

1 **Effect of Temperature on the Protonation of the TALSPEAK Ligands: Lactic**
2 **and Diethylenetrinitropentaacetic Acids**

3
4 Guoxin Tian, Linfeng Rao^{*}

5 Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA

6
7
8 **Abstract.** The protonation reactions of two ligands that play important roles in the
9 TALSPEAK process for the separation of trivalent actinides from lanthanides, lactic acid and
10 diethylenetrinitropentaacetic acid (DTPA), have been studied at variable temperatures. The
11 protonation constants at 10 – 70°C were determined by titration potentiometry and the
12 protonation enthalpies were determined at 25°C by titration microcalorimetry. The protonation
13 constants remain essentially unchanged (25 – 70°C) within the experimental uncertainties,
14 indicating that the effect of temperature on the protonation of lactate is insignificant. In contrast,
15 the protonation constants of DTPA ($\log\beta_H$'s) generally decrease as the temperature is increased.
16 Results from this study indicate that the effect of temperature on the protonation of DTPA could
17 alter the speciation of metal ions (actinides and lanthanides) in the TALSPEAK system, since
18 lower values of $\log\beta_H$ at higher temperatures suggest that the hydrogen ions would compete less
19 strongly with the metal ions for the complexation of DTPA at higher temperatures.

20
21 **1 INTRODUCTION**

22 The TALSPEAK process (Trivalent Actinide Lanthanide Separations by Phosphorus-reagent
23 Extraction from Aqueous Komplexes) [1,2] could be a promising option for accomplishing one
24 of the most challenging tasks in the Advanced Fuel Cycle – separation of the trivalent actinides
25 (An(III)) from the trivalent fission product lanthanides (Ln(III)). In practice, effective
26 separations of An(III) from Ln(III) by TALSPEAK have been demonstrated in several pilot-scale

27 operations. However, the fundamental chemistry underlying the separations remains unclear. It
28 has been shown that, in the regions of pC_H (i.e., $-\log[H^+]$) above ~ 3.5 , the measured distribution
29 coefficients of An(III) and Ln(III) decrease while those predicted by the model increase as pC_H
30 becomes higher [3,4].

31 To achieve accurate prediction and precise control of the behavior of actinides and
32 lanthanides in the TALSPEAK process, it is necessary to determine the thermodynamic
33 parameters of the reactions in the TALSPEAK system and evaluate the effect of operating
34 conditions (e.g. temperature) on the thermodynamic parameters. For example, the protonation
35 and dissociation of the TALSPEAK ligands, lactic acid and diethylenetrinitropentaacetic acid
36 (DTPA), and their complexation with An(III) and Ln(III) play very important roles in controlling
37 the speciation of actinides and lanthanides and the efficiency of separation. Currently, there are
38 only very limited thermodynamic data for these reactions for temperatures at or near 25°C . The
39 lack of thermodynamic data at different temperatures makes it difficult to predict the behavior of
40 actinides and lanthanides in the TALSPEAK process if the “envelop” of operating conditions
41 change, e.g., at temperatures higher than 25°C . To help with the development of advanced
42 An(III)/Ln(III) separation processes, we have started systematic studies on the thermodynamics
43 of major reactions involved in TALSPEAK, including the protonation of lactate and DTPA and
44 their complexation with actinides and lanthanides. This paper summarizes the results on the
45 protonation constants of lactate and DTPA at different temperatures.

46

47 **2 EXPERIMENTAL**

48 **2.1 Chemicals**

49 All chemicals are ACS reagent grade or higher. All solutions were prepared with water of high
50 purity from a Milli-Q system. Prior to use, the water was boiled and cooled in sealed bottles to
51 reduce the amount of dissolved carbon dioxide. Working solutions of lactic acid and DTPA were
52 prepared by dilution from a stock solution of lactic acid (Sigma-Aldrich) and dissolution of solid
53 DTPA (Sigma-Aldrich) with water, respectively, without further purification. The ionic strength
54 of all working solutions was maintained at $1.0 \text{ mol}\cdot\text{dm}^{-3}$ (NaClO_4) at 25°C , equivalent to 1.05
55 $\text{mol}\cdot\text{kg}^{-1}$ (NaClO_4) at variable temperatures. In this paper, all the concentrations in molarity are
56 referred to 25°C .

57 2.2. Potentiometry

58 The apparatus for potentiometry consists of a 100 cm³ cell with a special lid. Both the cell and
59 the lid are water-jacketed and maintained at the desired temperatures by circulating water from a
60 constant-temperature bath. It is important, especially for the titrations at temperatures above the
61 ambient, to maintain the lid at the same temperature as the cell to avoid water condensation
62 underneath the lid. Details of the titration setup have been provided elsewhere [5].

63 The electrode potential (E , in millivolts) was measured with a Metrohm pH meter (Model 713)
64 equipped with a Ross combination pH electrode (Orion Model 8102). In this work, the original inner
65 solution of the glass electrode ($3 \text{ mol}\cdot\text{dm}^{-3}$ KCl) was replaced with $1 \text{ mol}\cdot\text{dm}^{-3}$ sodium chloride to reduce
66 the electrode junction potential. In acidic and basic regions, E can be expressed by equations (1) and (2),
67 respectively,

$$E = E^0 + RT/F \ln[H^+] + E_{i,H}[H^+] \quad (1)$$

$$70 \quad E = E^0 + RT/F \ln K_w - RT/F \ln [OH^-] + E_{i, OH^-} [OH^-] \quad (2)$$

72 where R is the gas constant, F is the Faraday constant and T is the temperature. K_w is the ionic
73 product of water ($= [H^+][OH^-]$). The terms of the electrode junction potentials for the hydrogen
74 and hydroxide ions, $E_{j,H}[H^+]$ and $E_{j,OH}[OH^-]$, are assumed to be proportionate to the
75 concentrations of the hydrogen and hydroxide ions, respectively. Prior to each protonation
76 titration, an acid/base titration with standard $HClO_4$ and $NaOH$ solutions was performed to
77 obtain the electrode parameters of E^0 , $E_{j,H}$ and $E_{j,OH}$. These parameters allowed the calculation of
78 hydrogen ion concentrations from the electrode potential in the subsequent titration. In the
79 protonation titrations of lactate, the correction for the junction potential of the hydroxide ion was
80 not necessary because the pK_a of lactic acid is below 4 and the titrations were carried out only in
81 the acidic region.

