroutine RKYS,

3. TITLL Card

I'ollowing the call card, TITLE, a TITLE card, containing
the Hollerith text to be inserted into the output page heading,
must appear. The text is to be written in the format (12A6) and

conscquently must appear in the first 72 columns of the card,

. MOMINTUM Card

The first card in the data deck must be the MOMENTUM
card. This card also follows the call card, NEWP. The format

for this card is (5F1l4.6)

columns description of use
1-14 BORE; the diameter of the quadrupole magnets to be used..

This quantity is used only by gubroutine BELL.
15-28 Poys the design momentum in MeV/cj the momentum is
required for most calculations,
2942 GRAD; a reference gradient in Kgauss/in. used by BELL,
43~56 DELTAZ, the increment in inches between values of

PHI(k) (used by DELL and RKY3).
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57-70 I, the Runge-~Kutta step size (increment in 2z) in
inches, H is required only if the call card, RKY3, is.

used.

S. ELEMENT Cards

Following the call cards, READ, INSERT, CHANGLE, and VARY,
one or more cards containing beam system parameters must appear,
For READ and INSERT, these cards are read by the format (A6,
5(12,F11.7)). The first field gives the element type whereas the
remaining five groups, of two ficlds cach, specify up to fi?e
parameters. The element cards read by VARY or CHANGE differ
slipghtly; they are described later. The locations and names of

the fields for the element cards read by READ or INSERT are:

column field, description of use
1-6 TYPE; type of element, must be left~adjusted and one

of the following words: DRIFT, QUAD, 4PLUS8, OCT, BENDX,

BENDY, DRIFTX, DRIFTY, AXIAL, or MATRIX.

78 IZ2L; dirccts loading of 2L (normally zero or blank).
9-19 ZLy length of element (in.)(a floating point no.).

20-21 IPHI; dirccts loading of XPHI (normally blank).

22-32 XPHI; parameter of element.

35-34 IPSIy directs the loading of XPSI; always blank or zero,
35-45 XPSI; parameter of element,

16-47 ICL; directs loading of NCL (normally blank).

48-58 XCLj left shape coefficient for quadrupole (entrance),

59-60 ICR; directs the loading of XCR (normally blank).
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61~71 . XCRy the right shape coefficient forgquadrupole (exit).,

The.integor511ZL, IPHI, IPSI, XCL, and ICR are normally
.zero; 1f they are zero then the next field is rcad into its normal
location (for example, if IZL=0 then ZL is loaded from the 2L
field on the card), If any of the integers are negative then the
field following is ignored and the parameter corresponding to that
field retains the value it had before the card was rcad (if IPHI=-1
then XPHi is unchanged). If any of the integer fields are positive
then the corresponding parameter is located in COMION as described
in B.l.a above; this option should not be used except for the
elements DRIFT, 4PLUS8, or QUAD,

If the eclement type ié not one of those in the above
list, then the element will be taken to be a drift space.
a, QUAD. o enter a quadrupole magnet the name "QUAD'" is placed in
columns 1-4 onAthe element card, <L is the effective length in
inches, XPHI is the gradient in Kgauss/in. (positive if convergent
in the x~-z plane). XCL and XCR are the fringing field shape
coefficients for the entrance and exit ends of the magnet,

4 2

respectively. They are the . kﬂ described in V.D and have units
AN Y
.2
of in_,

b. DRIIT, DRIFTX, or DRIFTY. To enter a drift space in both planes

or in the x plane alone or the y plane alone, the element type is
DRIFL, DRIFTX, or DRIFTY, respectively. The length of thé drift
space is placed in the 2ZL fiecld.

€. OCT. To enter an octupole magnet, the name "OCT" is placed in
columns 1-3 of the element card. The effective length of the magnet

is placed in the 2L field. The strength of an octupole magnet is
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determined by the third radial derivative of the absolute value
of the magnetic field, this derivative being constant throughout
the aperture of an ideal magnet. The strength is entered in the
XPSIX field of the clement card in units of gauss/ in3 (positive
when the field is converging in the x-z plane and the y-z plane
and diverging in the xsy and x= -y planes).
d. 4PLUS8. A quadrupole magnet that_has been modificd by shims
or other means to induce an octupole component in the ficld may
be brought into the beam syStem by means of the element card,
4PLUS8, The parameters on the card are the.same as those on a
- QUAD card except that the third radial dérivative is placed in the
XPSI field as is the case in an'OCT card.
¢, AXJAL. A solenoid magnet is.en£oréd into the beam system by
means of the element card, AXIAL. The effective length, in inches,
is placed in the ZL figld; the magnitude of the axial field, in
' kilogauss, is placed in the XPHI field., The use of a solenoid
is restricted to placement where the beam is rotationally symmetric,
f. MATRIX

Beam clements to be described solely in terms of their
transfer matrices are entered by the element card, MATRIX, followed
by three "MATRIX" cards ( Section 6, below) containing the twelve
nontriviai elements of the 3x3 transfer matrices. The ZL (longth)
field on the element card is stored and listed as the ”léngth"
of the black-box element described by the transfer matrices; this
length does not enter into any calculations.

Bach set of transfer matrices is labelled by one of

the integers 1, 2, 3, 4, or 5. This integer, appearing in the IPHI
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field, directs the storing of the transfer matrices. If there are
sevefal elements in the beam system described solely by transfer
matrices, then no two of these elements may be labelled by the

same integer, IPHI, unless the transfexr matrices for the two clements
are the same. If IPHI is negative, the code assumes that the matri-
ces have been loaded by a previous READ sequence and are not to

be replaced. In this case the three matrix cards that normally
follow the elcment card, MATRIX, must not appcar, IPHI way not

be zero nor may it be an integer larger than five,

. BENDX or DINDY

A bending magnet is entered on two‘elemont cardsy
thé first card has "BINDX" puncﬂed in columns 1-5 if the bend
is in the x-~z plane,- BENDY punchéd in éolumns 1-5 significs that
the bend is in the y-z planec,
(a) The first card cgntujns the length of the bending magnet,
in inches, in the 4L field. The field strength, in kguass, appears
in the XPHI field., The XPSI field contains a, the entrance angle,
in degrees (rofér to Fig, 1).
(b) The second card contains the field exponent, n, in the
XPHI fieldg E{, the angle the entrance edge makes with the exit
cdge, (in degrees) is placed in the XPSI field. The rcmaindef of
the card is ignored. The sccond clement is of zero length,
The conventions on sign for the above quantities are
the same as the convention adopted in Chapter II, shown as positive

in Fig. 1.
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6, MATRIX Cnrdsv

The three cards following the element card, MATRIX, are
rcad in the format (4E15.8). “The first row of the x transfer matrix,
followed by the sccond row of the x transfer matrix, the first row
of the y transfer matrix, and the sccond row of the y transfer
matrix comprise the matrix elements to be placed on these cards,

The location of these c¢lements follow,

colunmns cariﬂﬁi card #% cargwﬁé
1-15 Mxll MXEE thS
16-30 Mxlz Mkzs AYZl
31-45 MX MY 3

31-45 MXy ] 11 MY22
46-~60 anl MYIZ NY23

7. MAGNTYY cards

Following the call card, BELL, a card must appear for
cach quadrupole magnct'to be entered inte the DBELL calculations,
resulting in the construction of the gradient array. There may
Le no more than ten such cards. This group is followed by a single
card containing ZLND in columns 2-15 with no other punches on the
card, The magnet cards arc read by the format statement (11,5F14.6)3

the significance of the fields is as follows.

column field description
1 IC; I¢ is any pasitive integer (O for ZEND card only).
215 ZMID, the location of the midpoint of the magnet, in

inches, relative to an arbitrary starting point, In
order to allow an adequate length for the fringing field,
the center of the first magnet should be at least 5"BORE

from this starting point.
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16-~-29 Z1LONG, the pbysical length of the magnet, in inches.
30-43 FRy the plateau region of the magnet, viherce the gradient

is constant, extends to a distance M*BORE from ecach end
of the magnet. leyond this point the gradient falls
from its value in the plateagyregion.

1457 BW, the half width characteristic of the extent of the
fringing fiecld, in inches. The gradient falls to 1/4
of its value in the plateau region at a distance BW
from ¢ither end of the plateau,

58-71 EX, the relative excitation of the magnet. The gradient

in the plateau region is BX*GRAD,

8. TRAJECTORY Cards.

The cards read by subroutine RRY3, giving the initial dis-
pPlacements i snlopes of thu.trujectories to be integrated; are read
by the format statement (I2,5F14.6). Immediately following the call
card, RiEAD, a single carﬂ is placed, containing DRIN ip colunms
3 through 16 and DROUT in columms 17 through 30; DRIN and DROUT
are the initial and final drift distances, in inches, to the points
2=0 and z= ZEND, recspectively.

The remainder of the cards is to be punched as follows:

columns field description

1-2 1Cs IC:O.(blunk),(xcept for £hc last card for which IC=1l.
3-16 X the initial displacement in x, in inches.

17-30 Yoo the initial displacement in y, in inches.

31-44 xo', the initial slope in the x-2z planc,

45-58 yo', the initial slope in the y-=2 plane.

59-72 (p—po)/p, the relative momentum.
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The first two cards give the initial conditions for the
two trajectories which will be calculated from the linearized

equations, A maximum of 25 trajectories can be integrated.

0, ASSIGN Cards

The ASSIGN cards afe called by the optimizing routines,
DESIGN’ REFINE, and FOCUS, and also be the call card ASSIGN for
the purpose of instructing thé code which parameters of the beam
system may be varied, which dummy variable, VAR(k), is to be
assigned to each parameter being varied, and the limits that are
to be imposed upon the parameters being varied. There must be ohe
ASSIGN card for each beam element containing a parameter that is
to be adjusted. Two ASSIGN cards are therefore required for beﬁding
magnets if all the parameters are to be varied. vThe group of ASSIGN
cards must be followed by a single card containing the integer =1
in the first twq columns. ‘The fofmat for the ASSIGN cards is

(412, 2X4F15.6). The cards are to be punched as follows.

‘columns field description
1-2 Ik, the element number for this card (right-adjusted).
3-4 ITT;;Z&(R) will be varied in proportion to VAR(ITT(k)):

ITT=0 (or blank) prevents 4L(k) from being altered,

5-6 JTT; XPHI (k) will be varied in proportion to VAR(JTT(R));
JITT=0 (or blank) prevents XPHI Irom changing.

7-8 KTT; XPSI(k) will be varied in proportion to VAR(KTT(k));
KIT=0 (or blank) prevents XPSI(k) from being changed.

Tge integers used in the ITT, JIT, and KTT fields should be

assigned in sequencei i.e., if 4 is punched on some card, then 1,

2, and 3 must appear on one or more ASSIGN cards, ILlements,for
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which no ASSIGN card appears; remain unchanged in subscquent
optimization calculations. We now continue with the description

of the fields,

columns field description
11-23 ZLMIN, the minimum length (must be given if ITT #0).
26-40 ZLMAX, the waximum length (must be given if ITT £0),

ZLMIN(K)CZL(K)ALMAX (k) is the constraint imposed.
41-35 PHIMAX; must be given if JIT is not zero;

[XPHI (k) I PHIMAX(k) is the constraint imposed.
5670 PSIMAXS must be given if KTT is not zeroy

IXPSI (k) Ig PSIMAX(k) is the constraint imposed.
The constraints are ignored by FOCUS and need not be given for that
routine, If the bounds are notlgiven for any parameter which has
been specified as a pafumutér to be varied, then that parameter is

held fixed by default by both DESIGN and REFINLE.

10, CONDITION Cards

Condition cards form the vehicle for entering the
beam specifications to be satisfied by the optimization routines.
The maximum number of conditions that may be entered is 12 (excluding
assigning the aberration function to be wminimized)., There is one
condition for cach card entered. The group of CONDITION cards must
be followed by a single card with the infeger -1 in the first two
columns, The format of the CONDITION cards is (2I2, 11, 2I"15.8),
The cards are to be punchecd as follows,

columns _ field description

1-2 condition number; this labels which matrix element or
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or other quantity specified as a property to be
achicved, A zero (or blank) signifies an aberration
function to be minimized is c¢ntered in columns 3~4.
The condition number must be zero or a positive integer
less than or equal to 30. Conditions 11 through 30 are
described below. Conditions 1 through 10 signify that
the corrcsbonding property is to be calculated from the
DEFINE functién punched in column 3; this function is to
be calculated after the element number punched in
columns 3-4, No two cards may contain the same condition no.

These columns are igAOred for conditions 11 through 30,
If a DEFINE function has been specified by giving a
condition number between 1 and 10, then that condition
is evaluated after element k, where k is punched in
columns 3-4, If condition O (aberration function
definition) then the function to be winimized is identified
in columns 3-43 this number must be taken from the
"aberration function" list below.

Column 5, interpreted only for conditions 1 through 10,
labels the DEIFIN) function to be used., This is the
integer n on .the DEFINE n card that defined the function,
The desired value for the specified quantity (MATTRY);
if condition O 1is punched in columns 1-2 then fhe
arbitrary constant V is punched herej if blank or
zero,) will be set to 1.0 CC#Q.

The weight to be used in multiplying the error in

the specificd quantity when summing to form the total
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cerror,  I{ blank or zero, a weight of 1.0 is assumed.
If condition O, then the aribtary constant/M is punched
in this field. This ficld may not be negative (MATWTL).

CONDITION List. The integers placed in the first field must be

.l

between O and 3l. Conditions 11 through 20 refexr to the x-z
plane or x transfer matrix wherecas éonditions 21 through 30
refer to the y-z plance or y transfer matrix. Conditions 1-10
refer to "defined" functions; condition O defines the aberration

function to be minimized.

No. guantity specified

11, 21 the transfer matrix element Tll

12, 22 the transfer matrix element Tlm

13, 23 the transfer matrix clement Tl3

14, 24 the transfer matrix elenent T2l

15, 25 the transfer . matrix element T22

16, 2¢G the transfer matrix element T23

N

17, 27 the ratio of matrix elements, Tll/TZZ {M“in GlnlOE

0
=

18, 28 PZ as defined in (IXI~-12): = lesz /T12T22°
19, 29 &, the distance to the virtual waist (IX-11)
20, 30 w/2, the maximum half-width in the system.

If any of the numbers 17-20 or 27-30 are specified then
the object plane parameters specifying the maximum displacements
and slopes must have been ¢ntered on the first card following the
call card, READ, or on a subscquent sequence of OBJECT cards,

Aberration IPunction List. ‘The aberration functions defined in

Chupter VII are calculated. The code may be direccted to minimize

onc-of them by identifying it in columns &#fof the condition card



-190-

with condition number O punched in columns 1 and 2. The numbers

punched in columnsz4 must Lo taken from the following list

No. aberration function

0 RRMS= (xnmsg+ynmsz)"}/“

1 KRS (VII-9),

2 YRMS  (VII-9) ,

3 the maximum aberration displacement in x, XAMAX, (VII-S) ,
4 the maximum aberration displacement in y, YAMAX.

5 maximum displacement in x due to lincar terms, and terms

2 a2
in &x, Ax', A'x, and A x'{elliptical distribution).

LI

6 ' maximum displacement in y due to terms in y, y', Ay, o

7 sum of (3) and (5): the maximum displacement.in X,

8 . sum of (4) and (6): the maximum displacement in y.

9 XRMS + x where x is the half-width due to the linear terms.
10 YRMS + y  (I1-8).

11 mean aberration displacement calculated by SCAN.

12 mean total displacement calculated by SCAN.

Numbers 11 and 12 are not rcecommended as they are very time-consuming.

11. OoRJuCT Cards.

Five cards follow the call card, OBJECT; these cards
specify the parameters describing the objéct plane phase space.
The format for these cards is (5I10.5). A blank in any field
signifies that the corresponding parameter is to remain unchanged.
The five cards refer to the coordinates xo, Yoo xo’, yo' and A,

respectively. The field specifications are as follows.
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colunmn ficld specification

1--10 LINEF, the lower Liound on the coordinate,

1120 ASUP, the upper bound on the coordinate.

2130 ADEL, the dacrement between raster values of the coord,
31~a40 XMISAN, thc.menn value of the coordinate (normally zero)
4150 ADEV, the standard deviation in the distribution of the

coordinate., XMZAN and XDEV arce required only if
aberration functions 1l and 12 are to be minimized.

51-60 XMAX, the maxdimum initial value of the coordinate, used
in plotting the phase ellipses, beam envelope, and the
aberration figurce; al;o usced in the normalized aberra-
tion coefficients, ’Thc array XMAN(k) is the same array
that appears on the first card following the call card,
RISAD,

RINI (), Xsup(k), and XINF(R) determine the trajectories <o be run

by SCAN by forming a rasgter of initial values.

12, TEST Cards.

The THST cards are called by subroutine TEST; each card
specifies a location in the memory whose contents arce to be compared
wi th tﬁe pumber given on the card. A test g said to have beca
passed 1f the absolute value of the difference between the stored
number and the number given on the TEST card is less than or equal
to the tolerance specified on the card. The format of the TEST
cards is (A6, 035, 2115.8)3 the ficld specifications are described
below.

columns ficld specification

L6 Subroutine name, left adjusted, containing the number
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ta be examined,
7-11 Location of the number being tested relative to the
subroutine entry point, in octal, This is the address
of the core location containing the number less the address

corresponding to the subroutine namc,

12-26 The value against which the stored number is being
compared;
2741 The tolerance permitted in the comparison.