82 Multiple titrations were conducted with solutions of different concentrations of the ligands
83 (C_L for lactic acid and C_A for DTPA) and different acidity (C_H for total hydrogen ion).
84 Approximately 50 - 75 data points for the lactate system and 200 – 400 points for the DTPA
85 system were collected in each titration. The protonation constants of lactate and DTPA at
86 different temperatures were calculated using the program Hyperquad 2000 [6].

87 **2.3. Microcalorimetry**

88 Microcalorimetric titrations were carried out using an isothermal microcalorimeter (ITC-4200,
89 Calorimetry Sciences Corp.). The performance of the calorimeter has been tested by measuring
90 the enthalpy of protonation of tris(hydroxymethyl)-aminomethane (THAM). The result was –
91 $(47.7 \pm 0.2) \text{ kJ}\cdot\text{mol}^{-1}$ at 25°C , in excellent agreement with the value in the literature [5,7]. Details
92 of the microcalorimeter are provided elsewhere [8]. Multiple titrations were conducted with
93 solutions of different concentrations of the ligands and different acidity. For each titration, n
94 experimental values of the heat produced in the reaction vessel ($Q_{\text{ex},j}, j = 1 \text{ to } n$, usually $n = 40$ -

95 50) were calculated as a function of the volume of the titrant added. These values were corrected
96 for the heat of dilution of the titrant ($Q_{\text{dil},j}$), which was determined in separate runs. The net
97 reaction heat at the j -th point ($Q_{r,j}$) was obtained from the difference: $Q_{r,j} = Q_{\text{ex},j} - Q_{\text{dil},j}$. These
98 data, in conjunction with the protonation constants obtained by potentiometry, were used to
99 calculate the enthalpy of protonation with the computer program Letagrop [9].

100

101 **3 RESULTS and DISCUSSION**

102 **3.1 Equilibrium Constants of the Protonation of Lactate and DTPA at 10 – 70°C**

103 Potentiometric titrations show that the titration curves ($-\log[\text{H}^+]$ vs. V_{titrant} or the ratio of
104 $C_{\text{H}}/C_{\text{ligand}}$) at different temperatures are quite similar for the titrations of lactate, but significantly
105 different for the titrations of DTPA, indicating that the effect of temperature is small on the
106 protonation of lactate, but significant on the protonation of DTPA. Figure 1 shows one set of
107 protonation titrations of DTPA at different temperatures. As the temperature was increased from
108 10°C to 70°C, values of $-\log[\text{H}^+]$ at the same $C_{\text{H}}/C_{\text{A}}$ became lower, a clear indication that the
109 protonation of DTPA became weaker at higher temperatures.

110

111 (*insert Figure 1*)

112

113 Representative potentiometric titrations at 10°C and 70°C and the fits obtained by using
114 the Hyperquad program are shown in Figure 2 for lactate and Figure 3 for DTPA. The speciation
115 of the ligands in the course of the titrations (species HL and L^- for lactate, H_5A , H_4A^- , H_3A^{2-} ,
116 H_4A^{3-} and A^{5-} for DTPA) is also shown in the figures. From multiple titrations at each

117 temperature, the protonation constants of lactate and DTPA at different temperatures were
118 calculated.

119

120 (*insert Figures 2 and 3*)

121

122 The protonation constants from this work, together with the protonation constants at $I =$
123 $1.0 \text{ mol}\cdot\text{dm}^{-3}$ in the literature [10], are shown in Table 1 and Figure 4. To compare the
124 equilibrium constants at different temperatures, the constants in molarity should be converted to
125 the constants in molality using equation (3) described in the literature [11].

126

127 $\log K_m = \log K_M + \sum_r \nu_r \log \vartheta$ (3)

128

129 where K_m and K_M are the equilibrium constants in molality and molarity, respectively. $\sum_r \nu_r$ is the
130 stoichiometric coefficient of the reaction (ν_r is positive for products and negative for reactants)
131 and is equal to $-i$ for the protonation reactions ($i\text{H} + \text{L} = \text{H}_i\text{L}$). ϑ is the ratio of the values of
132 molality to molarity for the specific ionic medium and varies for different media and
133 concentrations. For $1.0 \text{ mol}\cdot\text{dm}^{-3} \text{ NaClO}_4$, $\log \vartheta$ is about 0.02 [11]. The converted protonation
134 constants of lactate and DTPA are also shown in Table 1.

135 The protonation constants of lactate ($\log \beta_H = 3.5 - 3.7$ at $10 - 70^\circ\text{C}$) indicate that lactic
136 acid is a slightly stronger acid than simple monocarboxylic acids (e.g., $\log \beta_H \sim 4.6$ for acetic,
137 butanoic and hexanoic acids [10]), but similar to other α -hydroxycarboxylic acids (e.g., $\log \beta_H \sim$
138 3.6 for 2-hydroxybutanoic and 2-hydroxyhexanoic acids [10]) and isosaccharinic acid ($\log \beta_H \sim$
139 3.2 – 3.3 [12]). Such slightly stronger acidity might be attributed to the formation of hydrogen

140 bonding between the carboxylate group and the hydroxyl group, which could stabilize the
141 deprotonated form and result in a lower value for $\log\beta_H$. Data from this work also indicate that
142 the protonation constant of lactate remained essentially unchanged (within experimental
143 uncertainties) as the temperature was increased from 25°C to 70°C, suggesting the effect of
144 temperature on the protonation of lactate is minimal. The Van't Hoff plot of $\log\beta_H$ vs. 1/T shows
145 that the enthalpy of protonation for lactate should be near zero (Figure 4, left).

146

147 (*insert Table 1, Figure 4*)

148

149 In contrast, the protonation constants of DTPA decreased significantly as the temperature
150 was increased (Table 1 and Figure 4), suggesting that the protonation of DTPA is weakened and
151 DTPA becomes a stronger acid at higher temperatures. This observation could have impact on
152 the speciation of An(III)/Ln(III) in the TALSPEAK system, because the hydrogen ions would
153 compete less strongly with An(III)/Ln(III) ions for the complexation with anionic DTPA species
154 at higher temperatures. The Van't Hoff plot of $\log\beta_H$ vs. 1/T (Figure 4, right) indicates that the
155 protonation reactions of DTPA are all exothermic. From the linear fits in Figure 4, the average
156 “overall” enthalpies of protonation of DTPA in the temperature range of 10 – 70°C were
157 calculated to be $-(26.6 \pm 1.3)$, $-(48.5 \pm 1.3)$, $-(53.7 \pm 1.8)$, $-(47.9 \pm 3.2)$, and $-(54.6 \pm 3.1)$
158 $\text{kJ}\cdot\text{mol}^{-1}$ for HA^{4-} , H_2A^{3-} , H_3A^{2-} , H_4A^- , and $\text{H}_5\text{A}(\text{aq})$, respectively.

159 **3.2 Enthalpy of Protonation of Lactate and DTPA at 25°C**

160 Data of the calorimetric titrations for the protonation of lactate and DTPA are shown in Figures 5
161 and 6. The observed reaction heat (“partial” or stepwise Q) is a function of a number of
162 parameters, including the concentrations of reactants (C_H , C_L or C_A), the protonation constants

163 $(\log\beta_H)$ and the enthalpy of protonation of the ligand (ΔH). Using the stoichiometric
164 concentrations of the reactants and the protonation constants measured by potentiometry in this
165 work, the enthalpies of protonation for lactate and DTPA at 25°C are calculated from the
166 calorimetric titration data, and listed in Table 1.

167

168 *(insert Figures 5, 6)*

169

170 The enthalpy of protonation of lactate measured by microcalorimetry is very small, –
171 $(0.55 \pm 0.22) \text{ kJ}\cdot\text{mol}^{-1}$, consistent with the value estimated by the Van't Hoff plot and the
172 observation that the protonation constant of lactate remains nearly constant in the temperature
173 range of 25 – 70°C. Also, it is typical of carboxylic acids that the protonation enthalpy is small,
174 probably because the energy required by the dehydration of H^+ and the carboxylate group ($-\text{C}(\text{O})\text{O}^-$) is more or less compensated by the energy released by the combination of the two
175 species of opposite charges ($\text{H}^+ + -\text{C}(\text{O})\text{O}^- \rightarrow -\text{C}(\text{O})\text{OH}$). For DTPA, the “overall” enthalpies of
176 protonation determined directly by microcalorimetry are all negative, consistent with the general
177 trends that all “overall” protonation constants decrease as the temperature is increased. The
178 stepwise enthalpies for the first two protonation steps (HA^{4-} and H_2A^{3-}) measured by
179 microcalorimetry are -26.2 and -26.4 $\text{kJ}\cdot\text{mol}^{-1}$, in good agreement with those from the linear fits
180 of the Van't Hoff plots (-26.6 and -21.9 $\text{kJ}\cdot\text{mol}^{-1}$). The large negative enthalpies of protonation
181 suggest that the first two protonation steps probably occur on the nitrogen atoms and zwitterions
182 similar to those in the system of EDTA [11] form in the protonated DTPA species. For the three
183 successive protonation steps of DTPA (H_3A^{2-} , H_4A^- and H_5A), the agreement between the values
184 of enthalpies from microcalorimetry and those from Van't Hoff plots is less satisfactory. We
185

186 believe that the values from microcalorimetry are more accurate because these are directly
187 measured at 25°C while those from Van't Hoff are "average" values in the experimental
188 temperature range.

189 **3.3 Effect of Temperature on the Speciation of Lactate and DTPA**

190 With the protonation constants measured at different temperatures, it is possible to evaluate the
191 change of speciation of lactate and DTPA in the pC_H region of 2 to 5, an acidity region covering
192 the operating envelop of the TALSPEAK process. For lactate, it is obvious that the change of
193 temperature would have little effect on the speciation of the ligand. For DTPA, Figure 7
194 compares the speciation of the ligand (in the absence of metal ions) at 10°C and 40°C. At both
195 temperatures, the HA^{4-} and A^{5-} species are insignificant in the region of $pC_H = 2 - 5$. Small but
196 definite differences between the two temperatures can be observed for other species. For
197 example, at the same acidity, there is less H_5A species at 40°C (the highest percentage: 60%)
198 than at 10°C (70%), and there is more H_2A^{3-} species at 40°C (the highest percentage: 85%) than
199 at 10°C (80%). In brief, the protonation of DTPA generally becomes weaker at higher
200 temperatures. Such changes in the speciation of DTPA would certainly affect the speciation of
201 An(III) and Ln(III) in the TALSPEAK system. The significance of the effect will be evaluated
202 when the stability constants of the An(III)/Ln(III) complexes with DTPA at different
203 temperatures are available.

204

205 **4 SUMMARY**

206 The increase in temperature (up to 70°C) has a negligible effect on the protonation of lactate.
207 Therefore no effect of temperature on the speciation of lactate is expected in this temperature
208 range. In contrast, the overall protonation constants of DTPA decrease by 0.8 – 1.5 orders of

209 magnitude as the temperature is increased from 10 to 70°C. The shift of the protonation
210 equilibrium toward more ionized DTPA species at higher temperatures could alter the speciation
211 of the actinides and lanthanides and, in turn, their extraction behavior in the TALSPEAK system.