The number of test cards is given in columns 7 and 8 of the call
card, TisT. A defined function may be tested as all defined
functions specified on condition cards are automatically calculated

by TRACL,

135, PEIK Card

The call card, PEEK, causes one card to be read; this
card specifies the dump limits and type of conversion for the
PDUNMP that is to be executed. 'The card, recad in the format

(AG,205,I1), is to be punched as directed below.

columns ficld specification
1-6 Subroutine name.
7-11 First word address relative to entry point for

subroutine.
12-16 Word-count lcss one.

17 Type of conversion,

14, DEPFINI Cards

The first card following the call card,DUFINE n, is

punched in the format (71710.5)3; it contains up to seven floating-
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point constants, The constnnt.punched in the kth field is refercen-
ced by the symbol (k+1). Ior example that number punched in
columns 1-10 is referenced by the symbol 23 the number in columns
31-40 1s referenced by the symbol 5o

The sccond card locates the parameters requirced for the
caleculation; the format for this card is (10(ALl 03)). The lst,
7th, 13th, 19th,"°" columns contain a BCD symbol (any symbol may
be used). The five columns following each symbol give the octal
address of the {loating point number to which the symbol is teo
be cquated; a listing of the octal address of the available
parameters will be suppliced with the code.

The third card, punched in the format (2046), contains
the simple arithmetic statements that define the function. Each
ficld must be in the following format: C=AZ3b where A, B, and C
are any BCD symbols, ) is one of the operations in the operation
table (below), and b is a blank.

The calculation of the function is initiated by setting
symbols 2 through 8 to the numerical values specified on the first
card,

Lach symbol punched on the sccond card is sct to the
number stored at the adjacent octal address, The symbols O and
b (blank) are sct to the numerical value? zero, and the symbol 1
is set to the numerical vaiue 1,0. The arithmetic statements are
then excecuted from left to right. “The first blank statcment
encountered (the test is for a blank in the first column of the
field) terminates calculation of the function; the value returned

is the last number calculated. If all twenty statement fields are
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used then the calculation will cease with the twentieth statement,
and the result of this statement will be returned as the value of
the function. An error in formulating the function will cause an
error returny an error return will be treated by the calling routine
as if there were no error in the specificed optical property
determined by the function., This is equivalent to eliminating
that specified optical property from consideration.

The function, once defined, may be used as many times
as desired by the program. It may be redefined by inserting a

subscquent DIFIND n card,

a. Operation Table. The operation symbols used must be listed

in the following table. An attempt to use any other symbol will
result in an error return. The symbols punched, the equivalent
FFORTRAN statement, the operation type, and the generated instructions

are described in the table below.

Symbols  [FORTRAN op. generated

punched cquivalent : type instructions

C=A+B C=A+B add CLA A, FFAD B, STO C

C=A-DB C=A-B sub CLA A, FSB B, STo C

R=P/Q R=P/Q div, CLA P, FDP Q, STQ R

Z=A*P Z=A*DB mult, LDQ A, FMP P, STO C

C=A B C=A equate CLA A, NOP B, STO C

Z=A,P Z=A+ABSI(P) add mag. CLA A, FAM P, STO.Z.

b, Example. Suppose that we wish to constrain the bend in

) oy s
element no, 3, a bending magnet, to be 35 . This type of constraint
rmust be entered by a DEIFINE function. We will define function 3

to be 0-35° wheére 0 is the angle of bend of this magnet in degrees.
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The angle of bend for element no., k (a hending magnet) is
calculated and stdred at XCR(k+1); the XCR array is at location
71243 in COMM N, and XCR(4) is stoved at‘71240e We enter the
following cards:
DEFINE 3
35,0
A71240
Am A2
The equivelanet FORTRAN statement is:
FUNCTION3 = XRK(4) - 35.0 .

To enteér this condition for the lincar programming
problem we inscrt the following CONDITION card
07053 B 5
The condition will be labeled as condition no. 7 (arbitrary)
and evaluated after element 5 (arbitrary, but must be after element
3).

If we now demard that the entrance and exit angles be the
same in aadition to the above specification, we define a second
function, say function no. 5; o is stored at XPSI(k) and 8 is
stored at XCL(k+1); the locations of a and B arec 71335 and 71276,
respectively. We enter the following cards to define.the function
as  [UNCTIONS=la-Bl
DEFINE S

(blank card)
'"71335Q71726 )
4=0'-Q R=0,4 ' o
The equivalent IFORTRAN statement is

FUNCTIONS = ABSI( XPSI(k) - XCL(k+1)) .
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15, ALWER Cards

The ALTER cards are read in the format (A6, 05, 012,

AG, Il, **, 4A6); the ** lield is the variable format field,

The description of the fields follows,

column

24-29

30

ficld description

Name of subroutine--must be in CALL list (BCD text).

Octal location of word being entered relative to the
entry point.

Octal mask (masked portions of sclected word remainm
unchanged) .

Variable format; this may be any legitimate FORTRAN
single field format,

Relocation bitj no relscation if blank or zeroj address
relocated relative to location of altered word if a
nonzero integer.

Word being entered, recad by variable format,
24 characters of text may immediately follow the above
field; the location of the text depends upon the length

of the fiecld specified in the variable format.
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APPEﬁDiX III. NUMERICAL BXAMPLES

The two sampie beam systems referred to inm Chapter VIX
have been analyzed numerically both with respect to their linecar
propertiecs an.’ %o their aberrations. The input deck and significant
portions of the printed and plotted output are reproduced here,

In describing these examples we shall try to demonstrate some
of the many types of calculations the code can perform,

The beam system in the first example consists of a
quadrupole magnet triplet which is adjusted to provide a point
image of a. point source. The physcial lengths of the magnets in
the triplet are 16 in., 32 in., and 16 in,, respectively,

Adjacent magnets are scparated Ey 9.25 in. Drift spaces of 275
in. intervene between the source and the effective end of the
triplet, and between the other end of the triplet and the image,
The beam tube passing ﬁhrough the triplet is'eight inches in
diémetera

We construct thcgradient function first and then
determine the effective endpoints and shape coefficients of the
magnets., We shall use these data, including the fringing field
shape coefficients, to construct the beam system; this beam system
is written on a utility tape. We then construct a second beam
system which is identical with the first except that the shape
coefficients are not included; this beam system is also written
on the utility tape. The first beam system is reloaded and adjusted
to provide a double focus. We then calculate the aberrations for -
this system, which includes the fringing field shape coefficients.

The sccond beamn sysﬁem is reloaded and adjusted to provide a double
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focus. The aberrations arc calculated; plots and calculations
then follow for several different examples of objéct—plane.phase~
space occupation,

We then turn to the second example, for which the beam
system, consisting of two quadrupole magnets of 16 in. length, is
adjusted to préduce a line image of an incoming parallel beam,

The bore and scparation of the magnets are the same as those in
the first example; the numerical values of the effective lengthy
etc, are cntered directly. VWe adjust this system and then calculate

and list the aberrations,

A. The Input Deck

Bach of the cards in the input declk, which is repro-
duced at the cnd of this section, is numbered in columns 78 to 80.
tiost of the cards perform obvious functions as explained in
Appendix II; those thaf are particularly significant are
described,

Card #1 is the required momentum card; this card must
immcediately follow the * DATA card. Cards #4 through #13 have
been inserted to generate internal modifications in tﬁe code. Card
#14 labels the CRT film, and numbers 15 and 16 set the IF(k) and
BOOL switches to the desired initial values. Cards #17 through
#21 are required to éet up ?he gradient array; the half-width, 7.38
in., yields the observed effective length for the magnets (V-27),
The beam system is loaded from the stored results of SHAPE by cards
#25 through #33; this beam systcm‘is written on theutility tape, Bl,

as dirccted by cards #36 and #37. The beam system is recad a second time
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SAMPLE PROBLEMS FOR THE

READ BEAM SYSTEM USING DATA DERIVED

* DATA
840 17000
TITLE
ALTER
STEP 02737
ALTER
STEP 030190
ALTER
RESCANUOU 7300000007 7777012
ALTER
SELECTUOV52
ALTER
SCAN 0021402000777 77777012
PREID
SENSE
1 4 16363 1
BELL
1 48s0
2 81le25
3 11465
162¢5
SHAPE
TITLE
READ
7 75 e 75
DRIFT 2750
QUAD i
DRIFT 1
QUAD 2
DRIFT 2
QUAD 3
DRIFT 27569
TITLE

PUT TWO SYSTEMS ON
SAVTAPLI
SAVE

1717341

QUADRUPOLE ABERRATION CODE.
LOWER PROFILE SCALE
J.020943951 PI1/150 FOR PHASE
453400200000 UDRESS~152

CHIFss5 FOR

[

000005070722

058000000200V MIN X ONLY
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1015498
~1:02639
1015498
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Ul Ut
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TAPE=-~ONE

op
4p
4P
4P
4p
4P
&P
4b
4P
4P
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READ

7T <75
DRIFT -
QUAD
ORIFT
QUAD
DRIFT
QUAD
DRIFT -
SAVE
SYSTEM
PUNCH
TITLE

W N N b e

) » 01430 20093 s V0025 Lot

ot

ADJUST SYSTEM TO PRODUCE DOURLE FOCUSe ASSIGN UTILITY T

SAVTAPL?Z

RELCADLIIOL

FOCUS
20001
40002
60001

N g
(ARSI S

-1

SAVE
REPEATU21
FOCUS
SAVE
PUNCH
RELOAD
TITLE

B2

NOW EXAMINE ADJUSTED SYSTEM BY A SERIES OF PLOTS.ePHASE

SYsTeMm
SENSE

5Y5T=M
TITLE

20 000020000000

NOW CALCULATE AND LIST ABERRATIONS

SOLVE

FOR THIS SYSTEM

05

APt RELDAD

AND PROFILE

n
wn

-4

4P
4P
4P
4P
4p
4P
4p
4P
4P
4P
4p
4p
40
4p
40
4p
4P
4P
&

4P
4p
4P
4P
4P
4P
4P
4P
4p
47
4P
4P
42
4p
49
LP
49
49
40

4p

033
039
040
D41
042
043
Oadr
Q45
046
047
048
049
050
051

052

AUs2

J53
054
050
057
058
059
050
061l
062
063
064
565
J66
067
268
D69
73
271
Q72
073
074
07>

~102-



TITLE
ENTER
SENSE
1 9017293
SELECT1213
oBJECT
e 75 6 70
) e 70
601430 « 014
2093 2009
00025 s UDU2
STATE

TITLE

LOAD sSYSTemM WwilH NO
RELOADLIOZ

DESIGN

20001

40002

60001

-1
L

12

22

-1
REPEATU1US
DESIGN
PUNCH

03JECT

STATE

PHASE SPACE DESCRIPTION AND PLOT ABERRATION

004527000000

FRINGING FIELD TERMS FROM SAVE

oo
@
[ G

TO ZEROC).

4527000009

4e
4P
4P
4P
&P
4P
4P
4P
4P
4P
4P
4P
4P
4P
4P
4p
4P
4P
4P
4p
4P
4P
4b
4P
4P
4p
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4p
4p
&P
4p
4p
4P
4
4P
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4P
4p
4P
4P
4p
4P
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Q77
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080
081
082
083
084
085
086
087
0806
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095
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J98
099
100
101
102
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104
109
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110
11l
112
113
114
11>
116
117
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TITLE

NOW ELIMINATE MOMENTUM SPREAD AND RE-LXAMINE

OBJECT

STATE
TITLE

NOW ELIMINATE SPREAD IN Y PRIME--POINT SOURCE WITH ANGULAR SPREAD IN X

OBJECT

STATE

160

1s0

200143

PLOTS»
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TITLE

READ NEwW BEAM SYSTcMs

SENSE

1 4016363

READ
4 3.0

LPLUSE  18.16
DRIFT 8e51

4PLUSE  18.16
DRIFT 27560

EJECT
SYSTEM
EJECT
DESIGN
10001
30002
-1
11
24
-1
SAVE
REPEATO32Y
EJECT
DESIGN
SAVE
EJECT
SYSTEM
PUNCH
SOLVE
POSTID
EXIT

PRODUCING LINE IMAGE FROM PARALLEL BEAM--DOU3L

0044260600000

<O

@ 3

4p
4P
4P
4P
4P
4P
4P
4P
4P
4P
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224
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{%P) SAM

%% GO TO ALTER
SVERCUTINE STEP

PLE

PRUBLEMS FOR

IFIK)=

LOC 2737 =ABS..17037

THE QUADRUPCLE ABERRATION CCDE. 03/25/763 200.08 (18.70 TO GO} PAGE

CCCO0OCOC0O00200C0CO0O0D0000000C000000C 0., BLOL= 000030000020, (HIF=

200707534121 HAS REPLACED 200721727024 LOWER PROFILE SCALE

z&% GC TO ALTER . IF(K}= 0 0 C 0 CO0D000CO000D00C0O000000CGCO0D0O00C 0 0. BUOL= 000030000020, CilF=
SUBRCLTINE STEP LOC 3010 =ABS,..17110 173527112460 HAS REPLACED 176722306444 PI/150 FOR PHASE PLOT
%% G0 TO ALTER . IFIK)= £ 0 COCCCCOO00CO0O0CO0C0O00000000C000C0 0. BOOL= 000030000020, CHIF=
SYBRCUTINE RESCAN LOC 73 =ABS.. 3355 453400202156 HAS REPLACED Q050000002156 LXD UDRESS~1,2 REPAIR
2% GC TO ALTER . IFi{K)s 0 0 C OO0 0000CQOC0COO0D000000O0O00OCOO0GCC 0. BLOL= 00003000002C. CHIF=
SUBRCUTINE SELECT LOC 52 =ABS.. 2160 000005070722 HAS REPLACED CLO004070723 10CD CHIF,»5 FOR TIMING
%z CC TC ALTER . IF(K)= ( C C 0CO0C0O0O00000006G0C00000000C000<0C 0. BUOL= 0C0030000020. CHIF=
SYTBRCUTINE SCAN LCC 214 =ABS.. 28672 050000077776 HAS REPLACED 030000077776 SET FUR MIN X ONLY
#%% GC 7O PREIC » IF{KJ= 00O COCCO0CO0O00O00000C0CO0000000C000G0O00C. BODL= 000030000020, CHIF=
#%% CC TC SENSE . IF[K)I= 0 000 CCCCOO0000C0O00C00C000C00C0 0000 0. BUI= 000030000020, CHIF=
#%¥% GC 7C BELL . IF(K)= 0 1 CCCO0OO0O0 4016363001001 400C000C0CO0 0. BULBL= 00002000002C. CHIF=
BTRE= 8.C0COCC THERE ARE 3 ELEMENTS., THERE ARE 1626 GRID POINTS. SUBROUTINE BELL.

TV MIC)LyFRyBWoEXyZ71,222= 48.00C000C 16.000000 0.5G0000 7.380C00 L.015496 44,000000 52.000000

D MID, Ly FReBW,EX2715272= 81.25C000 32.000000 0.500C00 7.380000 -1.026390 69.,250000 23.250000

T MIC,LyFR)BW,EXe221,222= 114.5C0€00 16,000000 0.50C000 7.38C000 L.015498 110.500000 119. 500000

CRT PLOT NU. 1

=42 CC TC SHAPE . IF{K}I= C 1 C0DCO0OCC4&0C1L &363001001400000C¢0CC 0. BCUL=s 002020000020. CHIF=

1

0.