212

213 *Acknowledgements.* This work was supported by the U.S. Department of Energy, Office
214 of Nuclear Energy, the Fuel Research and Development Program, under Contract No. DE-AC02-
215 05CH11231 at the Lawrence Berkeley National Laboratory.

216

217 **References**

- 218 1. Weaver, B., Kappelman, F.A. (1964) "TALSPEAK, A new method of separating
219 americium and curium from the lanthanides by extraction from an aqueous solution of an
220 aminopolyacetic acid complex with a monoacidic organophosphate or phosphonate."
221 *ORNL-3559*, August.
- 222 2. Weaver, B., Kappelmann, F. A. (1968) Preferential extraction of lanthanides over
223 trivalent actinides by monoacidic organophosphates from carboxylic acids and from
224 mixtures of carboxylic and aminopolyacetic acids, *J. Inorg. Nucl. Chem.*, 30, 263.
- 225 3. Nilsson, M., Nash, K. L. (2009) Trans-lanthanide extraction studies in the TALSPEAK
226 system: Investigating the effect of acidity and temperature, *Solvent Extraction & Ion
227 Exchange*, 27, 354-377.
- 228 4. Nilsson, M., Nash, K. L. (2007) A Review of the Development and Operational
229 Characteristics of the TALSPEAK Process, *Solvent Extraction & Ion Exchange*, 25(6),
230 665-702.

231 5. Zanonato, P., Di Bernardo, P., Bismondo, A., Liu, G., Chen, X., Rao, L. (2004) *J. Am.*
232 *Chem. Soc.* 126, 5515.

233 6. Gans, P., Sabatini, A., Vacca, A. (1996) *Talanta* 43, 1739.

234 7. Smith, R., Zanonato, P., Choppin, G. R. (1992) *J. Chem. Thermodyn.* 24, 99-106.

235 8. Rao, L., Srinivasan, T. G., Garnov, A. Yu., Zanonato, P. Di Bernardo, P., Bismondo, A.
236 (2004) Hydrolysis of Neptunium(V) at Variable temperatures (10 - 85°C), *Geochim.*
237 *Cosmochim. Acta*, 68, 4821-4830.

238 9. Arnek, R. (1970) *Arkiv Kemi* 32, 81.

239 10. NIST Standard Reference Database 46: *NIST Critically Selected Stability Constants of*
240 *Metal Complexes Database*, Version 8.0, U.S. Department of Commerce, 2004.

241 11. Hummel, W., Anderegg, G., Puigdomènech, I., Rao, L., Tochiyama, O. (2005)
242 “*Chemical Thermodynamics of Compounds and Complexes of: U, Np, Pu, Am, Tc, Zr, Ni*
243 *and Se with Selected Organic Ligands*”, (Mompean, F. J.; Illemassene, M.; Perrone, J.
244 eds.), Amsterdam: Elsevier B.V.

245 12. Rao, L., Garnov, A. Yu., Rai, D., Xia, Y., Moore, R. C. (2004) Protonation and
246 complexation of isosaccharinic acid with U(VI) and Fe(III) in acidic solutions:
247 Potentiometric and calorimetric studies, *Radiochim. Acta*, 92, 575-581.

248 **Table 1** Thermodynamic parameters for the protonation of lactate and DTPA, $I = 1.05 \text{ mol}\cdot\text{kg}^{-1}$
249 NaClO₄. HL and H₅A stand for lactic acid and DTPA. $\log\beta_{\text{H},\text{M}}$ and $\log\beta_{\text{H},\text{m}}$ represent the
250 protonation constants in molarity and molality, respectively.

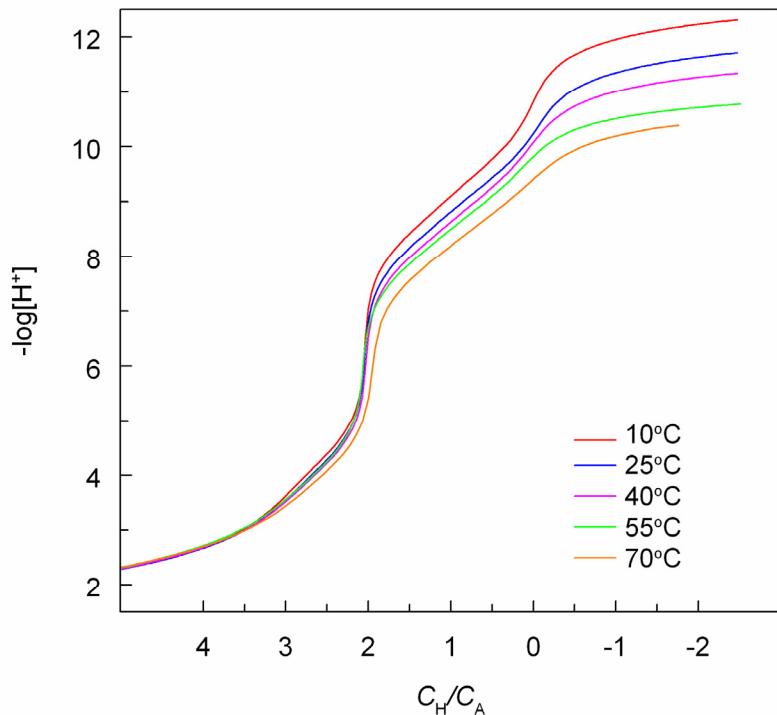
Reaction	t °C	$\log\beta_{\text{H},\text{M}}$	$\log\beta_{\text{H},\text{m}}$	ΔH kJ·mol ⁻¹	ΔS J·K ⁻¹ ·mol ⁻¹
$\text{H}^+ + \text{L}^- = \text{HL}(\text{aq})$	10	3.46 ± 0.04	3.44 ± 0.04		
	25	3.67 ± 0.03	3.65 ± 0.03	-0.55 ± 0.22	68 ± 1
		3.59, 3.62, 3.64 [10]			
	40	3.68 ± 0.04	3.66 ± 0.04		
	55	3.70 ± 0.04	3.68 ± 0.04		
	70	3.72 ± 0.04	3.70 ± 0.04		
$\text{H}^+ + \text{A}^{5-} = \text{HA}^{4-}$	10	9.73 ± 0.02	9.71 ± 0.02		
	20	9.48, 10.46 [10]			
	25	9.43 ± 0.02	9.41 ± 0.02	-26.2 ± 1.4	93 ± 5
		9.98 [10]			
	40	9.29 ± 0.03	9.27 ± 0.03		
	55	9.00 ± 0.04	8.98 ± 0.04		
$2\text{H}^+ + \text{A}^{5-} = \text{H}_2\text{A}^{3-}$	10	18.23 ± 0.03	18.19 ± 0.03		
	20	17.74, 18.75 [10]			
	25	17.69 ± 0.02	17.65 ± 0.02	-52.6 ± 1.6	162 ± 5
		18.27 [10]			
	40	17.34 ± 0.03	17.30 ± 0.03		
	55	16.97 ± 0.04	16.93 ± 0.04		
$3\text{H}^+ + \text{A}^{5-} = \text{H}_3\text{A}^{2-}$	10	22.61 ± 0.03	22.55 ± 0.03		
	25	21.92 ± 0.03	21.86 ± 0.03	-64.2 ± 2.0	204 ± 7
		22.42 [10]			
	40	21.54 ± 0.04	21.48 ± 0.04		
	55	21.19 ± 0.05	21.13 ± 0.05		
	70	21.01 ± 0.08	20.95 ± 0.08		
$4\text{H}^+ + \text{A}^{5-} = \text{H}_4\text{A}^-$	10	25.14 ± 0.06	25.06 ± 0.06		
	25	24.48 ± 0.04	24.40 ± 0.04	-65.0 ± 4.6	250 ± 16
		25.02 [10]			
	40	24.14 ± 0.06	24.06 ± 0.06		
	55	23.86 ± 0.08	23.78 ± 0.08		
	70	23.68 ± 0.15	23.60 ± 0.15		
$5\text{H}^+ + \text{A}^{5-} = \text{H}_5\text{A}(\text{aq})$	10	27.65 ± 0.05	27.55 ± 0.05		
	25	26.85 ± 0.04	26.75 ± 0.04	-63.6 ± 5.7	301 ± 19
		27.12 [10]			
	40	26.46 ± 0.07	26.36 ± 0.07		
	55	26.21 ± 0.09	26.11 ± 0.09		
	70	26.16 ± 0.14	26.06 ± 0.14		

252 **Figure Captions**
253

254 Figure 1: Potentiometric titrations of DTPA protonation at different temperatures, $I = 1.05 \text{ mol}\cdot\text{kg}^{-1} \text{NaClO}_4$. Cup solution; $V^o = 20.00 \text{ mL}$, $C_{\text{DTPA}}^o = 6.665 \text{ mmol}\cdot\text{dm}^{-3}$; $C_{\text{H}}^o = 33.34 \text{ mmol}\cdot\text{dm}^{-3}$ (for 255 10, 25, 40 and 55°C) and $C_{\text{H}}^o = 38.32 \text{ mmol}\cdot\text{dm}^{-3}$ (for 70°C). Titrant: 100.1 $\text{mmol}\cdot\text{dm}^{-3} \text{NaOH}$. 256 Negative values of $C_{\text{H}}/C_{\text{A}}$ represent the region where hydroxide is in excess ($-C_{\text{H}}/C_{\text{A}} = C_{\text{OH}}/C_{\text{A}}$). 257

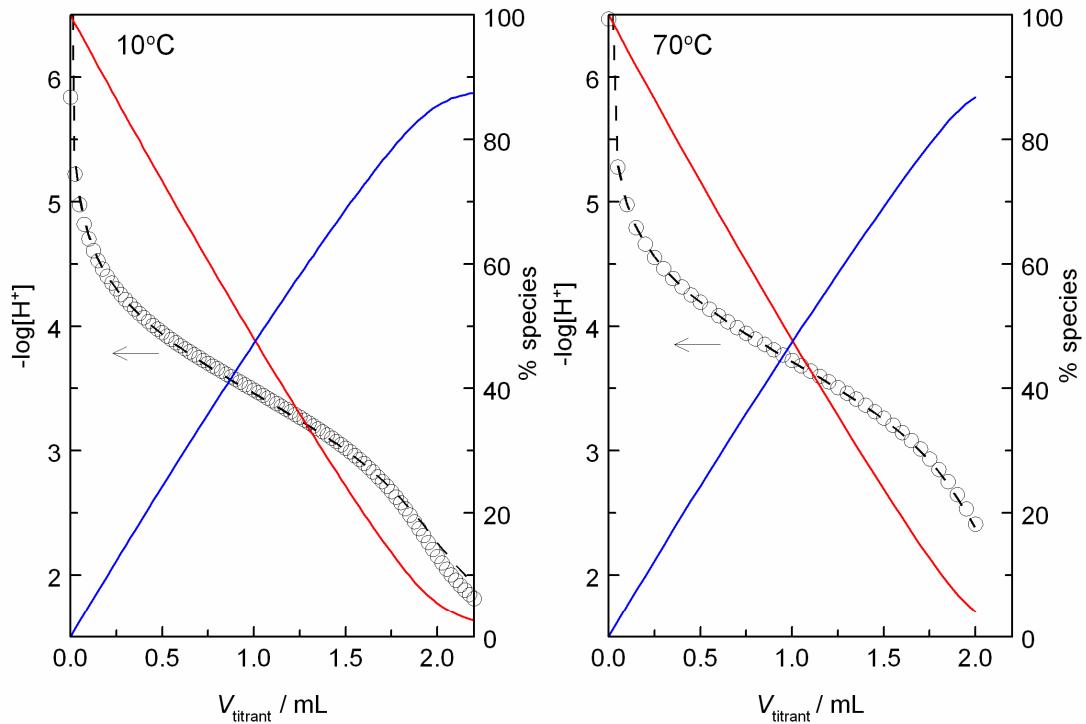
258
259 Figure 2: Representative potentiometric titrations of the protonation of lactate at 10°C (left) and
260 70°C (right), $I = 1.05 \text{ mol}\cdot\text{kg}^{-1} \text{NaClO}_4$. Cup solution: $V^o = 20.00 \text{ mL}$, 0.100 $\text{mol}\cdot\text{dm}^{-3}$ sodium
261 lactate. Titrant: 0.9994 HClO_4 . Symbols: \circ - experimental data ($-\log[\text{H}^+]$), dashed line – fit ($-\log[\text{H}^+]$); solid lines - percentage of lactate species (right y-axis), L⁻ (red) and HL(blue), where
262 HL stands for the neutral lactic acid.
263