=907~



{ap) SAMPLE PROBLEMS FOR THE CQUADRUPGLE ABERRATION CODE. 03725763 20C.08 118,42 TO GO) PAGE 2

CALCULATION CF EFFECTIVE MAGNET LENGTHS ANC

#EVAGNET NC. 1——— IMID= 48,CCCOCC INCHES. PHISIM= 0.,000772193 IN-2. THETA= 0,504549. DOB/DR= 1.723866 KG/IN.
ENTRANCE EXIY TOTAL { INCHES)
PEYSICAL HALF LENGTH 8.CCCCCO 8.0CCC00 16.000C00
EFFECTIVE HALF LENGTH 3., 758645 8.398185 18.156830
EFFECTIVE LENGTH INCREASE 1.758645 C.398185 2.,156830
$MAPE COEFFICIENT ~9,814498 2.596170
LPCATICN CF EFFECTIVE ENCS 38.241355 56.338185
RFGICN OF INTEGRATION-—— FROM 0. T0 60.6089845
CRT PLOT ND. 2
#EMAGNET NCo  2-—— IMIC= 81.,250000 INCHES. PHIS -0.000783972 IN-2. THETA= 0.215247. DB/DR= -1.750168 KG/INS

ENTRANCE TGTAL {INCHES )
PEYSICAL HALF LENGTH 16.C000CC  16.00 000 32.000000
E¥FECTIVE HALF LENGTH 160343945 16.343952 32,687897 ;
ETFECTIVE LENGTH INCREASE 0.343945 0.343952 0.687897 ™
SHAPE COEFFICIENT ~2.516457 2.916432 =
~J
LPCATICN GF EFFECTIVE ERDS 64.906054 97.593952 !
REGICN OF INTEGRATION--~- FRCM  60.609845 TG  101.890155
CRT PLOT NC. 3
®EPAGKET NC. 3—== ZMIC= 114.5CC0CC INCHES., PHISIM= 0.000772193 IN-2. THETA= 0.504549. O0B/DR= 1.723866 KG/IN.
ENTRANCE EXIT TOTAL {INCHES)
PEYSICAL HALF LENGTH 8.0C0CCC  B.000C00 16.000C00 . i B .
E€FECTIVE ®ALF LENGTH 8.398183 9.758647 18.156830
ETFECTIVE LENGTH INCREASE 0.396183 1.758647 2.156830
SHAPE COEFFICIENT ~2.596169 9.814500
LrCATICN CF VE ERCS 106,101817 1264.258647
RTGICN OF | ON--- FROM 1C1.89C156 710 162.560000

CRT PLOT N{Yw &

sd% €O TO VITLE . IF(K)= 0 1 00CO0CO04&01 6363001 000140000G0CGCO 0. BUDL= 060020000020, CHIF= =0,



(#P} LOAD SYSTEM WITH NC FRINGING FIELD TERMS FROM SAVE TAPE , DOUBLE FOCUS 03725763 200.08 (15,47 TO GO) PAGE 23
1A3LE ASSIGNMENT FOR ThHE FOLLOWING ITERATIUNS [Sesas
£t 1 ! Z PHI= PHI PSi= PSI
£ 2 Qual z PHI=*(1.0 + VARIOLY)) PSI= PSIE
£t 30 ORIFT Z PHI PSI= PSI
£ NUMBER &4 QUAT z PHE={1.0 + VAR{Q2}) PSi= PSI
ET NUMBER 5 DRIFY z PHI PSi= PS]
£? & QUAD z + VAR{OLY) PSi= PSI
€1 7 RIFT 4 PHI PSI= PSI
THE 2 CONDITIONS T0O RBE ME
CONCITION NUs 22 SIREC v B INITIAL VALUE= 0.541515335% 00, ERRCR= 0.54151535¢F 0C., wWi= ©0,10008 Of
CONDITION NO. 12 v - INITIAL VALUE= ~—0.55%292778E Cl. £RROR= -0.55292778E 0t. Wi= ©C,1000E CL
N7 SCLUTINN CCsY, COEFF. BASIS PRIMAL SCL. CONST. ERRORS
¥ VAR{ I} LRSS SHETS 1) Yii)
i ~C.003%39713 Q. ¢ ~0.22272012E~-07 =-0,22802322e-07
2 —-2.00224694 Ca & 0,26919759c 03 ~0.12207031E-03
3 Co o8 S 0.30633350E 02 0.26414063E-03
4 ~£.0000006C 0.0976532%9¢ 01 T 0.306333508 02 -0.12293458£-06
3 C.0C0C0004 0.C996538%9E 01 8 0.26919759 ~0.23841E58E~06
& C.200CC004 0.1C1C0000E C2 10 0.,10100000E 02 0.
NTw ERROR= 6.,070793L5 = 0.,998413
IREIXs » o INFLAGS M= 6 < i
KOUToeaok= INVC= 5 NUMYR= | NUMPY= 7
zee CC TU REPEAT. 172 %3201 0004000C0C0C0 0. 0.0 '
oo
RFPEAT THE NEXT o
oo
901 72%30010C0 400000030 0. BUCL= 00632704002C. CHir= 0.0 |
- 0.10GCE Ct
. 0.,10008 01
AT ION s BASIS Lo CONST -
ARCL) SH{T)
L ~C.00000133 G. 0 05 0.
2 ~£.000C0238 Co & c1 -0.152%
3 G Ce 5 0z 0.3051
4 —~{.00000022 0.1 7 0z —0.3%762787E-006
5 —-$.,000C0021 o 8 o1 —0.484237746-07
& —-C.00000022 G 9 02 G.
NTw ERRQOR= 0.3C0CC343% 0.00675964 CALC. IMPROVEMENT= -0 VAR FACTOR=  0.997925
INFIXeoa INFLAG= & M= 6 ME= 2 MCi= 1 NVER= O
KOUTooeoK= 3 {WART iNnvC= 5 NUMYR= | jUmpy = Ji= O
% 5 TC CESIGN. fFik)= C 1 G0 COCO 172%3001CC0400900CO0 0. BOOL= 004527040020, Ciif= 0.0
THE 2 CONCITICNS TQ BE MET AREo..-
CONCITICON NOo. 22. DOESIRED VALUE= -0. “ INITIAL VALUE= ~0.34332275E~-04. ~0.343322756~-0%. 0.1000E O}
CUNOITICN NOQe. 12. DESIRED VALUE= -0. . INITIAL VALUE= -0, . -0 . W= 0.10C0t 0L
N7 SOLUTION CC0ST. COEFF. BASIS PRIMAL SOL. CONST. ERRCRS
7 VAR( L) BlI} SH{TY X1 Yit)
1 ~-C.00000001 0o 0 -0.557217268-09 ~0.32672742E-05
2 —~C.000C0001 0. & 0.21944452E 02 0.2336370%E 03
3 C. 0. 8 0.21533453E 02 ~0.39278083¢& 03



(5P) LOAD SYSTEM WITH NC FRINGING FISLD TERMS FRCM SAVE TAPE , DOUBLE FOCUS 03725763 200.08 115.44 TO GUY PAGE 25
#x% GC TQ SYSTEM. IF{K)= 0 1 023000 90 T 29300 L00040000000 0. BULOL=S 004527040020, CHIF= 2.0
sizres THE SYSTEM NOW LADER CONSIDERATICN CONSISTS OF THE FOLLCWING ELEMENTS...

K LENGTH p= 17C0.C0 MEV/C.

v 275.0000 ORIFT SPACE

’ 18.1568 QUADRUPOLE  MAGNET PHI= 0.769L12E-03 THETA= 503541 OBJOR=  1.716785 Ci= —0. CR= -5,

= 8,5079 LCRIFT SPACE

% 32,6879 GUADRUPOULE MAGNET PHI= —0.782216E-03 THETA= 914219 DB/DR= —1.746238 (L= -C. CR= -0,

= 8.5079 ODRIFT SPACE

" 18,1568 QUADRUPOLE MAGNET PHI= 0.769112E-03 THETA= 0.503541 DB/DR= 1.716985 (L= -0, CR= -0,

7 275.00C0 DRIET SPACE

T®E TCTAL LENGTH IS 636.0173 INCHES.

CRT PLUT NG, 23

K= 1 BEAM WALF WIDTHS AT I= 55.C000 INCHES= 1.086776 INCHES IN X PLANFE AND  0.907817 INCHES IN Y PLANE.

K= 1 BEAM HALF WIDTHS AT Z= 110.000C INCHES= 1.742650 CHES IN X PLANE AND  1.268475 INCHES IN Y PLANE.

K= 1 BEAM HALF WIDTHS AT I= 165.GC00C INCHES= 2.475831 rmcu”f TN X PLANE AND  L.707978 INCHES IN ¥ PLANF.

= 1 BEAM WALF WIDTHS AT Z= 220.C000 INCHES= 3,234164 INCHES IN X PLANE AND 2.,179132 INCHES IN Y PLANE.

K= 1 BEAM BALF WIDVHS AT Z= 275.C000 INCHES= 4.003381 INCHES IN X PLANE AND 2.6652C3 INCHES IN Y PLANE.

FTRST CROER SCLUTIONS THRCUGH EBLEMENT 1 DCHI= 0. 0. [ 0.
CHT  C.C995%99%E 01 C.C95$9999E 01  €.275C0000E 03  0.275000008 03 0. 0. 0.09993999F 01 0.09999999¢E
YIRTUAL WAISTSoweX PLANE=-LGC= =275,000 INep, XMAX= 0.7500 IN.. Y PLANE-—=L0OC= —275.000 IN., YMAX= 0.73500 IN.

K= 2 BEANM HALF WIDTHS AT Z= 278.6314 INCHES= 4,034031 INCHES PLANE AND 2.711L208 INCHES IN Y PLANE.

K= 2 BEAM HALF WIDTHS AT Z= 282.2627 INCHES= 4.023825 V«th> PLANE AND  2.784766 INCHES IN Y PLANE.

K= 2 EAM RALF WIDTHS AT 7= 285.8941 INCHES= 3,972867 INCHES PLANE 8NMD  2.886622 I[MCHES IN Y PLANE,
Ke 2 BEAM HALF WIDTHS AT I= 289.5254 INCHES= 3,881674 IN’H;S PLANE AND  3,017805 INCHES IN Y PLANE.

K= 2 BEAM HALF WIDTHS AT 7= 293.1568 INCHES= 3.751172 INCHES PLANE AND  3,170644 [NCHES IN Y PLANE.

FTRST CRCER SOLUTIONS TrRRCUGH ELEMENT 2 DCH Cs -0 0.
CHYI  0.87587942E OC 0.,11294782E 01 0.25826605E 03 0.32954041E 00 14562293E-01 —0.28041547F 01  ©.531341089%
VIRTLAL WAISTS..oX PLANE-=LOC= 90.530 IN.s; XMAX= 00,2595 INo. Y ~L0C= —64.852 IN.s YMAX= 0.1424 IN.

K= 3 BEAM HALF WIDTHS AT Z= 294.8584 INCHES= 3.681C07 INCHES IN X PLANE AND 3.262906 INCHES IN Y PLANE,

K= 2 BEAM RALF WIDTHS AT 7= 296.560C0 INCHES=E 3.610848 INCHES IN X PLANE AND 3.345173 I IN ¥ PLANE,

K= 3 BEAM FALF m%ust AT I= 298.2615 INCHES= 3.540697 INC N X PLANE AND  3,429443 PES IN Y PLANE )
K= 2 BEAM RALF AT Z=  299.%631 INCHES= 3.470533 X PLANE AND  3.512717 INCHES IN Y PLANE.
K= 3 AT 7=  30l.&647 INCHES= 3,400417 ¥OPLANE AND  3.595993 INCHFS IN ¥ PLANF.

FYRST C HRCUGH De -0. Cs
C¥I  Co 125337 0,373 4€ ~0.28C41567E Ol ©0.51341089¢
YYRTLAL - OO = 0,2595 . YMAXE 0.1424 IN.
K= 4 AT Z= 308.2022 3.186528 CHES Y PLANE,

K= 4 AT I=  314.7398 3.070620 CHES Y PLANE.

K= & AT I= 321.2774 3.,076123 CHES INCHES IN Y PLANE.
K 4 AT Z= 327.8150 3.175922 CHES INCHES IN Y PLANE.
K= 4 AT I= 334.352¢ 3.382347 CHES INCHES IN Y PLANE,

FYRET QRCER SOLUTT DCHI -0, -0.
C¥I  0.602326078 C 3 03 0.37322073E ( 1B8TTI93E-01 (.28041547F 0} —0.51341091¢F
VIRTLAL WAISTS..sX PLAD I XMAX=  0.,2671 INes TL.860 IN.y YMAX= (0.1401 IN.
K= 5 BEAM HALF WIDIHS AT 7= 336. cﬂ41 ENCHES« 3.450473 INCHES IN X PLANE &VD 3.496862 INCHES IN Y PLANE.

K# 5 BEAM RALF WIOTHS AT Z= 237.7557 INCHES® 3.518607 INCHES IN X PLANE AND 3.412190 INCHES IN Y PLANE.

K= 5 BEAM HALF THS AT I= 33%.4573 [NCHI TTEUBBOTAY INCHES TINTXUPLANE ANDT TEUIZTS2 L INTHES INTY TPUANE. o
K= 5 BEAM KALF THS AT Z= 341.1589 INCHES= 3,654898 INCHES IN X PLANE AND 3.242856 [NMOHES IN Y PLANE.

o}

(&l

e

]

i

-

<602~



{%P) LCAC SYSTEM WITH NC FRINGING FIELD TERMS FROM SAVE TAPE , DOUSB
S=  3.,723054 INCHES IN

K= 5 BEAM RALF WIDTHS AT Z= 342.8604 INCHE

FYRST ORDER SCLUTICNS TEHRCUGH ELEMENT 5

C¥I  (0.627333R3E 00 0.10168848F 01 0.258266
YTRTLAL WAISTS..oX PLANE-—LOC= -92.467 INa,
BEAM +ALF WIDTHS AT 7= 346.4918 [NCHE
BEAM HALF WICTHS AT Z= 350.1231 INCHE
BEAM HALF WIDTHS AT Z= 353.7545 INCHE
BEAM HALF WIDTHS AT Z= 357.385% INCHE
BEAM HALF WIDTHS AT Z= 361.0172 INCHE

K=
K=

[s X  s Ne 8

FYRST CRCER SCLUTIONS THRCUGH ELEMENT 6

CHI  C.60061169% 0C 0.73113C36E 00 0.274999
VIRTUAL WALISTScooX PLANE~=—LOC= 260.354 IN.,
K= 7 BEAM FALF WIDTHS AT IZ= 416.0172 INCHE
K= 7 BEAM RALF WIDTHS AT Z= 471.0172 INCHE
K= 7 BEAM HALF WIDTHS AT Z= 526.0172 INCHE
K= 7 BEAM wHALF WIDVTHS AT Z= %8l.Cl72 INCHE
K= 7 BEAM RALF WIDTHS AT Z= 636.0172 INCHE

FYRST CRCER SCLUTIONS THRCUGH ELEMENT 7

olri=

03E 03 0.329540428 03

CHI ~0.99999993E 00 —~0.1000C0028 01 0.26702881l6-04 -C.45776367E-04

VIRTLAL WATISTS..oX PLANE~-LCC= —14.646 INoy

THE TRANSFER MATRICES FOR THE SYSTEM ARE---

XX RADIAL

XX —0.93999993E CC C.26702881E~-C4 G
¥ X
X ~0.58204C59€-C2 ~C.G9599982E UJ C.
vX

XX Co Ce 1.0

XX

TACIAL FCCAL LENGTH= (,17180932F C3 INCHES.
THE RADTIAL (UBJECT FCCAL POINT IS
TRE RADIAL [MAGE FCCAL POINT IS

THE VERTICAL OBJFCY FCCAL PCINT [S LGCATED ~
THE VERTICAL IMAGE FQCAL PQINT IS

s#% GC TGO EJECT .

LOCATED -0.171809%23¢
LOCATED -0.17180931¢

XMAX= 0,267l IN.. Y PLANE--LOC= 63,353 IN., YMAX= 0,1401 IN.
S=  3.849418 INCHES IN X PLANE AND 2.993258 INCHES IN Y PLANEL.
S= 3.936801 INCHES IN X PLANE AND 2,858729 INCHES IN Y PLANE.
S=  3,984314 INCHES IN X PLANE AND 2,753245 INCHES I[N Y PLANE.
5= 3.991477 INCHES IN X PLANE AND 2.675739 INCHES IN Y PLANC.
S=  3.,958215 INCHES IN X PLANE AND  2.625427 INCHES IN Y PLANE.
LCHI= =0, -0, Q. -0.
98E 03 0.27500000k 03 -0.58204059£~02 -0.65132022r-02 ~0.39999982¢ 00 -0.100000C2t 01
XMAX= Q.7L73 IN.. Y PULANE--L0C= 241.8C0 IN., YMAX= 0.6640 [N.
S=  3.153025 INCHES IN X PLANE AND 2.0716C1L INCHES IN Y PLANF.
S= 2.359687 INCHES IN X PLANE AND 1.535%522 INCHES IN Y PLAWE.
S= 1.595973 INCHRES IN X PLANE AND 1.044870 INCHES IN Y PLANE.
S=  0.937331 INCHES IN X PLANE AND 0.702361 INCHES IN Y PULANE.
S= 0.750000 INCHES IN X PLANE AND 0.750000 INCHES IN Y PLANF,
CCHI= 0. -0. G -0,
-0.5820405%E~02 ~0.651320226-02 -0.999297982E 00 -C.10000002& 0Ot
XKMAX= 0,7173 IM.. Y PLANE--LOC= —33.200 IN., YMAX= (.6640 IN.
XX XX VERTICAL XX
XX XX -0.10000002E 01 =~0.45776367E~-04 -0, XX
XX XX XX
XX XX -0.65132022E~02 ~-{C.L10000002F 0L =-0. XX
XX XX XX
XX XX Q. C. 1.C XX
KX XX XX
VERTICAL FOCAL LENGTH= 0,15353430E 03 [NCHLS. X XA AXXX X
03 INCHES AHEAD 0OF THE SYSTEM, . X X X X X X
03 INCHES BEYOND THE SYSTEM. XAX X KX XXXX XXX
0.15353433€ 03 INCHES AHEAD UF THE SYSTEM. XXX XXXX X X
03 INCHES BEYOND THE SYSTEM, X X X X

LOCATED —0.1%353434F

LE FOCUS 03725763 2C0.08 (15.37 TO GO) PAGE 26
X PLANE AND  3,158196 [NCHES IN Y PLANE.
~0. ~0. -0, -0,

0.29393774E~02 ~0.18877193E~01 0.28041547E QL —0.51321091t 01

[Fly= 01 00 CCCO09 0172730010004 000000CO0 0. BOOL= 004527040020, CHIF= C.0

=0T1¢-



(EP) LCAD SYSTEM WITH NC FRINGING FIELD TERMS FROM SAVE TAPE , DOLBLE FOCUS 03/25763 200,08 {15.34 TO GO} PAGE 27

=iz GO TC SOLVE o IFIKY= ¢ 1 C 0 C0C092 01 72530010004 0000000 0. BGUL= 004527040020, CHIF= 0.C
TLERANCE COEFFICIENTS FOR MAGNET NCo 2~—-PHI= 0.000769109 LATERAL DISPLACEMENT, RUOTATIUN, OR DIPOLE COMPONENT.
TEAMS [N X TERMS IN X* TERMS In Y TERMS IN Y?
(7.0} = MU/PHI..—0.380415%E C1 SKRIFT IN X -0.,875978£-02 (1,00 = NU/PHI.. Q.413411C 01 SHIFT IN Y 0.123640L-01
(VL) ®*CPHI/PHIL..—0,364819E 01 CCS(2W)~1 -0.83GL14F-02 (X1 # XI/PHIeo=0.79CH75E 0L ~0.5%SIN{2W) ~0.2306288L-01
(¥C) = XI/Phlee 0.792818E 0L -~C.5#SIN{2W) 0.1827%8E-01 {YC) »0PHI/PHI.. C.4319578 01 COSI2W)-1 2.129280E-01
(Y0 ) =0PHI/PHI..—0.103673E 04 CCS{2W)-1 ~0.238597E 01 (X0 % XI/PHI.o—0.22500858 04 ~0.5#SIN(ZW) ~0.672684F 01
[vegQ) # X{/PHIw.. 0.2250C5E €4 ~C.5=SIN{(2W} ($.%518%44F Ol (Y?UY#DPHI/PHI . 0.122741E C& COS{2W)I-1 3.367478¢ 01
TPLERANCE COQEFFICIENTS FCR MAGNET NCO.  4-—PHI= -0.000782214 LATERAL DISPLACEMENT, RUTATION, OR DIPOLE COMPONENT.
TERMS IN X TERMS IN X7 TERMS IN Y TERMS IN Y° !
{7,801 = MU/APHT.. £.56083LE CL  SHIFT IN X 0.163213¢-01 (1.0 = NU/PHI..-0,102682C 02 SHIFT IN Y ~i3.33639%¢-01 Ej
{YC) %DPHI/PHI-o 0.3583286E 01 CCS{2W)-1 0.103751E-01 (X0} # XI/PHI.. 0.1309620 02 —0.5%SIN{ZW) C.4283748-01 ot
(VO) s XI/PHI..~0. 1468508 02 ~0.5=SIN{2W) ~0.425974F-01 (YUY »DPHI/PHIL.—0.1344258 02 COS{ZWi-1 —~0.4376426-01 '
(Y20 «CPHI/PHI. 0.123128E 04 CCOS{2wi-1 0.358326E 01 {X*C) = XI/PHIoo Ca430010C 04 —CoS5=SINI2W) 0.14655%08 02
[VICY = XI/PHI..—0.450010E C4 —Co52SIN{2W} ~0,130962E 02 (Y?0 «DPHI/PHEo—0.4127778 (& COS{2WI-1 -0.1344258 02
TPLERANCE COEFFICIENTS FLR MAGNET NO. 6--PHI= 0.000769109 LATERAL DISPLACEMENT, ROTATION, OR DIPOLE COMPONENMT.
TERMS IN X TERMS IN X° TERMS [N Y TERMS InN Y?
(1.0) = MU/PFI..—0.38C415E C1  SHIFT IN X -0.133819E-01 (1.0 % NU/PHI.. 0.413411E 01 SHIFT IN Y 0.145623E-01
(¥C) »CPrI/PHI.o~0.238867E 01 CLS{2WI-1 ~0.839113F-02 X0} = XI/PRTL.—0.5189448 01 —Co.5=SIN{2W} ~0.1827580-01
{(YC3}  * XI/PHI.. 0.672684E CL -0.5=SIN{2W} 0.2362388£-01 (YQ) #DPHI/PHI.. 0.367478E C1 COSI2W)-1 0.129280-01
{¥i0)#CPRI/PHIL.—0.103672E C4 COS{2W)-1 0364819t 01 (X'0) = XI/PHI. ~0,225%005F 0& —-C.5=SIN{2W} ~0.792818E Ol

(Yi0) = XI/PhIos 0.225CCSE 04 —Co5=SIN(2W) 0.790675E 01 (YPQi#0PHI/PHI. e 0.122741E 04 CUS{2WI-1 0431957t 01



(AP) LCAD SYSTEM WITH NC FRINGING FIELD TERMS FROM SAVE TAPE

THE TRANSFER MATRICES FCR THE SYSTEM ARE——~

XX RADIAL XX

XX ~0.9995%993E 00 C.26702881E~-04 0. XX
X XX
X¥ ~0.58204C598-C2 ~0.999993982E CO O XX
¥ XX

XX C. Co 1.0 XX

XX XX

PADIAL FOCAL LENGTH= (.17180932F C3 INCHES.
THE RADIAL CBJECT FOCAL POINT IS LOCATED ~0.17180929F 03
THE RADIAL IMAGE FOCAL POINT IS LOCATED ~0.17180331f 03
THE VERTICAL OBJFCT FCCAL POINT IS LOCATED -0.15353433E 03
THE VERTICAL IMAGE FOCAL POINT IS LOCATED -0.15353434E 03

» DOUBLE FOCUS

XX

XX ~0,1000000
XX
XX ~0.,6513202

XX 0.

VERTICAL FOCAL LENGTH= 0.15

INCHES AHEAD OF
INCHES BEYOND T

03/725/63 200.08
VERTICAL
2E 01 —0.45776367E~-04

2E-02

e

353430E 03 INCHES.

THE SYSTEM,
HE SYSTEM.

INCHES AHEAD OF THE SYSTEM.
INCHES BEYOND THE SYSTEM.

ABERRATICN COEFFICIENTS FCR THIS QUADRUPCOLE MAGNET SYSTEMw————

TENERALIZED SPRHERICAL ABERRATION
TERMS IN X

XIXPX?,,0333= ~0.,554341E 05

XYY, C443= ~0,304661E Ch

TERMS IN Y
YIYSYT, Chébh= ~0.234240F 06
YEXPXT..L433= —0.304861 06

TENERALIZED COMA

TERMS IN X
X¥2eX®.,.0331= -0,483973E 03
YYIYS .. L4232 ~0.198432E C4
XVIYr . .0441s —0.886626E C

TERMS IN Y
YYOYE,, . 0442 —0,228848E 04
XY?X?,..C431= —0.1773258 04
YXOX® ., 0332% —0.9921608 03

TENERALIZED ASTIGMATISM
TERMS IN X
A¥X? o 0aol3ll= —0.14644CE C1
K¥Y¥? o ,0.0421= ~0.581483E 01
Y¥RTe00ao0322= ~0.324956E 01

TERMS IN Y
YYY? o0000%22= ~0.7474908 0L
YXX? ea0oC32l= —0.581483F 01
AXY? oo oléll= —C.268354F 01

TENERALIZED DISTORTICN

TERMS IN X TERMS IN Y
F¥Xoowoellll= ~0,1529CGE~C2 YYY200000222= —0.8162540~02
X¥Yooo000221% —0.958733€~02 YXXKoo00al2llm ~0.8853579£-02

TENERALIZED CHRUMATIC ABERRATICN
CECCND CRCER TERMS IN CELYA =CHI

TERMS IN X TERMS IN Y

X#UELP...C81= 0.24509CE C1 Y#DFELPs o002 0.544813¢ 01
XK?=DELP,.C53= 0.842174% C3 XP#DELP..C54= 0.167295E 04
T+IRD ORCER TERMS IN CELTASQ=CHI

TERMS IN X TERMS IN Y

3.368366E—0C
0.218095E C2

Y#0SQs0L55%2= ~0.4116863¢ 01
Y *DSG. o C554= ~0.122151E 04

XK2L5Qos0C551=
X'=0S8G..C553=

CRINGING FIELD ARERRATIONS
THE SECCNLD ORCER ABERRATIQNS DLE TC THE FRINGING FIELD ARE
THIRL ORODER TERMS IN LAMBDA=LAMBUA=CHI
TER¥S IN X
LY XeooeoFbil= O
LYXT .o FLL3= O,

TERMS IN Y
LYo soosFLL2= 0o
LLY®ooooFLLA= Qo

TERMS
XXX, .0C333=
XPYPYe,.DC443=

3

2
YXEY? o0 DC432
XYEY? ., .004641

TERMS
XXX 60 0aDC3L
XYY? oo o 0C421L
YY¥XPeooaDL322=

TERMS
XK#LELP. . 0C51=
XPeDELP, . 3053=

TERMS
X#0SQs o DC55L=
X*#*DSQ. . 0C553=

ELIMINATED BY THE CORRECT CHOICE

TERMS
LlXeoowoDFLLE=
LEX?ooeo DFLL3=

InN X®
~0,161324E 03
~0.886626E C3

IN X3
-0.136125E 01
~0.574123E 0L
~0.24798%E O

—

N X*

-0.398694k-02
-0.161710E-01L
~0.934766E~02

IN X®
~-0.403350£~C5
—C0.26513RE-04%

IN X
0.640712E-02
0.24509CE 01

IN X?
0.236067E-02
0.368966L-CC

IN X?
-0
C.

-0.10000002€ Ot

{15.32 TO GO)  PAGE 28
XX
0. XX
XX
O- XX
XX
1.0 XX
XX
X XX XXXX X
X X X X X X
XXX X X XXXX XXX
X XXXXXX X X
X X X X

TERMS 1IN Y°

Yeyrys, DCeh4= ~0.762826E 03
YPX?X?..0C0433= —0.7921608 03

yyeys
X\{'UXQ
XX

YyYy*
YXX*®
XXy?®

YYYa

YeDELP. .. DCB2= 0. 179082E-0
Y DELP..DCS4®  (0.344813¢8 C

TERMS [N Y®

s DC%42= —0.744018E 01
2o s DC%E31= ~0.57460%4E J1
caeDC332= ~0.321583E 01

TERMS [N Y°!
0o DL422= —0.2426155~01
2o DC321= =0.187366E-01
2o DC&LLI= ~0.863960E-02

TERMS IN Y*

ceeoDL222= —0.264502E-06
YXXowoeDC211= —0.28378LE-08

TERMS IN Y°
i
1

TERMS TN ¥?

YeSWeoDC552= ~0.138L47E-01
YPe0SGe oDC554= —0,4116628 Gl

CF

THE EFFECTIVE LENGTH.

TERMS IN Y°

LiYeoooo o OFLLZ=  O.
LLY? oo sDFLLE=  Co

A e



£4P) LUAD SYSTEM WITH NC FRINGING FIELD TERMS FROM SAVE TAPE
LCWER BCUND UPPER BOUND INCREMENT MEAN

i -0.7500C0CQ 0.700CCC0C 0.7500000¢C o8

ye -0.750000CC 0.70000C00 0. 75000000 Co.
X°L -0.01430CC0 0.,014CC000 C.00572000 C.
Y'C ~C.C03%29399 C.C090CL00 C.00371999 0.
DRFAY -0.0C025CCC 0.0002CC0C 0.00025000 0.
GYVEN PLOT SCALESs.. X,¥= 4.00000000
MARIMA {(wiftt CISP. AND FRINGE}.. AMAX=  (0.75046551

MPXIMUM ABERRATICN DISPLACEMENTS... XAMAX=
Re¥.S, ABERRATION CISPLACEMENTS... XRMS=
MRAXIMUM BALF WIDTHS {70 THIRD CRUER}.. SCALEX=

TRE FCLLOWING COEFFICIENYS ARE NGRMALIZED 7O THE U

0.94159422
0.05267540
1.69205973

s> DOUBLE

VALUE

YMAX=
YAMAX=
YRMS=
SCALEY=

NIT HYPERSPHERE

ABERRATICON COEFFICIENTS FOR THIS QUADRUPOLE MAGNET SYSTEM~——-

TENERALIZED SPHERICAL ABERRATICN
TERMS IN'X
XIK?X?,0333= -0, 162101E~CO
XYY, ,0443= ~0.376807E~-CO

TERMS IN Y

TENERALIZED COMA
TERMS IN X
KVIXS . 0,0331= =0.76225TE-C1

TERMS IN Y

Yeveyt, Labs4s= —0,188412E-00
YIXPX'eoL433= —0.579392¢ 00

YY?Y?ouolb42= —0.,148448E~00

YVOYT, .C432= ~0.197921E-00 XYTX?,,,0431= ~0.176869E~00

XVIYE,, . C441= —0.575132E-01

TENERALIZED ASTIGMATISWM
TERMS IN X
XYX?o00sC311= =0,L17792E-01
XYY?,,000421= ~0,3C4188€-C1
YYX%e0.al322= —0.261387E-C1

TERMS IN Y

TENERALIZED CISTORTICA
TERMS IN X
X¥Aooo0ollil=s ~0,645083E6-03
X¥Y000000221= —0,404465E~C2

TERMS [N Y

TENERALIZED CHROMATIC ABERRATICN
CECCNT CROER TERMS IN CELTA =(CHI
TERMS IN X
0.4595438~C3 Y
0.2QL077E—-C2 X
RMS IN CELTASQ=C

TERMS IN VY
Y20SQosL5%2= ~0.1%29676-06
Y?xDBSG. L0554 —0.710C0CLE~D6

0,172953E~-C7
C.1%49226~C7

TRINCGING FIELN ABERRATIONS
THE SECCNC CRCER ABERRATIONS DUE TO THE FRINGING
THIRC ORCER TERMS IN LAMBDA=LAMBLDA=CHI

TERMS IN X
LV XassoeoFLLLE 0.
LT X% o.eFLL3= Qo

TERMS IN Y
LlYeoosofLlt 2= (o
LLY? eonoFLLA= (o

FIELD

YXTX.,.0o0332= ~0.1521658-00

YYY?so0ea0422= —-0,391030E-01
YXX?oaool321l= ~0.467730E-01
XXYT,.0,0411= —0.140383E~01

YY¥Y0 00,0222 ~0.3443578-02
YAXeasoC211= =0.373604E-02

ARE

XKPAEX D
XEYPY? .0

AXTXT 600D
YXTY? .0
XY'Y®,..0

XXX 6000l
XYY ' ooooD
YYX?ase0D

XXXo oo aa
XYYes00a

jelw)

X#DELP. o
AP =DELP.,

X#D8Q. .0

X?#DS0..0

LLXenooal
LLX'....eD

FOCUS 03725763 200.08 (15.31 70 GO) PAGE 29
STAND. DEV SCALE FACTUR
10.00000000 0. 75000000
10.00000000 0. 75000000
10.0000000C0 0.0143CC00
10.000C0000 0.009235999
10.0000000¢C 0.00025000
X2,¥e= (.05000000
0.75103177 XOMAX= (,01496018 YIMAX=s  0.01051764
1.35238047
0.07282206 RRMS=  0,08987630
2.10341224 SCTALER=  2.00000000

TERMS IN X¢
C333= ~0.471746E-03
C4643= —0,109659E-C2

TERMS IN X°®

C331= ~0.208772E-03
C432= ~0.572645E-073
Casal= -Q,.160864E-03

TERMS IN X°

C311= -0.320699E-04
C421= ~0.3845945E-04
C322= ~0.751703E~-04%

TERMS In X
Cill= —-0.170374E-05
C221= ~0-1118538-04

TERMS IN X°®
0CsSl= 0£.,120133%-05

0CH%3= 0.87619H6E-05
TERMS IN X°®

C551= 0.110657L~0%
C553= 0.329763E~-09

TERMS IN Y?
Yoyrye,  DCaba= —0.6135R4E-03
YOXPX®, . DC&433= —0.188685E~02

TERMS IN Y°*
YY®IY?.,aDC8425 ~0,482626E-03
XYTX?,,.DC431= ~0.572576E~03
YXEX'eoDC332= ~0,4%3204E~-03

TERMS IN ¥Y°
YYY'so,a00%225 —0.126918E-03
YXX'ooooNRC321= —0.15%0711E-02
AXY?oo,s 00411 ~0.451959E-0¢

TERMS [N Y
Y¥Y¥ooosoaDC222= -0,
YXXooaooDLZ21L= ~Co

TEAMS IN ¥Y?
aaaLB52=  0.335778E-05
PaoDlB4= 0.126669£~04

~ o

TERMS I ¥?
¥0SUe . DCS52x ~0,647566E-09
¥1x050..005%54= —0.,239279E-0¢8

0 BY THE CORRELT CHOICE OF THE EFFECTIVE LENGTH.

TERMS IN X°®
FLLl= =0,
FLe3d= 0.