264
265 Figure 3: Representative potentiometric titrations of the protonation of DTPA at 10°C (left) and
266 70°C (right), $I = 1.05 \text{ mol}\cdot\text{kg}^{-1} \text{NaClO}_4$. Cup solution: for 10°C, $V^o = 30.00 \text{ mL}$, $C_{\text{DTPA}}^o = 6.667$
267 $\text{mmol}\cdot\text{dm}^{-3}$; $C_{\text{H}}^o = 50.00 \text{ mmol}\cdot\text{dm}^{-3}$; for 70°C, $V^o = 20.00 \text{ mL}$, $C_{\text{DTPA}}^o = 6.665 \text{ mmol}\cdot\text{dm}^{-3}$; $C_{\text{H}}^o =$
268 38.32 $\text{mmol}\cdot\text{dm}^{-3}$. Titrant: 100.1 $\text{mmol}\cdot\text{dm}^{-3} \text{NaOH}$. Symbols: \circ - experimental data ($-\log[\text{H}^+]$),
269 dashed line – fit ($-\log[\text{H}^+]$); solid lines - percentage of DTPA species (right y-axis), H₅A
270 (brown), H₄A⁻ (cyan), H₃A²⁻ (magenta), H₂A³⁻ (green), HA⁴⁻ (blue) and A⁵⁻ (red), where H₅A
271 stands for the neutral DTPA acid.
272

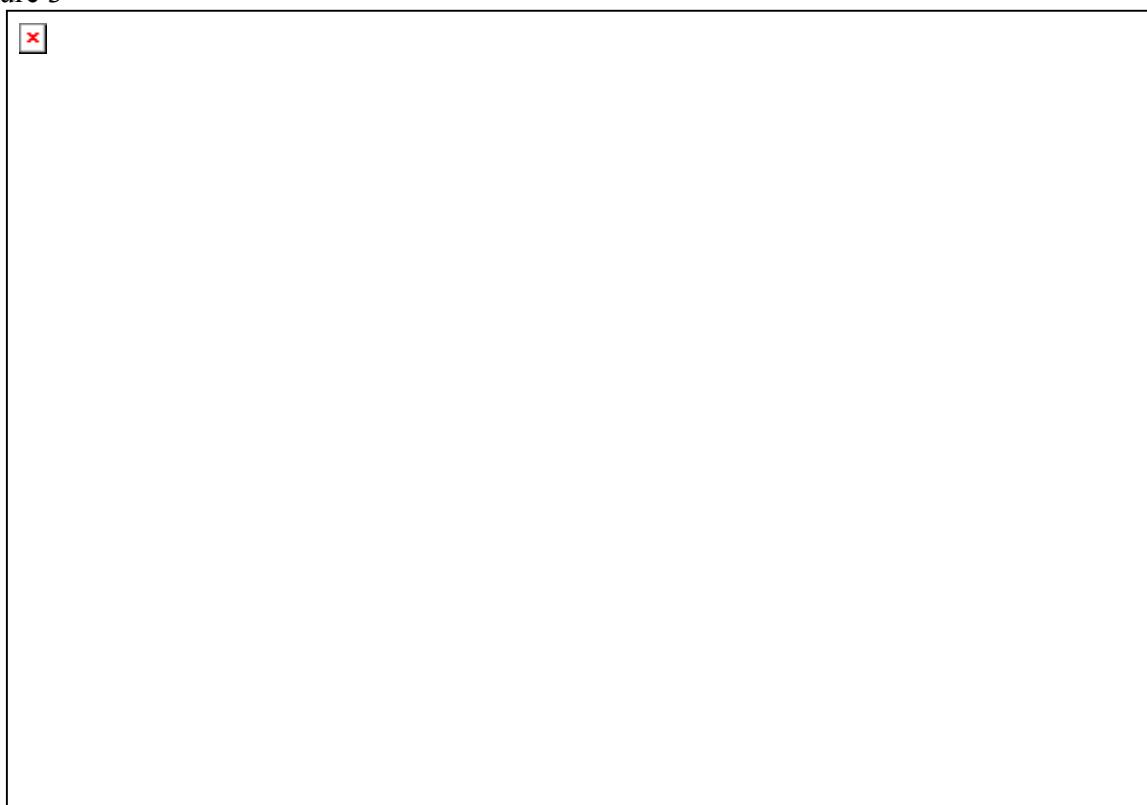

273 Figure 4: Protonation constants of lactate (left) and DTPA (right) at different temperatures, $I =$
274 1.05 $\text{mol}\cdot\text{kg}^{-1} \text{NaClO}_4$. Solid symbols: data from this work; open symbols, data from the literature
275 [10]; lines: linear fits of the data from this work.
276

277 Figure 5: Calorimetric titrations of the protonation of lactate, $I = 1.05 \text{ mol}\cdot\text{kg}^{-1} \text{NaClO}_4$, $t = 25^\circ\text{C}$. (Top)
278 a representative thermogram. (Bottom) A plot of Q_{partial} vs. the volume of titrant, symbols - experimental
279 Q , lines - fit; initial cup solutions: sodium lactate, C_{NaL}^o ($\text{mmol}\cdot\text{dm}^{-3}$) = 22.22 (I), 19.44 (II) and 16.67
280 (III); titrant: 99.80 $\text{mmol}\cdot\text{dm}^{-3} \text{HClO}_4$, 5.0 $\mu\text{L}/\text{addition}$.
281

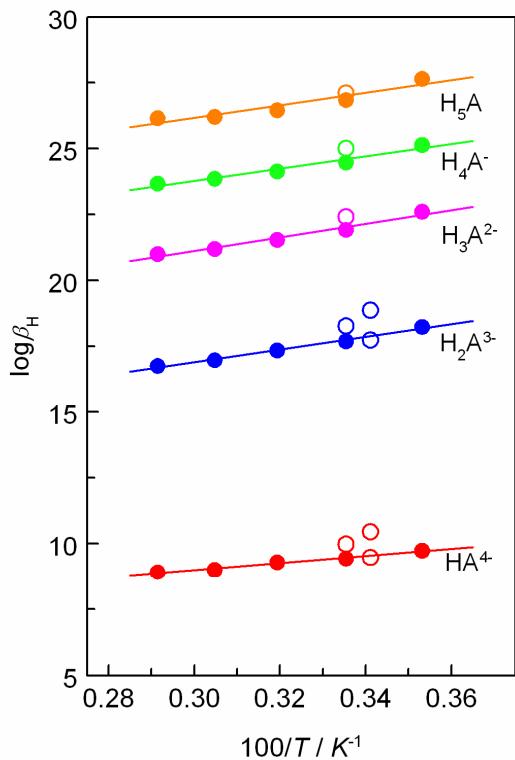
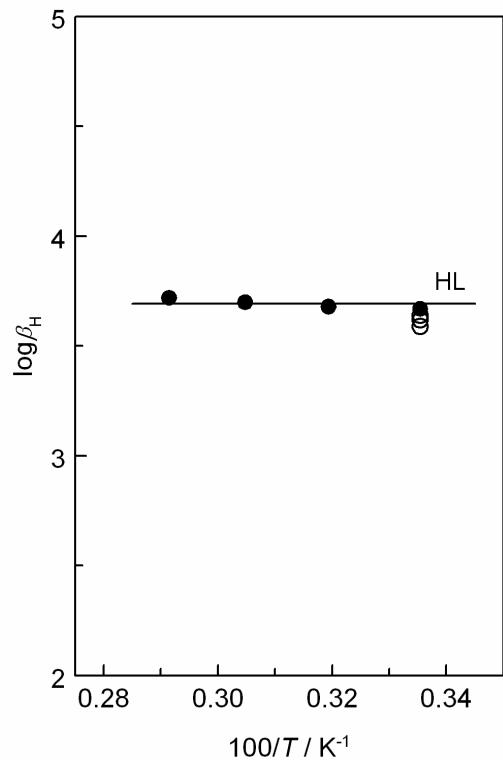
282 Figure 6: Calorimetric titrations of the protonation of DTPA, $I = 1.05 \text{ mol}\cdot\text{kg}^{-1} \text{NaClO}_4$, $t = 25^\circ\text{C}$. (Top)
283 a representative thermogram. (Bottom) A plot of Q_{partial} vs. the volume of titrant, symbols - experimental
284 Q , lines - fit; initial cup solutions: DTPA, $C_{\text{H}}^o/C_{\text{A}}^o$ ($\text{mmol}\cdot\text{dm}^{-3}$) = 22.22/4.440 (I), 20.38/4.076 (II) and
285 18.50/3.700 (III); titrant: 100.0 $\text{mmol}\cdot\text{dm}^{-3} \text{NaOH}$, 5.0 $\mu\text{L}/\text{addition}$.
286


287 Figure 7: Speciation of DTPA as a function of acidity ($-\log[\text{H}^+]$) at different temperatures. $I =$
288 1.05 $\text{mol}\cdot\text{kg}^{-1} \text{NaClO}_4$, $C_{\text{DTPA}} = 0.05 \text{ mol}\cdot\text{dm}^{-3}$. Lines: percentage of DTPA species, H₅A (cyan),
289 H₄A⁻ (rose), H₃A²⁻ (green), H₂A³⁻ (magenta). The species of HA⁴⁻ and A⁵⁻ are insignificant in the
290 region of $-\log[\text{H}^+] = 2 - 5$.
291