TERMS [N Y°?
LhYsoesooDFLLZ2= Qo
LEY?eosoDFLLE= O,

“elZ-



(7P) LCAD SYSTEM WITH NC FRINGING FIELD TERMS FROM SAVE TAPE , DOUBLE FGCUS 03725763 200,08 {15.30 TG GOy PAGE 30

DISTORTION AN COMA SPHERTCAL ABERRATION AND ASTIGMATISM PARTIAL SUMS FUR XRMS, YRMS
X v X N

0.00C03951 0.00020629 C.00169135 0.00298886

.COCC000n 0.000CC014 C.0C032845 0.00044373

¢.CCC02296 0.C00C9181 0.00000057 0.00000637

0.06CC0C0T 0.00000005 0.00059160 0.00139873

£.CCCC1378 0.00009647 0.00000285 0,06000082

T.cccoslel 0.C00C06517 0.00000192 0.00000455

C.74599994 0.7500C018 0.00006038 0.00000042

0.0C436530 0.0C488490 0.01430000 0.00930000

0.75000032 0.750CC060 0.01866530 0.01418490 ;
CRT PLOT NO. 24 ~
CRT PLOT nO. 25 .
CRT PLOT NGC. 26 -

CRT PLOT nNO. 27



(2P} NOW EXAMINE A POINT SOURCE {SET MAXI X AND Y TC ZERO}. 03725763 200.08 (12.60 7O GO}
LOWER BCUND UPPER BLUND INCREMENT MEAN VALUE STAND. DEVY SCALE FACTO

X" 0o ~1.C00CC00C G.75000000 Co 10.,00000000 Ce

yr C, —-1.0000CC00 C.7500C00¢C Q. 10.00000000 Ce

X°C =0.L1430000 C.01400000 0.00285%99 0o 10.00000000 0.01430000

Y C -£.QC%289¢%9 C.0090CCCC 0.00185999 Co 10.000C0000 0.00929999

onse -0.,000250C0 C.00028C0C0 0.00025000, C» 10.0C000000 0.00025000

GTVEN PLCT SCALES..s Xs¥=  4,00000000 X2, ¥e=  0.,05000000

MAXIMA (RITH DISP. AND FRINGE}.. XMAX=  0.C0301115 YMAX= 0.0038900%4 X*MAX= 0.01430876 Y MAX=

MAXINMUM ABERRATION DISPLACEMENTS... XAMAX= 0.53890777 YAMAX= 0,76780483

RoMoS, ABERRATION CISPLACEMENTS... XRMS=  (0.04971971 YRMS=  ($.06761657 RRMS= 0.08392885

MAEXIMUM HALF WIDTHS (70 THIRD ORDERl.. SCALEX=  0,54191893 SCALEY= 0.77169487 SCALER= (.70000003

THE FOLLCWING COEFFICIENTS ARE NORMALIZED TQ THE UNIT HYPERSPHERE

ABERRATICN COEFFICIENTS FOR THIS QUADRUPUOLE
TENERALIZED SPHERICAL ABERRATICN

TERMS IN X
XIXIX?.,0333= -0,16210LE~C0
XOY Y. C443= ~0,.376807E~0Q

TERMS IN Y
YIYIYI. . Chhh= —0.188412E-00
YOKIX?..C433= —0.579392E 0O

TENERALIZED LCMA

TERMS IN X TERMS INY
X¥EIXS ,..0331= —0. YY®Y?osoll42= —0o
¥YIYe ., ,0432= 0. XYIX?,..C431= =0,
Xviye, . .C44l= —Q, YXIX%eooC332= -0,

PENERALIZED ASTIGMATISH

TERMS IN X TERMS IN Y
XK .o oal3Lli= =0, YYY?ooaoCh22= =0,
AYYT o 00aCé2i= —0, YXX?ooool321= =0,
Y¥X?®..0.0322= ~0. XXY'ooooC4ll= =0,
TENERALIZED CISTORTICN

TERMS IN X TERMS IN Y
X¥Xoswsollll= =0 YY¥Yeuoo.0222= =0,
K¥Yoooo0el22l= =0, YXXoooeal2Ll= =00
MENERALIZED CHROMATIC ABERRATION
SECCAND CRDER TERMS IN CELTA =CHI

TERM TERMS IN Y
X=LELP..-L51 cs52= 0, 77
X?#DELP.C53 C34= (,388961E~02
THIRC ORDER

TERI TERMS IN Y
X3%05C..2C55 Y#0SQeo.CH552= 0.
X?#[3G..C55 ¥DSG. 0554 ~0.710001E-06

FRINGING FIELD ABERRATIONS

THE SECCNC CRDER ABERRATIONS DUE 7O THE FRINGING FIELD

ARE

THEIRD CRECER TERMS IN LAMBDA=LAMBDA=CH]

TERMS IN X TERMS IN Y
L¥XoeoooFLlil= 0O LYo oo o FLL2= O
LURT s oeoFLL3= Qo LiY? coooFLl4= 0.

TXXK e ..DC3Y

THA K

MAGNET SYSTEM——=-

TERMS IN X¢
XTXTX,.DC333=

TERMS IN X°*

XXPXS
\(xi‘\/ﬂ
Xyeys

e0eDC331L=
0o DCAZ2=
o0 DCALL=

-0.
-0,
=0

N R
=0,
-0.
~0.

XYY o...DC%

TERMS
21=
YYX'ooaaDL322=

ceaD

A¥Yoo0000

ELIMINATED BY THE

TERMS IN X°©
LiXosaosoDFLLL=
LEX9 ... .OFLLS

=0

—0.47LT46E-03
XOYEY®, o DL443= ~0,1096389E-02

TERMS IN YO
Yiyoye, DC&44= —0.6

e o LERMS TN YF
¥YIYT,,.0C4427 -0,
XY'X%,..DC431= -0,
YX?XTo..DC332= -0,

e JERMS IN Y
YYY?.,,.DC422= 0.
YXX?oo..DC321= =0,
XXY®.oooDCa1L= ~0s

TERMS IN Y?

PAGE

0.00931267

13584E-03

YIX'X', .DC433= ~0.188685E-02

“G1¢~

Y¥Y¥eooaaDC222= =0.

¥YXXeos0.00211= —0o

TERMS IN X° TERMS IN ¥©
X#DELP...0CS1=" 0, o TUTUWRDEUPLLLDCSZE G
X*DELP..0C53= Q.876196E~05  ¥Y92DELP..DCS54= 0.1

TERMS IN X°© TERMS IN Y?
X#D5Qe o DC551= Do 18Gs0sDC5525 —00
X7%05Q..0C553= 0.329763E~09  Y3=DS0..0C5%4= ~0.2

TERMS
L1Yoooo.DFLL2=
IR AN 1

iN V¥s®
Os
o

26669E~04

39279E~-08

LENGTH.



Kot
T

-

-
5z
TRE T

FTRSTY
cHl
VIRTL

TRE

RX
XX
X

XV

READ NEW BEAM SYSTEH, PRODUCING LINE IMAGE £ROM PARALLEL BEAM——DOUBLET  03/25/63 200.0
C TC SYSTEM. IF{K!= 0 1 COCCO0040C 1636300100141 0000¢CO 0. 86OL=
THE SYSTEM NOW UNDER CONSTOERATION CONSISTS OF THE FULLOWING ELEMENTS...
ENGTH p= 1700.00 MEY/C. o
18.1600 4POLE+8POLE MAGNET PHI= 0.486662E-03 THETA= 0.400617 DB/DR= 1.086437 Ci=
PSI=  0.26$046E~08 D3B/DR3=  0.500000 GAUSS/IN=x3
.5LC0 CRIFT SPACE
18.1 4PQLE+BPOLE MAGNET ~0.4116818~03 THETA= 0.368465 DB/DR= -0.919C48
0.2650466-08 D3IB/OR3=  0.500000 GAUSS/IN==3
75.0000 DRIFT SPACE
CTAL LENGTH IS 315.83C0 INCHES.
WIDTHS AT I= 3.6320 IN X PLANE 3.00%3635
WIDTHS 7.2640 IN X PLANE 3.038601
= 10.896C IN X PLANE 3.087085
F 14.5280 IN X PLANE 3.155398
7 18,1600 IN X PLANE 3.243578

TIONS
ST I

5 X PL

C
A

CRCER SOLUTIGNS
C.89406967E~C7
AL

TRERCUGH T
12419 Co
8] Geo
Z 300 La
z 1300 1.
Z 3CC Ce
L= 3Ce O
= 3C0 O.
THRCUGH ELEMENT 4
0.12419207E€ 01 0.368563064F 03
WAISTS.ooX PLANE--LCC= C.000 IN«s; XMAX=
FOR THE SYSTEM ARE~—-—
RADTIAL
C.36863C64E C3  ~0.
C.11791331E C1 -0

TRANSFER MATRICES

0.834CH6567E~-CT

—0.27127420E-C2

-t
OO OO

it w

5
3 020
33.934¢
37.5660
41.1980
44 .8300

04517
=0
730410
342808
855205
467603
jsielelezele}
0,26660934%
-0C. INe o
XX XX
XX XX
XX XX
AX XX

X L
X 8
X AND
X AND
X AND
-0
—0.27127420¢E
Y PLANE

0.12419207€ 01

0:.384L7C56E~08

3.725700
3.723761
3.725762
3.7258762

~J.

——L0C=18313.000

VERTICAL
Co26660334E

o
Cw

8

53205138

2 {10.94 1O
004426040020
-0. C

0

o}

0:384170356E£-08

CRY

CRT
IN Y
N Y
IN Y
IN Y
Ny

-

o]

INey Y
3 -0.
¢ -0,

PLD
PLL
PLAN
PLAN

) PAGE 56
CHIFs= 0.0
-3.
N, 47
U. 42
o
0.
4G7C00 0 0.1l
. IN.

2l
-0
21 0.80520513F
IN,
XX
XX
XX
XX



{&P) REAC NEW BEAM SYSTEM, PRODUCING LINE IMAGE FROM PARALLEL BEAM—~DOUBLET 03725763 200,08 (10.68 TO G0O) PAGE 59

%% GL TQ SOLVE » IF{K)= 0 1 C 0 COQOCC %0 1636300100141 0000000, LLOL= 004426040020, CHIF= 0.0

TTLERANCE COFFFICIENTS FOR MAGNET NC. I=—=PHI= 0,.000486657 LATERAL DISPLACEMENT, ROTATION, OR DIPOLE COMPONENT.
TERMS IN X TERMS IN X? TERMS IN Y TERMS IN Y?

{P.C) v MU/PHTIL.~0.317143E 01 SHIFT IN X -0.103592E£-01 {100 = NU/PHI.. 0.231877E Ol  SHIFT IN Y C.730811F-D2

[YC) #CPHI/PRIL~C3089108 01 CCS{2Wi-1 -0.1008738-01 {(XC) = XI/PHI.o—0.451449E Cl_ —0.5=SIN{2W) ~0.142202E~01

(¥YC) = X1/PHI.. 0.651C16E C1 ~0.5=SIN{2W}) 0,212708c-01 {YQ)l =CPHI/PHI.. 0.238129% C1 COS{2wWi-1 D.750334F-02

(YO} #0OPHI/PHI.~0.280325E 02 CCS{2W)~1 ~0.922192E-01 {X?0) % XI/PHI.o=0.415087E 02 —0.5=SIN{2W} —-0.132650E-00

{viQ) = XI/Prlas 0.B575627E 02 —C.5=SIN{2W) 0.189398£-00 (YPU)=DPRI/PHI.o 0.213181E 02 COS{2Wi-1 0.56814706£-01 E&

TTLERANCE LOLEFICIENTS FOR MAGNET NCo 3--PHI= -0,.000411674 LATERAL DISPLACEMENT, ROTATICN, OR DIPOLE COMPUNENT. i}
TERMS IN X TERMS IN X° TERMS IN Y TERMS IN Y* '

(7.0} = MU/PHIeo 0.217143FE CL SKHIFT IN X 0.764645E-02 (1.0} = NU/PHI..~0.207685¢ 01 SHIFT IN Y ~0.7308L16-02

(vC) #CPRI/PHI.. 0.1713208 01 CCSi2Wi-1 C.6029218-02 (XC) = XI/PHIoo 0.327257£ 01 -0.5=SIN(2W} 0.1150758-01

{¥C) = XI/PHI..—(0.526824E C1 —0.5%SIN{2W) -0.1855%81F€-01 {YO)D =DPHI/PHIL.-0.2521418 1 COS{2W)-1 ~0.887583E-02

(Y203 %0PHI/PHI.o 0.745GC4E C2 CCS(2W)—1 0.263401E-00 (X?0) = XI/PHI.. 0.143530L 03 —0.5*SIN{ZW) 0.506578E 00

fve0l = XI/PHI..—0.159585E C3 —C.5=SINI2W) -0.563326¢ 00 (Y'O)=DPHI/PHIL..~0.76T152E 02 COS{2Wi-1 ~0.270650E-00



(&P} READ NEW BEAM SYSTEM, PRODUCING LINE IMAGE FROM

THE TRANSFER MATRICES FOR THE SYSTEM ARE-———

XX RADIAL XX XX
KK 0.89406S567TE-CT C.36863064EF 03 0. XX X% 0.,12419207E 0L
VX XX XX
R —(.27L27420E-C2 Co1i7d : Gt Q. XA XX Co3841TO56E~08
WX XX XX
XX Oe Cao 1.0 XX XX 0. Ce.
XK XX XX
Pasi 9] C.3686 3 INCHE CCA
T C cT CAL PO LOCAYED 3
H A GE JCAL PC LOCATED 04
THE I cT CAL PO LOCATED o3
TRE T 4GE AL PO LOCATED a9
ABERRAT THIS
TENERALIZED
TERM TERM X
XIROPNT ., L333= XEXROXY .o DC322 16957200
HeYEY o, ,L443= XIWerys,,DL&4&3= 193692E~0C

TENER

LA PN ¥YYYYaon KXXE 50
XYYE, . XX wow XYY oo
YUK 4. KXY oo YYX?oe

b

T3 e

CRINGING F
TRE SECONC OUE 10 THE
TrRIRC ORCER TERMS IN LAMBUA=LAMBDA=CHI
TERMS IN X TERMS IN Y TERMS IN X°
LT XesewsFLLl= 0o LiYeowooFLiZ2= =0, LiXoswoaDFLLL=" 0.
LY R eooafFLL3= ~0. LLY? oo FlLLA= ~0, LLX"ooeoDFLL3= O,

ELIMINATED BY THE CORRECT CHOIC

XX
. X
AX
D A%
XX
1.0 XX

X XX OXXAX X
XX XX %X
XXX XX OAXXX XXX
X X

AXXXXK X
X XX X

T
YeveIye,,p
YEXEX®, .0

R i

S
W o EE

e

s
SRR

OO

XY”X=O;
YXEXE .

[SINIENY

f]
W)

o

vy
AP S

XAY T 0 s o

OO D
W Wi

TERMS [N Y°©
LYo oweaDFLLZE =0,
LLY" . ae o DFLLE= -0

~817-



{%P) READ NEW BEAM SYSTEM, PRODUCING LINE IMAGE FROM PARALLEL BEAM-——~DOUBLET 03725763 200.08 {10.6% TO GO} PAGE 61

LCWER BOUND UPPER BUOUND INCREMENT MEAN VALUE STAND. DEV SCALE FACTOR
Xr -3.0C0000C0 2.8999%998 0.50000000C C. 10.00000000 3.00000000
yn -3.,000000C00 2.89999928 050000000 0. 10,00000000 3.000C00C0
xe*C 0. -1.,00000000 1.000000060 Co 10.00000000 Q.
¥rC Co -1.0000C000C 1.,00000000 C. 10.00000000 Q.
pese Ca —1.00000000 1.00000000 O, 10.00000000 Co . _. . .. A
GYYEN PLOT SCALES... Xs¥Y=  4,00000000 X?,¥%= 0.05999999
MAXIMA {wiTH DISP. AND FRINGE}.. XMAX= 0.00000027 YMAX= 3.72576228 XTMAX= 0.,00813822 YOMAX= (0.00000001L
MRRIMUM ABERRATION DISPLACEMENTS... XAMAX=  0.,08923147 YAMAX= Q.07235986
RoMoS, ABERRATION DISPLACEMENTS... XRMS= 0.00754969 YRMS=  0.00694045 RRMS= 0.0L023513

MRXIVUM HALF WIDTHS [T0 THIRD ORDER)w. SCALEX= 0,08923174 SCALEY= 3.79812214 SCALER= 4.00000000
THE FOLLOWING COEFFICIENTS ARE NCRMALIZED TO THE UNIT HYPERSPHERE
ABERRATICN COEFFICIENTS FOR THIS QUADRUPOLE MAGNET SYSTEM———-

TENERALIZED SPHERICAL ABERRATICN

TERMS IN Ve

TERMS IN X TERMS IN Y TERMS IN X°
XPXIX?,.0333= O, YOYOYT, Cah4s ~0. X9XIX?,.DC333= O, YoV Yo, DC&44ss —0.
XYY, 04432 —Q, YIXTXE, . C433= ~0, XEYSY® . DC443= ~0, YOXtX?,,DC433= ~0,
TENERALIZED COMA
TERMS IN X TERMS IN Y TERMS IN X° o TERMS IN Y°©
XYOX9,..0331= =0, YYIYe ., C4s2= -0, YXIKT,,.0C331= ~0. YY'YU,..DC442= -0,
Y¥evye,, ,C432= -0, XYOXE .o, Ch3im ~0, YXOY®,,.DC432= =0, XY?X!,..0C431= ~0, '
X¥YIYY,,.C0441= ~C, YXPX?.0oC332= -0, XY®VY3,,.DC4%1= —0, ¥YXTX?,..DC332= ~0. i:
TENERALIZED ASTIGMATISH O
TERKS IN X TERMS IN Y TERMS IN X° ) TERMS 1IN Y°© !
X¥X6,,.,0311= 0. YYY® o0, Ch22= =0, XXX eswaDC3L1= ~0, YYY®,...DC422= ~0.
X¥Y ,0eolt2l= ~0, YXX®4o00C320= ~Qo XYY'oooo0C42Z)= ~C. YXX'oo0ooDC321= =0.
YVX? 00203225 ~Co XXY¥Y®oouooChLll= —0. YYX?aoaoDC3225 ~0, XXYTooooDC&1h= —0C.
TENERALIZED CISTORTICN

-0.1701030-01 YYYooos,0222= =0.,248558E-01

£
ERMS IN X TERMS IN Y TERMS IN X° TERMS IN Y?
ll= 01 =
2i= =0.7222128-01  YXXooeeseC211= —0,475041E-01  AYY.....00221=

ER
XXXeaoasDClll= ~0.564999F-04 YYYooooaDC222= ~0.837422E-04
221= ~0.241660E-03 YX¥XooooaDC2il= ~0.157754E~03

TENERALIZED CHROMATIC ABERRATICN
TECCAD OR TERMS IN CELTA =CHE

TERMS IN X TERMS IN ¥ TERMS IN X° TERMS IN Y?
XsLELP...L51= G Y2CELP..a0%2= Co X*0ELP.,.DC31= 0. ' Y#DELP...DC525 .
XP#LELP.oC53= —0, XP#DELP . C54= 0. X?=DELP..0L53= (. YesDELP..0054= 0o

TRIRC ORLDCR TERMS IN CELTASC=CHE

TERMS IN X TERMS IN Y TERMS IN X° TERMS IN ¥Y?
X#LSQeosl551= ~0, Y#0SQoe0s.0552= —0. X*0S8Q...00551= —-0. ¥#DS0o0.DCS552= ~0.
K¥=2D058..0553= —-C. Ye=2D3Q..0534= -0, XP208G..0DC55%2= ~0. YoeDSU,DLB54= -0,

TRINGING FIELD ABERRATIONS
THE SECONC ORDER ADBERRATIONS DUE TC THE FRINGING FIELD ARE
THIRC CRDER TERMS [N LAMBOA®=LAMBDA=CHI

TERMS IN X TERMS IN Y TERMS IN X® TERMS INM Y°
LT XeaeosFLLl= 0. Li¥sosssFLL2= ~0, LiXesoaoOFLLLI= O, LLlYoooasDFLL2= 0.
LY A¥se0eFLL3= —0s LLYS caoaFLLG= —0. 77 707 T LLX? s .o DFLL3=E 0L T LY e oo DFLLSAT =0,

BY fHE CORRECT CHOICE OF THE EFFECTIVE LENGTH.
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lots #24 through #42 arc all produced by subroutine
STATE and demonstrate the nature and magnitu: of the aberrations.
With the exception of plot #2585, they all refer to the group of
orbits run by SCAN; the bounds on the initial coordinates and
slopes are pgiven immediately following the non-normalized
aberration coefficients on the printed output., Plots #24 through

#27 show the imaging of nine sc

&5 rarate source poinits with a range

of angles and momenta. Plots #32, #3414, and #35 show the imaging

of an axial point source with the same range of angles and momenta
as in the previous plots. Plot 5}6 shows the image of the point
source with the momentuwm SPFOad‘QlIMAHKLCGO Plot #42 demonstrates
the envelope traced out by trajectories in the x-z plane that issue
from a point source.