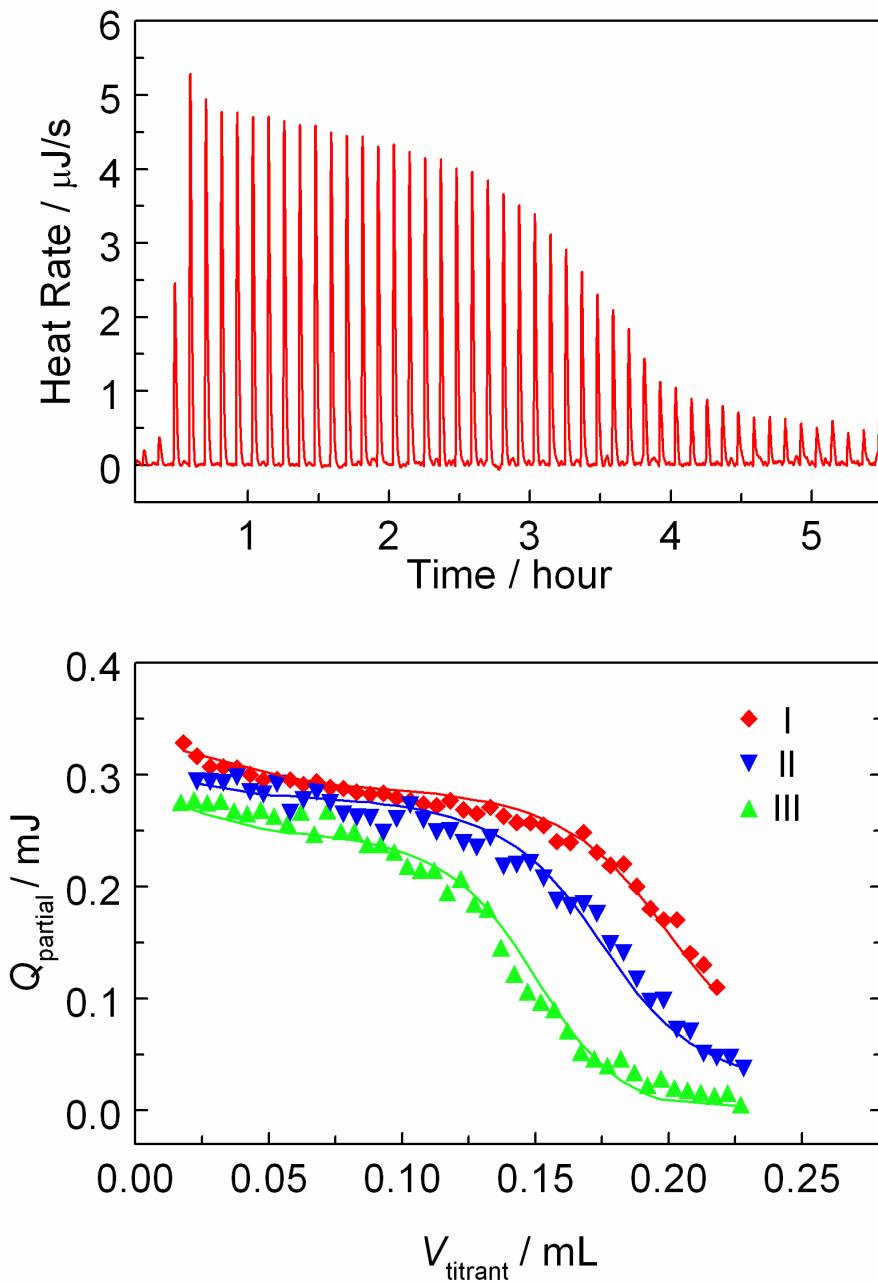
292 Figure 1


293

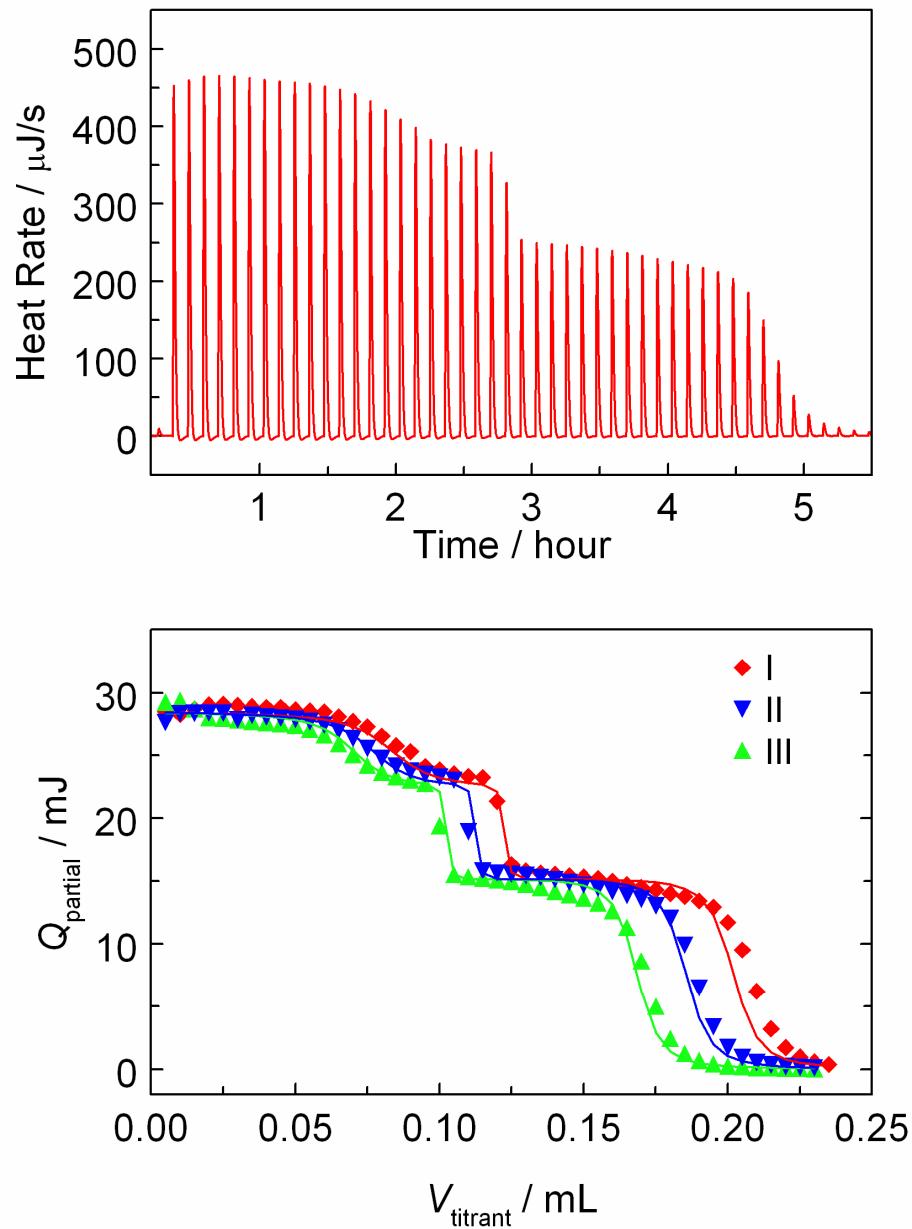
294 Figure 2



295

296 Figure 3


297

298 Figure 4


299

300 Figure 5

301

302 Figure 6

303

304 Figure 7

305