A

Plots #45 and #48 show the beam cenvelope for the second

s 'l £

system immediately before and after, respectively, adjustment of

the system parameters by subroutine DESIGN Plot #51 shows the
beam envelope near the line image in the plane orthogonal to that

LMAZE .
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CUADRUPOLE POTENTIAL PLOT R
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FIELD PLOT FOR QURDRUPOLE NO.
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BEAM PHASE SPRACE PLOT
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BEAM PHASE SPACE PLOT
03,25,63 NO. 412 TIHME  200.08

0.0003%

OP/P=

4700.00 HEY-,C.

Pm

THROUGH ELEHMENT HO. 4 ITYPE= i

MU-30725



~228-

E}EQE"% ?HQ E SPRACE PL@T

0.00028

oDpsP=

4700.00 HEY-C.

P

THROUGH ELEHENT HO. 2 ITYPE= 2

MU-30726



=229 -

BEAM PHASE SPRACE PLOT
25763 WO. 14, TIHE  200.08

837

C.0002%

g

4700.00 HMEY~C.

Pm

THROUGH ELEHENT HO.

MU-30727



BEAM PHASE SPACE PLOT
03,25-63 NO. 48  TIHE  200.08

............................................................ e 2B E T T e

0.00028

DPsP=

i700.00 HEVY-,C.

Pm

THROUBH ELEWENT NO. 4 ITYPE= 2



4700.00 HEY-sC.

Pa

=231 -

BEAM PHASE SPACE PLOT .
..03/28/63 WO. 16 TIHE  200.08 "

THROUGH ELEHENT NO. § ITYPE= i

MU-30729



i
N
L
N

i

BEAM PHASE SPRACE PLOT
TIHE  200.08

0.00028

Ps
M -
=€

.00 HEY-C.

1700

: : : : o
g L : . .wwmwmww§
@ -

THROUGH ELEHENT KO. 6 ITYPE= 2

MU-30730



=233 -

BEAWM PHASE SPACE PLOT AR
.037,28,63  NO. 48  TIME 200.08 U

0.00028%

BPsP=

1700.00 HEv-C.

Pa

THROUGH ELEMENT MO. 7 ITYPE= i



~234 -

BEAM PROFIL S

IHCH SYSTEM LENGTH= 636.02
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ABERRATION FIGURE
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PART TWO

ION OPTICAL DESIGN O HIGH QUALITY EXTRACTED SYNCHROTRON BIRAMS

WITH APPLICATION TO TIE BEVATRON
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T, INTROLUCYION H0 PARD TWO
The desirability of cventually &dapting the Bevatron
te eject the proton beawm was recognlized in the earliest stages of
the machinefs desion.

!

The experimental arca around the existing wealk-focusing

gynchrotrons is quite limited., The large increase in available

ot
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‘-x
w3
s
2
el
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pus
oy
1
o
o
A
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s

experimental arcea imporitant advantage of an
external beam over an intersnal beam,

Pogsitive sccondarics are

difficult to
extract from the machine when originating from internal targets.
An obvious advontage of an externsl beam s the ability to

observe sccondarics of positive charge. With an external beam

. £ oA R LT U T T T N N SRR OU PO O . ;
the ficld surrounding the target moy be arbiitrarily chosen.

- o]

Por cxample, 1t Lo this field, making
ne other changes, and thus o trcat negative particles in the same
manner as positive pariicle

Being free of the Zevatron, targets in an external beam

are obscrvable from ncarly any dirceciilon.

arce awiovard foxr internal targets due te

Materials
eight or composgition, are availablce for usc with an external
beam; liquid hydrogen is ap important example

With an external beam much greater control may be
exexrcisced over the o propertics of the beam as its'Strikes
a target.

The tetal fluxw impinging upon the target may be accurately

monitored; this 'ls important in measuring certain cross sections,

Finally, shorti-lived sccondaries are more easily
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Physics, The mechanism of
the 1lip and target have been

blished) at the Rutherford

High Gnergy Laboratory, using a onte-Carlo methed. An additional
elfect which contri Lo the energy spreoad has not been

investigated:r a poriion of the beam may be scattered, by a single
passage Lhrough the lip, so that the amplitude of radial betatron
oscillation is increascds; this portion of the beam may strike the

target on the

energy than the

Lip many times.

n

ext revolution, leaving the tarpget with greater
romaindger of the beam which hos passed through the
The eone spread is synchro=

tron magnets are powerful momentum analyzers,
The problem of large digpersive spreads at the exit
window was solved for the Nimrod proton synchrotron at the Rutherford

Laboratory by placing
Y . o

target and the

adjusted to

provide energy

a quadrupole

20

doeflection wmapgnet,

3

recombin

magnet half-way between the

The quadrupole magnet is
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caleculated by the author, s resroduced in 11,8.3, Design studices
for the Cosmotron and Nimrod acccelerators were liunited to the usce
of lincar theory, including first order dispersion in the case of

the Niarod. Whe xmportance of maintaining 4 swall beam width in

the highly nonlincar fringinz ficelds was recognized. One of the

a

primary aims of the study reportcd here was minimizing the effects

of aberrations; for this reason, detailed orbit studies of

representative groups of trajectories were conducted with the aid

of Jligital computers. Several innovations due fto the author arc
describedy these innovations transleryed a very large portion of
the wori load to the computers, thereby expediting the orbit study.
In Chapter IX, we deseribe the extraction process in
terms of lincar theory. ‘'The digital computer prograws developed
for the study arce described in Chapter 11X, We next turn our
atiention te the desigp of the external beam, describing the design
objeectives and censiderations, the parameters which were to be

+
1

specified, and the method of solution of the problem.

m

he results
of the study arc described in IV.D. The behavior of the beam is
demonstrated pictorially with the aid of prints of cathode ray
tube (CRT) displays generated by the computer. The agreement
with experiments is presented at the conclusion of the paper.
The project required the collaberation of many people,
Dr, William Yenzel and Dr, Glen lLambertson were respcnsiﬁle for
the construction of the external beam; their intimate knowledge
of the Bevatron was invaluable in the design of the beam. Dr. Lloyd

smith, Dr, Alper Garren aand Dr. Andrew Sessler conw.oibuted much

to planning the beam. Orbit studics were carr.cd out primarily by
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1

the author with the aid of Dy, Sessler, Dr. Garren, and Mr. Herman
Owens. Powerful digital compueer codes used in the study were a
result of eofforts by the author, Dr. L. A, Welton, Dr, Gerald
Gardner, and Dr, Garren. Mechanical enginecering efforts were

under the direction of Mr., Jack Gunn, while Mr. Ji. C, Hartwig was

in charge of the elecetrical engincering work. Experimental
measurements wore conducted by Mr, K. €. Crebbin under the direction

of Dr. I, J, Lofgren and Mr. W. D. Hartsough.
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I, THEOX 08 EXTRACLTION

The extruction oi thoe beam is accomplished by meparating

protons I'rom the main circalating beam and taen deflecting themn
50 that they pass out of the wachine. The separation is achieved
1

1 e T gy oy 1oyt T, et . - . b e e o v b
LY rassiag the cLreuls ©owClln Larouzn an cnergy lowsms Largetsd

P
¢
[N

the roducced ecnergy beam leaving tae target oscillates radially
about the reduced encrgy cuvuilibrum orbit which lies dnside the
target radius. The separaivion between the reduced encrgy beam and
the main circulating beaw 1s greatest at a location one~half

.

Yo e e A - ~ A T P I N - ~ PR # kM . - oy oy s gy Y ey s e A o
betavron osciilation wavelength beyond the target. The amount of

c

separation s proporivional to the momentum loss at the target.

At the point of muximum scoparation, a bending magnet is insertoed

4

.

to deflect the reduccd encergy beam;

1is bending magnet must not
interfere with the circulating beam nor with the magnetic field
at injeection, Additional wmagnets may be required to direct and
focus the extracted beam. This technique of extraction was

1&‘

proposed by DB. VWright for Lhe Devatron and independently by

C

O. Piccioni for the Cosmotron.

T
H

A One-rurnoet wityaction
e WUNe-Mumnet WWXLracitlol

‘ 4

A sinzie magnet, placed at the point of maximum inward
excursion of the reduced encergy beam and adjusted to deflect the

beam outward, may suffice to extract the beam in some accelerators.

1.0 The Cosmotron Lxternal Heam

A successful external beamm has been obtained frow the

Cosmotron by use of a singic pulsed deflection magnet at a fixed

v
i1

. _ : , 16 .
location along ihe internal wall of the machine. At the desired



circulating energy
that causes the beam

point of maximum

)
about 3 toward
-

machine at o

shims are placed

the be

inwvard
an exit

s o
pumping manifold 78

;e 1s directed dinto an cnergy-~loss target,

to be displaced into the pulsced magnet at the

excursion. This magnet deflects the beam

winrdow located on the external wall of the

downstream from tho magnet. Steel

to the

field

regions provide

desired opvical propertics in this region which would otherwise
produce divergence in the radial dircction. The beam is about six
inches wide as i1t leaves the machine.

Tals arrangement is in the Cosmotron becausce the
pulsed magnet does not interfere in an intolerable way with the
magnetic fiela at injection, although it does result in the loss
of about onc~half of the maximum circulating beam, [Murthermore,
the Cosmoiron magnet, a "CY type magnet open to the outside, permits
arcat latitude in the placement of ste¢l shims in this outer edge

region,

DY ETCm

Applied to the DJevatron

During the
of the future externa

machine desgign could

1y
L

is study

wnich rcecguired a @9
quadrants
radius.
one quadrant

of this study,

beyond the
5 2O
A deflection of 2.3
al -
downstream {r

estimated

construction of the Bevatron, a study was made
1 beam in order that necessary changes in
« . . L 15
be made during construction.
envisioned a single-magnet extraction schome

energy~logs target and a wagnet located

target and 20 in. side the target

would be regulired to extract the beam
from this magnet. . Yright, the author
that 2 of the beam would leave the cenergy-
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loss target within an angular range of % 0.017 with respeet to the

unscattered trajectory, ana would fall on an cllipse six square

inches in arca located outside the wachine; Lhese estimates assume

Q4 nwivenergetic pointesource at the target,

3., Deficiencies in the One-sannet Systenm

Iy

Experiments were conducted with the onc-magnet systonm
desceribed above over the peviod 1938-1059. The beam-width at the
oexit window was sceveral tinmes the wiath of the aperture., The width
vas reduced by woving the energy-ioss target closcr to the deflecting

"

magnet so that a radial focus occured ncar the exit window, To

compensate for reducing the target-to-magnet distance, the momentum
Loss sustained at the targel was increased; this provided the
necousary inward deillection.,  The. beam width was still far larger
than the exit aperture, Sawple numerical calculations indicated
that the beaw at the exit window should be on the order of one foot

in breadth when dispersive elfects were taken into consideration,

3

The Bevatron, unlike the Cosmotron, has an H type magnet
that completely surrounds the vacuum tank, restricting the maximum
possible beawm width at the exit window to four inches,

Since the centive aperiure of

o

the Bevatron is needed at

be used; the magnet must be plunged

injection, a fixed magnet ciannot
into position at cach cycle of acceleration, and therefore it
should be as light as possible.

Shims in the frincsing field repgion, which are needed to
prevent intolcrable radial defocusing of the beam, cannot be used
in the Bevatron owing to its mapnet yoke geomeiry.

el

Pinally, the emerging beam must pass through an entire
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quadrant before leaving the magnet, thus traversing the defocusing
Iringing ficld for a much longer distance than in the Cosmotron;
this requires a small exit angle. Bxperience at the Cosmotron hag

shown that larger exit angles result in smaller beams.

4., Advantages of the Two-Magnet System

The addition of & second magnei permits a more
satisfactory minimization of the dispersive effects, With two
magnets, the bending angle at the Lirst magnet is reduced, so that

v 1

5}
w

a lighter magnet can be uscd. Because a am r magnet may be
brought closer to the circulating beam, the required energy loss at
the target is reduced, The encrgy spread due to the Landau effect
; ~ £ . : ie
is smaller for the reduced energy loss.

The addition ¢f a second magnet introduces other degrees
of freedom in the choice of focusing parameters. The extra
paraneters may be chosen to optimize the achromatic properties of

-the beam system.

b

B, Two=Magncet Achromatic Ixtraction

In the remainder of this paper we resirict our attention

nl

to the two-magnet system adopted for the Bevatron,

-

. dethod of Lxtraction’

The first magnet in this system, located at the point
of miximum inward excursion of the beam after leaving the ecnergy-
loss target, deflects the beam further inward inte a second bending
magnet, located one guadruant beyond the first magnet, deflects

the beam strongly outward so that it passes out of the machine one

quadrant beyond the second wagnet, The placement of these components
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is shown in Fig., 9,

a, The Lnerov-Loocs Targct

As stated aove, the main function of the energy-loss

‘to cause the beam Lo oscillate inward. The maximum

[N

S

target

inward deflecition is

given by

Av

Ap (1

ed
St

where p and r are the momentum and radius, respectively, of the
beam, n is the fiecld cxponeni, and Ap is the wmomentum loss in the

target, L othin lip', whese funciion ig to damp the amplitude of

~

radial betatron oscillations, projects freom the exteriocr edge of
the target. Ags the magnetic field is increascd after the
cessation of acceleration, the circulating beam moves slowly inward
toward the target. A oroton first passes through the lip during
a maximum inward swingy passing through the lip reduces the
amplitude of the radial oscillations. The damping of the radial
oscillations insurcs that the protons pass througn the entire
target once and then cnter the gap of the first magnet., Since
there is some scattering by the lip, the amplitude of betatron
omcillations cannot be reduced indefinitely. The residual
betatron amnpiitude and energsy spread result in a {inite width of
the beam leaving the target.

The beam leaving the target possesses & range of angles

due to muliiple Coulomb scattering within the target. In addition

there is an appreciable sprcecad in momentum because of the Landou

NEn]
op Le o pl : . Lo - .
effect,’ The Landau effecet is characterized by a large "tail' in

the energy distribution, in the direction of large losses. The
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width of the energy distribution increascs with increasing energy-

loss in the target,

b, The Pirst Maencet. The function of tl first bending mognet,

M., is to defllect the reduced energ

y ben Jurther inward into the
second bending magnet. The radial lecation ol b, depends upon the
9

<

thickness of the energy-loss tacrget., Adjacent te this magnet is

a current-sheet quadrupole focusing magnet, Q that may be adjusted

l §
primarily to enhance the energy recombination of the beam., Both

[,

of these magnets must be plunged and pulsed so they will not

5

interfere with the beam during acceleration.

¢, The Scecond Mapgnet., The seccond bending magnet, M,, provides the

ot

required outward deflection to eject the beam, Its radial location

18 governed by the strength of Mle There is alsce a quadrupole

L

magnet, Q,, adjacent to this magnet that may be adjusted primarily

to minimize the radial spread at the exit window. Both M, and Q,

s

must also be plunged and the maximum beam current is to

be achieved, The beam must pass out of the machine through a thin

aluminum window located in the west straight secction,

d, Ixternal Moonets,  Additional bending magnets and quadrupole

magnets are located outside the vacuum chambery these magnets

are not considered in this paper.

2. Pictorial Phase Space Description of ixtraction

The optical considerations in extrocting the beam

are most easily explained by refering to wotion in radial phase

10 x and RxX/ are plotted for a representative set

&

SR LAY ) e
space, In Vig,

ol trajectorics comprising the reduced energy beanm.
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llere x is the displacement of o Lrajectory frem the equilibrum
orbit of radiuvg H;ﬁxﬁis the radial betatron fﬁ:#@m% Wo show
below that, with this choice 0of coordinates, represcentative points
rotate about the origin ol this figure as the corresponding
trajectories nove through the Dovaitron. The origin of thi

Figure ds the configuratioen point representing the reduced energy
equilibrum orbit, The action of a bending magnet is reproesented
by a displacement along the R ?4@ axids, A& quadrupole focusing
magnet shears o given confliguration in the @ﬁﬂ% directiony. the
displacement in Rx'/y is proportional to the displacement in x
from the magnet center., It can be shown from the radial betatron

equation that motlon throu

of the configuration point

Within nchrotron the ap

2l

oh the Bevatron corresponds te a rotation

about the origin in

proximate lineariwed equations of motion

C)

for displacements from the sguilibrum orbits are
: 1 An
K= oo {(2)
op
z = 0 (3)
and
where [, and W, are the radial and axial betatron freguencles,
regpectively, and s is the pauv.a length measured along the
cquilibrum orbit. 'The solution to the radial equation is
Lt \ ) s 3 3 \ " /Ty ) /\D }\ (ﬁ (g} \
x{s)=x(0) cos (Vs/R) +(Rx'(0)/¥ ) sin (Vs/R) + == = (i-cos s/R)
1 L
whence (4)
Rxg(s)/%p: ~x(0) sin (Y s/m) + Q' (0)/p.) cos (Ys/R)
An TU ;
+ == = gin (¥ s/R) .
P v
7
Thus as the particle moves a distancce € in the synchrotrony the



representative point rotates through an angle 0= -« Ys/R in
*», Rx%/u  space,
& *
The rectangular pattern at (1) in Pig. 10 represents

the radiol phoage space distribution of the bewam upon leaving the

energy-loss target., Detween (1) and (2) the patterns rotate

1807 as the trajectorices move about /2 betatron wavelength from
" . N Y oy e e o PN - - 8
the target to M., The three patiterns at (2) represent oups of

trajectorics of three distinct encrgics corresponding to the Landau
spread in encrgy. Ghe ceniral pattern is the mean energy pattern;
The trajectories of lower energy are displaced further from the

orifgin,

The deflection at M, and focusing at Q, take the

fae *]

patrerns at (2) into those at (3). Radial displacements are

negligible wit

Since the target is imaged at Q]?

focusing herce does not. greatly affect the trajecteries for a single

energy. The fTocusing strong

~hosen mainly to provide

energy recombination at the exit window. The deflection at i

1

o~

incrcases the amplitude of radial betatron oscillations.

One quarter betatron wavelength beyond ., the beam is

A

at awmgugimwuan inward swing and at an anti-focus. Focusing here

strongly affccts the radial imaging properties at the exit window

vhile having a lesser efficcy on encr

recombination. Pattern

(4) 4s the bheam distribution at ihe enirance to M., A strong

[

cutward deflection by M, and focusing by Q. take the patiterns at

) into those at (5). The defleection at b

!

which must be large to

disturb the circulating
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beam.

The beam cmerges [rom the BDevatron one quadrant beyond

1

M, et the exit window where the distribution is shown by pattern
{ e s O 5 - ¥
{(6). DBetween (3) and (6) the beam passcs thriazgh the strongly

o -

radially defocusing fringing ficld of the Bevatron. Ideally, the

Y

optical propertics of the beanm system should nrovide a radial

focus at the exit window wilth full encrpy recombination.
In the preceding discussion the vertical p srties of
< ¥ : EReYiy 18 £ LG Veritica pro:{)(,x Les ok
the beam have been neglected, The vertical betatron frequency is

greater than the radial betatron frequencys thus the vertical

P

image, corresponding to one~hall vertiecal betatron period, will

H

occur before Ml 1s reached, Although Ql has 1ittle influence on

the radial focal properties of the beam, it will influence the

vertical focal propertics. Q,1 nmust be adjusted to achicve a

compromise between the des,kou achromatic properties of the beam
and the desired dwage in the vertical plance at the window. Qg

aficets the focal propexrities in the vertical plane, but its strength
must be chosen to minimize (he radial beam width at the window.
The object of this study was to develop and apply methods

for choosing the lecgtions and strengths of the constituent magnets

|9

and the locd

tion and thickness of the encrzgy-loss targcet to
O oy

size and divergence of fhe beam at the exit window,
and to provide optimal cnergy recombination at that point. There

are many other considerations, mainly those of cost and enginecering

feasibility, which restrict the choice of paramectiers.

- PR 3

A A S s e TTY -
J. Ihe nadeuaey ol Tac Linedyr Theory

uately describe the beam

-

The lincar theory fails to adec
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geometry due to the relatively large size of the aberrations. Even

in the “good" ficld region between the cnergy-loss tarpget and the

o

first mognet, where the beam ig within three inches of the center

a2 ?

of the vacuum tank, large nonilincear effects are observed. This is
casily demonstrated by inclusion of ithe sccond order terms in the

equation for radial motion within 2 mapgnet quadrant;

¥ N e
¢ R 1s the

where l={(2n-1-08)/u% |, ¢=H0,
v

radius of the equilibrum orbit . Here

Pq and B, refer to the cauilibrim o

nitude and character of the

G ey i ey e o o
G Can estimate Lae u

nonlinear ci] 1

between the target and ﬁl by approximating the

right-hand side of the above cquation with the lincar solution for
motion in the Devairon and then integrate the resulting equation

over one-hali betatron ™he lincar solution e

\
N
S
fer}
N

wherae

wAL/220V1en sin (n 2)

length of the straight
. . "
(Wﬂﬁ with G=0

section, dere

PN N
at the buxgoi)g

o
i
e
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Numerical values of these parameters for typical

Bevatron operating conditions a

0,68, n=0,56, B ~11.0,

¥

CL

£ 0.000185, and g Ig 0,00084.

We find that the centers of

and low encrgy

pattorns are

digplaced by 0.7 in. from the

the mean encrgy patiern

the pat

at M., are three parallel

rectangles Dby the linear theory, but the

demonstrate that the ends ol the patterns

ries with x ' =
(o

x direction by 0.07 in,

2 -1 . m,“g / PR FUN I RS
displacements are 30% of the widtl

direction. IYurthermore,

anargy a: respect to
the pattern toM. of the

ES 1
trajectori < Vo lod omr. dis 0.2 in,

for whickh

>
5
[
&
[N
T
o
-
-
fans
-
¢
&
5
H
£
o
3
N
s
=
=4
o

have verified thoge

estimates to within 10%. Ifven remadnder of the beam system

{(from M. to the exit window) were frec f{rom aberrations, those

£

already present in the '"good

qpion would double the beam
width at the exit window.

As the beam must traverse a

segment of nonlinecar

fringiog Tield between M, and the window, nonlincar effects can

certainly be expected toe become much worse. Linecar theory can

only provide erude ecgtimates of the beam behavior, Intelligent

rre cannct be made without dotailed

o
{

choices of adjustable parama

study of the exact trajectorics wi

¥

b
ot
o]
==
&
juck
s

12 ey 4oy
nevaLtyroen
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In the next chapter we discuss the calculational tools

P

that were developed to conduct thege detailled studi and the

results are described in the remainder of this paper,
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TIT. NUNMBRICAL CALCULATION PROGRAMS

Orbit design studies have required the writing of

several IDM 704 and 708 digital computer codes. The main code

>

used in this work is the Devatron Orbit Code (20OC), which

calculates detailed trajectorics in the Devatron. Twe codes

LN

o

BEFCYY and DIDT, were writuen to provide the field data required
by BOC, 4 separate I3 700 cathode ray tube (CRT) plotting code

plots phase space patterns from data caleulated by BOC, A series

of IBM 709 codes, BLUVRMAP, BRVAMAY, BIVRMAX, and BIEVEMAX, execute

&

apid paramelter surveys usingzg an extended linear trajectory QOrY.
rapld parameter surveys u z an extended linear trajectory theor

he Devatron Orbit Code

3

1. The Basic Code

The original Bevatron Orbit Code is a modification of

S - . ks . . . .
we Oalk Ridge Generxal Crbit Code No. 148235 this medification was

bt

t
carried out by Dr. T. A, ¥Wolton during early 1960. The basic code
calcenlates trajectories in the Devatron by integration of the

£

following differential equationg with © as the independent variable:

dr ) 2 2,-1/2 22 , ae
o =T pﬂ (p = P ) 5 = (p7- pr ) - o B, a0 1,
(9)
an .
12 2 2,=1/2 e ;2 2. -1/208
- m g ) and o=z D e -,
do : pz<1 ) ' BT pr( Pr ) ae

The Runge~Kutta method is cmployed using double-precision arithmetic,
: . B o ‘»*G : . o e L e : 3 T b e o :

An dnterval of 0.5 in @ constitutes g single Runge-Rutta step.

Four point interpeolation formulas in r are used to obtain the

required field values from storced ficld data.

)

Due to the syummelry of the Bevatron, it was necessary to
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stove Lhe Uield data for only one-holfl of a quadrant., To obtain

PR [vmirmed e ey . T T [T N O G . .
Lhe desired nccurncy, o grid of 3 in. by Q.2 was chosen, requiring
the storage of 7421 values of B(r,0) and 7421 values of dB(x,0)/dr.

SEN]

The flcld data and the code are

read from a single dnput tape.

The original code inte

cates one orbiit at o time,

printing off-line the trajectory coordinates where desired. Upon

completing one orbit, the code reads the initial coordinates of

the subsequent orbit,

2. 1

any time the code wust be ind ]

eryrupted, it writes

Ir

a "pet-ofI" tape thai, when read by the computer du

i latien in progresz when inter-—

subsequent run, continues the calcu.

required to write

,.‘
o
e
o

rupted., The only loss in compuier fime ig

W

and read this tape,

2. The Modiflficed Code

§
£

hoe Devatren Orbit Code was extensively modificd by the

;

avthory its capability wios broadened to ha

most of the external

beam calculations.

he wmodifications made by the author are

described in

£e1y

ithe output of ©

he code was extended %o

sumparics ol each trajectory, priniting of the trajectories

e
Ty
i
=
-
[
~

in terms of "Devatron coordinates' (rectangular coordinates in the

straight sections and polar coordinates, based on the vacuum tank

£

leulation and printing of

1
era

¢, in the quadrants), and ¢

displacoments and slopes relative to one of several stored

equilibrum orbits.
Inclusion of bending magnets, quadrupole magnets, and

3

sextupole magnets in the paths of the trajectories was the object

s



of anothaer modi

Le inserted only at the

proceeds  under the

action of

The code w

2Ty y e O T - I, e
Gbewm orbits for refercnce,

momentum and wi

The momentum Cory ihrum orbit at a

radivs may

greatly

he code, wag

COOTQLBALeS 0L Sroups

these coordix

groups of

veh run,

4

oup of cauilibrum orbi

o

[OOSR
LG parame

run,

ing the ro of pro

With this feature a representative b of orbits can be caleculated

between the

on one day. This same group

of orbits can then be run between M, and M, a number of times on

A o
a gubsequent days; the elfcct of varying of Q] can then
be obgserved. In the original ver of code, a plete

Lven tar at leas

three scparate

by

25y between these runs many oours of worlk with hand

D PR S O D S S S N
and key punch machinces wivd required to calcuiate

and to insert

in this scction,



preparation time

BOC wi

relative to sel

are wsed by the

The co

at one location along the beam Lo the

ITocation., These waps are vroduced by

g“oup& of orbits whose phase space

array (Fiﬁ P 13 backward orbits are
: vy

azimuthal reflection symmeilry of the

of ecach

midpoint

o

standing aberrat

For th
in phase space a

ancther azimuth
p_(r)
The code calcula
expression from
sion caleulated
the exit window,

wag reduced by 95%,

11 calculate and mani

ccted trajectorics in
linecar codes to be de
de calculates the

manping

pulate transfer mat

the Bevatron; these

sceribed later,

of the radial

radial phase gpace

bachward caleculati

invoki

abou

quadrant. Such maps are very helpful i
ions,
¢ PUrnNoses the external beam study, ©
t one azimuth which maps inte a single v
accurately given by
= A+ Boxr + O + l)”‘!)4
tes the cocefficicents A, B, £, and D in t

o~

data derived from the
between Mw and Z) 200
the strength of both

vl

pings. With th

separately betwee

1

el

the

automatically preseceribed by the code. The streangth
quadrupele magnet at omne azimuth, that Q the rms
ment of a representative group of trajectories about the
axis at a sccond azimuath, may be determined using the ab

expression. feature of the code optimives the sir
of Q.. Nonlincar focusing way be introduced by means of

magnety the stre

ngth of the apole

may be optimized

i

rices

s -4
X

maLrices

phase space

at another

on of

from an

the

ng

Ao
4

t

he

n uhder-

he curve

adiug at

18 expres-—

n M, and

[

neLs can
o
0% &

beam optic

ove
ength
a xtupole

SO

the same
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sonse {winimizing the rms displacements).

A nunaber ol error detectlon youtines increasce the
reliability of the code. ALl dnput tapes are writien in owo
indentical varis. Tape reoding is checked for accuracy by two
methods. In the cvent of an error, the rcading of the first part
of the tape is repeatoedy if The first part cannot be recad correctly,

the tape is spaced to the second part and ithe code attempts t

read it several times. Crrors in running th@ code result in
termination of the orbit in which the error was detected, provided
recovery is not possible; the location of the error, the coordinates
of the orbit, and the console stgtus is printed. The code then

proceeds to initiate calculations on the subsequent orbit.

The modificed versaion of BOC requires a "large' 1BM 704
with 32,788 word storage capacity and five or more tape units.
The code is entirely SAFP coded, maliing conversion to other computers
gsomewhat tedious. It should be possible to operate the code on a
double core 1M 7000 with a simulate routine although this has not
been attempted. Upon malkingz minor changes in certaln constants,
the code can be adapted to any s"ﬁchrotron@

DOC requires approximately once minute on the IBM 704 to
integrate the radial equations through one revolution. If the
vertical equations arc also integrated, the required time is

doubled. An additional €.25 minute is reguired for ecach orbit if

the maximuin output is desired.

In order to c¢lear.y demonstrate the beam behavior,

1

it was desired to plot the radial and vertical phase space patiens



1
;
3
[

1

traced by the beam at the target, before M3§ after Q]? before Q,,

after M29 and at the exit window, These plots consist of the con=-

figuration points for representative groups of 27 orbits each,
taken from BOC calculations.

The TBM 704 computer ot the University of California did
not include a cathede ray tube displaw. Thus o sccond code was
written that reads the parameter tape produced by BOC and then plotis
the desired information on the CRT attached to the Lawrence
Radiaticn Laboratory IBM 7009 computery a camers records the plotted
data on film.

o the code

b

Three choices of plot scale are available
and the scale chosen is the largest that will accomodate all

the desired configuration points., Bach plot requires about eight

seconds of IBM 709 time; the plot

g
o
W
e}
o
o
i
e
\Y
<
D
jo

requiring twoe scconds per plot.

¢

With the aid of these plots, we can readily determine

ithe beam behavicr as a fumction of cach paramcter varied. Several
A o

plots, chosen from among more than 3006 plots, are reproduced in

the next section,

4, The Ficeld Codes

~ .

Dr, €. Gerald Gardner wrote the twoe FPORTAN 1BM 704

2
o e

codes that prepare the field data for BOC, BEFCYR accepts as

N

input the exp .cimentally measured values of the moagnetic field

plane of the Jevatrens this dats consists of radial

3

and azimuthal profiles within the quadrants and a rectangular array
of 1330 values in the tangeat tanks. All data were talen from

"smoothed curves.! DBEFCYF producses by interpolation an equivalent
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o

el of field values on o polar grid aboui the geometric center of

Bty

the Bevatron. DLEDT reads l1eld tape produced by BEFCYF and

preduces a tape containing the aszimuthal derivatives corresponding

ields produced by LENF The two tapes arce written in the

format acceptable by the Oakridge General Orbit Code, #1482,

mentiened previocusly; DBOC reads tapes in the same format,
A separate loading routine,written by Dr, Welton and

o

>ads the two field tapes and the binary

modified by the author,

deck Ffor BOC, preducing a self~loading binary tape containing

nearly Llinear the

A
o

accuracy of t oximately 0.5%. This

of the vacuum tanlk,

accuracy deteriorates ftow

Measurements in the £ the straight sections

are within 3% of the

-
il

't numerical calo

o
o

e

of the beam behavior using

terms of computer time to allow complete

investigation of the possible choices of external beam parametlers,

does not take into account

the awzinuthal and radial variations of the field exponent n  is

inadequate for this purpose.

4

A suitable compromisce in cost and accuracy

- . . f S L O g
the linecar ADDFOoXImaTion foraen v i ul ions frowm an exact reloeroence

orvit (Voptic axis™) .. The lincar approximatio allows expressing

e

he deviations from the optic ax

Dr. Alper A, Garren weote a sceries of codes for the IBH 7090

computer that calculates transier
> ony >

ngths of Q. and O, and arbitrary

arbitrary choices of © tq i

ie o din terms of 3x3 transfer matrices.



targetl locations, These codes roguire

natrices

B 2

tangent

and between M. and tl

(¥

between

location are

These

surveys

of the linear beam behavior as the target

and the strengths

O
EN
o~
o
A

), and Q. are varied,
o)

1, Derivation of the Analytic Transfer T

to the

Q '
k.

standard Tarpet L

Baore!

ogeillations

he presence of

is

derived Ffrom the

tons given 1o

g %
7oy
7 %
i ]
. 4 I ; ;
tho colunmn b i where w', and
|
1
y

Ap/p

orbit . for
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wacere = s/R and s is the path length over which the transfer
matrix acts,

Yo want the trangfer matrix about the reference orbit

Pt

(optic axis) between the target and the standard target location,

Let X and X% be the displacement and slope of this refercence orbit

v

relative to the equilibrum orbit for momentum Pgye 1f we wish to
zeneralize to cascs in which ¥ and X' are not small guantities,

then we must expand the matrizx as a function of p:

(p-py) + 77 . (12)

i,

Yo Jf

P
i o

If we now subtract out the reference orbit and collect the

remaining terms, we obtain the transfer matrix relative to

the refercence

b ’ i

R
o e,

The coef{icient kk is obtained ag followss

LR . ;
= wkggiﬁslmgs

oY I'n} )
4% .2 1 1 dn

4nR” p len OR,

cos @ Ssin ¢ ka‘ﬁcosgﬁka£¢sin®

) s . N .,.s
sin @ iglwcos % mkxiﬁSLﬂQ5+kXi¢CO$ﬁ

f

°d

&



A
A more accurate matrix can be obtained by applying the
e
, . 23 L . .
method of Courant and Snyder te the goeneral lincarized ecquation
of motion, the I1ll equation, for a synchrotron with azimuthally
varying fielcs. The incrcase in accuracy amounts to about 10% and
is pot impeortant here since this matrix is regquired only for the
relatively short distance between the actual target lecotion and

the standard target location,

2, Apreement Between the Linear Codes and BOC

e

The output of the linear codes determines

he radial and

vertical spreads of the beeam at the cxit window, the dJdivewrgénce

&

at the window, and the dispersion at ithe window,
Although this approach gives excellent apgreement for the
dispersive displacement at the window, it cannoi be expected to
A X 3 ES

N

describe the entire phasce space pattern adequately., DLven in cases

for which approximation indicates that the paticrns are exacily
the same Tor the three enecrgies considered, the accurate orbit

2 <

calculations show that this is almost never true, because of the

L4
"

E

large second order effeets described in Chapter 1L, B

owever,

ameters, for

excellent agrecement was found for a few choices of

which the second order effccts are small,
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IV. THY OPTYCAL DESIGN OF THX SXTERNAL BRAM

We now turn our attention to the solution of the

provlem of o¢xtracting the proton beam., The
requirements on the bean are discussed first. We then consider
the pavametoers Lo be speeciiied, describing the basic effects of

their adjustment. Vinally, the method of solution, using the

7,
.

numerical calculational tools proviously described, ds discussed,

coneluding with the results of the desipgn

e
s
o

- oy L 5 N PO ~ ™ A [ PR oy e N Dt A - 3
1cal Prornertices DReoulired at the Exit Window

The recombination in enc..y should be asg complete as

possible in order that the size of subseguent focal spots

the divergence of the beam be minimized. [he criterion is that
the i phase SD4 ; ied by the entirce be: ineludine
the coffective phasce spacae cccupicd by the entire beam, including

residual dispersive and nornlincar effects, should be minimized.

he effective occupied phase space arca is determinca by the arca

-~
i

X

of the smallest simple closed curve, su

as an cllipse, that

«

completely encloscs the bLeam. The minimum size of external focal

spots is directly related to this arca, Although nonlincar effccts

do not increase the actual occupied phase space arca, in gencral
they incrcase The effective vecupied phase space area as defined
above. The criterion of cifective area is used because linear
focusing clements, such as quadrupole magnets, cannotl remove
aberrations already present in the beam.

lae] H

The entire beam nust pass through the 3.5 in. radial

aperture at the exit window. As the beam must travel approximately



06 in. to the first focal elements beyond the exit

divergence of the becam should be minimized.

2, Restrictive Mechanical Considerations

9

In order to obtain full beam intensity all

internal magnets in the optical system must be plung

~

stray fields and obstructions arce particularly damag

window,

of the

ed and pulseds

ing at injection.

c
The magnets Ml$ Ql7 My, and Q, must be constructed to withstand

4 operation in bigh vacuum. Thesge

ol t,

WL

premium upon minimizing the sizce and ezh

demands nservative

-

addition, reliability

The apertures and
restricted so that the main

-

s R
& Ao M ne

plunge

Laeld

B

circulating beam, e stroy field wust nearly vanish
geptum. These yestrictions are not as severe fov MZ
they are not plunged quite so close fo the beam,
Both of the bending magnets are "C fype m
magnetic shields placed between their open sidesg and

beam, The twe quadrupole magnets are Pancofsky

1

magnets, All of the magnets are water~cooledi even
operation, the maximum fields are limited by the toid
temperature risc. -

The geometry of the Bevatron (Fig. 9) rest
azimuthal locations of the smagnets The beam nus
west tangent tanl areas thus ﬂg und QZ must be 1

tangent tanlk. Mj east tangent

of the magnets.

design.

perturbed

beyvond the
and QQ since
tes with

agne

the

(35 ﬁﬁ‘bn{ &

the
into the

the south

with the

tank
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injector and the rapia boam ¢ je

o
¢}
ps

tor. The energy loss target
should be in the ncighborhood of the south tangent tank {within

o . . . T ) )
907). The rr cavity fills the north tangent tank.

3. Reduced Inerey Fxternal Zeam

Although

be optimized for the full energy,

6.2 -BeV, external beam, satisfactory beams must also be obtainable

o

at lower c¢nergiles. The shape of the Bevatron field is a function
of energy with nonlinearities increasing as soturation is approached.

The inward defllection at Ml i approximately inversely proportional

™ Sy

to momentum {1q. {l)éo The initial radial divergence at the target,
due to multiple Coulomb scattoring within the target, is increased
as the momentwn is decreased.

Provigion must also be made for a continuous beam-spill

.

during acceleration; this

o
i
o
o

e accomplished by programming the
radial position of MM, and the strengths of all of the magnetis so

that they "traclk’ the rising Bevatron field.

B, The Adjustable Parameters

There are five independent paramecters to be specified,

assuming fixed azimuthal positicons for the magnets., These parameters

are: (a) target azimuth, (b) target thickness, (¢) strength of My

{(a) strength of ., and (¢) strength of Q,. The radial location
EN - n
of M, depends upon the strength of Mla The radial location of Ml

depends upon the target azimuth and target thickness., The strength
of M, is fixed by the location of the exit window. We now discuss

the basic effects of adjusting thesc parametlers.



1, Target Azimuth

Varying the azimuthal location of the target relative
to Ml causes the phasce space pattern at M, to rotate. The

maximum inward deflection is obtained for an azimuthal separation
of Ghamha}f betatron perioed; this separation results in the target
being imaged at Ml° Changing the target azimuth decreases the

deflection and also increases the width of the beam at M,

Fs

however, other propertices of the beam may be improved by changing

the target azimuth,

Tarpet Thiclkness

3
Ena

Increasing the target thicknesgs results in a larger

by

deflection at Mlg moving M] further from the c¢irculating beam

relaxes the design requirements, particularly those of gap size

and stray ficld, on this magnet. Jowever this gain is o
; . 5 3 >

. an increase in the energy spread due to the Landau effect,

S Strenqth<}fﬁ% 4

Increasing the inwvard deflection at M, resulis in moving
M, further from the circulating beam; this relaxes design
2 o> % >

irements on M., but af the expense of increasing the size

s

of M., Another result of changing the radial location of M, is

i
als

r
)

to move the beam through a Jdifferent field region in the Bevatrong

For

this noticeably affects the character of
several choices of the other parameters, it is possible to nearly
eliminate the . ~vature in the phase space patterns at MQ by the

proper choice of the strengtih of Ml“
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4, Strenmth ol O

e

Q1 has little elfect on the radial imaging properties

for moncencrgetic beams, for reasons noted in Chapter II The

LU S

strength of this magacet must be chogsen to optimize botn the energy
recombination at the window and the vertical divergence at the
window. Acceptable vertical divergence at the exit window can

be realized cnly if this magnet is wealdy converging in the vertical

plane (with focal length greater than 500 in, ).

.

5, Strenath of O

The radial beam width at the exit window is very

sensitive to the strength of Q . [For most choices of the other

o

parameters, Q. must be weakly convergent in the radial plane,

2

C. The Hethod of Scolution

During the years 1986 to 1959 several experiments were
conducted with single magnet extraction systems., I soon became
apparent that only a small fraction of the beam could be extracted
with this scheme, for the reasons listed in Chapter II. The
mechanicm of the cnergy-loss target was explored, resulting in
axporimentai values for the size and divergence of the reduced
energy beam leaving the target. During the next few months, the
two magnet scheme, suggested by Dr. Lambertson, was more seriously
considered,

X8

he original version of the Bevatron Orbit Code and the

e . Al

field conversion codes, DBEFCYP and DDDY, were written in early
1960, Initial theoretical studics were conducted by Dr. Lloyd

Swith, Dr. Andrew Sessler, and Dr. Alper Garren.
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o

consid each orbilt integrated around the Bevairoen cost

one dollar

er Lime.  The linear codes,

written to rapidly survey the possible choices of parame-

funcitional

ters, Theose codes provide a

ametors,

PPN
codes

fony

pattern

widths and divergences, and Vergences,

Hundreds of combinations of

omi s comb

[N

BOC, Sever

- 3 =
good S0

"ferent choices of

survey

vergence of the beum tarpet

divergence at 6.2 BeV,

4. Variations to the Dasic Dyvstem:

Dur

EEAV-V

ng the course of the



and Dr. Glen R. Lambertson gontributed amuch te the eptical design,
Their familiarity with the Bevatron provided keen insight into the
nature of the solutions obtuined and the adjustments which should
be explered. Their aid was invaluable in asscssing the engincering

feasibility of proposed designs.

During the course study, as the requiremoents upon
each magnet became clear, the propertics of that mapgnet were fixed
80 it could be designed and constructed,

Before {fixing the requirements upon any magnet, geveral

novel variati

ions of the extiraction scheme were examined,

a, New Window Location, The posgsibi

extracting the beam

window wasg

about 100 in. upstream from the west vangent tank e

considered. Passing through ithe fringing field over a shorter

(D

distance should reduce the radial divergence due to the fringing

field. Numerical calculations showed that the slight improvement
would not justify cutting the required channcl through the magnet

Lron.

b. Target Location. The lincar codes revealed very good solutions

for 5/8 to 3/4 betatron period between the target and MEQ Studies

with BOC verified the good uvehavior at the exit window, although

aberrations doublied the actual width predicted by the linecar codes.

These solutions require a larger radial a

63}

c. Sextupole Magnet, The author preposcd inserting a sextupole

magnet adjacent to Q.. Calculations revealed that such a magnet
=
produces marked improvements for those cases characterized by large

.

curvature in the phase space patierns at M3 for example, the
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™

insertion of a sextupole reduces the radial spread of one of the

systems mentioned in Varagraph b, above, from 2,6 in, te 1.2 in..

However, scveral cholces of paramcters

were determined that yielded

zood beam behavior complication of 2 sextupole

magnet,

After the aperture reguirecments at

M, were established, was discovered b oM, could be moved

o P

closer bean. This change was made after

investigations with BOC demonsirated that t

e P PSR S g oy 3
the delloection at i

reduced by decrea

the behavior of the beam

&
m
o

Wer s

the heam

%J
=

1) and 0.8 {verti

leaving the tar

ot

maximim Give: Lderced in either plane is 1.2 my, at 6.2

BeV and 1.7 nr. at 4.2 BeV. An energy spread of & 1.8 MeV is due

e/

1y PN |

te the Landauw the Tolle

these 1nid

d. Sty o f Work with the demonstrate that
the monoenerpgetic spread at the window is nearly independent of

Q. for the half-betatron period locationy this was predicted
Al

in Chapter 1I1. With in the radial plane with a focal

3

<

length of 2000 , the total radial
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independent of the strength of an However, the vertical divergence

o

is very sensitive to focusing by qu

Fox every target location, there exists a strengt

«

the total radial spread independent of Q.3 as the

oy

carget location moves Durther [rom the half-betatron poriced location,

the t.ial radial gpread at this strength of Q. increascs

RIS P

o

ibution at several

b, Tarpet Location, The radial beam disty

ons is shown in

b
]
o]

o2
o]
o+
o
o
jo
o
Pl

the top
of this figure show the radial leaving
the target, with the ploit for 6,2 BeV on the left

4.2 BeV eon the right. '

The second line shows

BeV while the third line shows these
4 ¥ ¥
1

The south tangent tank lecation corvespeonds to the fourth column

n ey ey ox e
SRR CRINCE Y

e

from the left; the righthand column corresponds te ti

tangent tanl locaticn.

Bach of these {

red on the confipuration

point for the reference . The horizontal axis
is the radial displacements each is one inch., The

vertical awxils is the radlal divergencey each division is one

milliradian, Twenty-~seven orbits plotted represent

disn.

&

"l

£

I

2, and ¢

accments,

o

epergies. Mean energy coni

are labelled by small

iguration poi

diamonds; those corresponding to 1.5 MeV above and below

3

the mean energy are labelled by the letters YI" and "X, respecilvely.

tions were obtained for a varicty of

Good ‘solu

locatiens. The further the target is from the half-betairon
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position, the greater the dependence of the radial spread at the
window upon Qig provided §, is not set to the strength for which
Q1 has no influence., The target was placed in the south tangent

tank due to these considerations and because there is an available

air-loclk at that point (which simnlifics target adjustment),

¢, Strength of 12 shows

bty
oy
-
[
il
ol
o2
8

the radial dependence upon Qi

at 6,2 BeVy M, is positioned 12,2 in, inside the circulating beam,
&
Fach column in' thie figure corresponds to a particular choice of

radial

parameters, The lefthand column corresponds to

focusing at ng the second column corresponds to no focusing at

Qy, and columns further to the wight correspond to inereasecd

radial defocusing at le In each case, Q,, is chosen to optimize
o £

the radial beam distribution at the window, The top row shows
the distributions after Q.3 the next three rows show the distribu-

yzonm before qu after M and at the exit window, respectively.

o
o
&
e
o

The scale divisions for eac hese graphs are one inch and one

3

mr, The bottom line shows the disgstribution at the exit window with

or claritys; each division in the radial

the radial scale expanded [
scale corresponds to 0.2 in.

Figure 13 shows a similar study at 4.2 BeV, Note the

increased separation of the patterns for
second bending magnet 1s positioned 5.8 in. inside the circulating

beam for this and subsequent figures.

Figure 14 shows the vertical phase space distribution

fee

e

at 4.2 BeVs; the first colunn corresponds to the first column in

2

“Fig. 12, the sccond column with the fourth column, and the last

3

column with the third celumn in the preceding figure.
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Fig, 14. Vertical phase space patterns at 4.2 BeV,



d, Radial Position of The s

ond bending magnet is 12,2 in.

ingide the circulating beawm in ig. 12, Moving this magnet to

duces the aberrations as

8.8 din. dnside the circulating

7%

shown dn Fig, 183 thé rappge of foecusing at Q. is less in thise
figure than in the preceding figures. The top row shows the radial

digtributions before. Q The bottom two rowg show the

-);é

£

di@irgbu ions . at the exit window, The best golution is that shown

in the fourth column from this solution is degcribed in

the next section.

+

2. The Optimum Scolution .

Ty

Yhe eoptimum solution,

the target lecated in the

center of the south tangent T

wires that Q. be radially

divergent with a Llepgth of ~1200 im, and that Q? be radially

convergent with the same

At the exit windew, the total radial spread is 1,7 in.,

L
ot

o
o
I
o

the total vert icsl spread is 0,5 in., and the maximum verti

Py
ol
[
P

rgence 18 L 4 mr. The eff

7~
it
<
&

ive cccupied phase space area is

i

approximately twice the area occupled by the beam leaving the target,

oty would ar%ﬁy

Vartical apertures of 2 in, at all

3

pse the beam. 2ac

ial apertures of 2.2 in., and 4 in,
are redquired at M, and M,, respectively.
With these apertures, the first magnet pair (M, and Q,)

about 300 pounds whe

the second magnel pair wi

agsociated mechapism weighs over four tons. These magnets must
be plunged 28 in. in 0,753 second every six seconds, cowming to resit

within a few theusandths of an inch of the required position.
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Fig. 15. Beam at 6.2 BeV from M, to window (MZ 5.5 in, inside),
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Fig, 16,
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targets are cexposed to the beam, rewmoeved from the beam, and placed

3 7

in contact with X ray

imt Zor sovoeral Decause of the

NArITOwW CexXDosSure

Py

ol the Iilm, these plcturcs do not

k) o

accurately reileet intensity distributions.

the reduced

energy beam and the energy loss target which is located

about two LM0100 to the ri the odge of this picture. The

Py . .

radial and vertical helights are in excellent agreement with theory.

my . I U 01 f e L) . e 2
The beam dimeasions at M, (fig. 18) are also in

excellent agreeme

the vertical

i an aberration correge

r which represent the second

ponding Lo terms in Xz,

moe

e beam at the window. The beam

across the gap; this agrees with

&

theory as ghown in Fig. 13,

to experimenters

o
[¢¥)
o
<
©
o
%.‘.)
o
jas
},J
@

he external beam will

o

in a few moniths. Purs

1 - e

hoer measurements will be made in the

intervening period.
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MUB-1895

Fig, 18, Radioautograph of the beam at MZS
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MUB-1897

Fig, 19, Radioautograph of the beam at the exit window,
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-

mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission' includes any emplovee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his ewmployment or contract
with the Commission, or his employment with such contractor.






