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Project Lead

This project was led by Prof. David M. Ceperley, University of Illinois at Urbana-Champaign, who
coordinated the work of the involved research groups (ORNL, UTUC, NCSU, College of William and
Mary, Cornell U., Florida State U.) The work was coordinated through regular skype and conference
calls and during meetings of the research groups and PlIs at several conferences and workshops. Also for
the exchange of data, codes, files, written notes and records, a Wiki webpage was established on a server
at U. of Illinois and it was very actively used during the project period.

1 Summary of Accomplishments at NCSU, PI: L. Mitas

NCSU research group has been focused on accomplising the key goals of this initiative: establishing
new generation of quantum Monte Carlo (QMC) computational tools as a part of Endstation petaflop
initiative for use at the DOE ORNL computational facilities and for use by computational electronic
structure community at large; carrying out high accuracy quantum Monte Carlo demonstration projects
in application of these tools to the forefront electronic structure problems in molecular and solid systems;
expanding the impact of QMC methods and approaches; explaining and enhancing the impact of these
advanced computational approaches.

In particular, we have developed quantum Monte Carlo code (QWalk, www.qwalk.org) which was
significantly expanded and optimized using funds from this support and at present became an actively
used tool in the petascale regime by ORNL researchers and beyond. These developments have
been built upon efforts undertaken by the PI'’s group and collaborators over the period of the last decade.
The code was optimized and tested extensively on a number of parallel architectures including petaflop
ORNL Jaguar machine. We have developed and redesigned a number of code modules such as evaluation
of wave functions and orbitals, calculations of pfaffians and introduction of backflow coordinates together
with overall organization of the code and random walker distribution over multicore architectures. We
have addressed several bottlenecks such as load balancing and verified efficiency and accuracy of the
calculations with the other groups of the Endstation team. The QWalk package contains about
50,000 lines of high quality object-oriented C++ and includes also interfaces to data files
from other conventional electronic structure codes such as Gamess, Gaussian, Crystal and others.

This grant supported PI for one month during summers, a full-time postdoc and partially three graduate
students over the period of the grant duration, it has resulted in 13 published papers, 15 invited talks
and lectures nationally and internationally. My former graduate student and postdoc Dr. Michal
Bajdich, who was supported byt this grant, is currently a postdoc with ORNL in the group
of Dr. F. Reboredo and Dr. P. Kent and is using the developed tools in a number of
DOE projects. The QWalk package has become a truly important research tool used by the electronic
structure community and has attracted several new developers in other research groups.



Our tools use several types of correlated wavefunction approaches, variational, diffusion and reptation
methods, large-scale optimization methods for wavefunctions and enables to calculate energy differences
such as cohesion, electronic gaps, but also densities and other properties, using multiple runs one
can obtain equations of state for given structures and beyond. Our codes use efficient numerical and
Monte Carlo strategies (high accuracy numerical orbitals, multi-reference wave functions, highly accurate
correlation factors, pairing orbitals, force biased and correlated sampling Monte Carlo, are robustly
parallelized and enable to run on tens of thousands cores very efficiently.

Our demonstration applications were focused on the challenging research problems in several fields of
materials science such as transition metal solids. We note that our study of FeO solid was the first
QMC calculation of transition metal oxides at high pressures.

2 Papers.

We have produced 13 papers from which one was published in Phys. Rev. Lett. Two of the papers are
long reviews of 87 and 55 pages, Refs. [5] and [13], respectively. Ref. [6] describes the developed QWalk
tools, with further details left to the website www.qwalk.org. Ref. [4] described the overall effort of the
Endstation project with contributions from all research groups involved. Several of the papers appeared
in 2010 due to the usual process of reviewing and responses to referees comments and suggestions and
resubmitting new versions.

e [13] J. Kolorenc and L. Mitas, ”Applications of quantum Monte Carlo in condensed systems”,
Reports on Progress in Physics, accepted, in press.

[12] J. Kolorenc, S. Hu and L. Mitas, ”Wave functions for quantum Monte Carlo calculations in
solids: Orbitals from density functional theory with hybrid exchange-correlation functionals”, Phys.
Rev. B, p. 115108, vol. 82, (2010).

e [11] J. Kolorenc, L. Mitas, Electronic structure of solid FeO at high pressures by quantum Monte
Carlo, Physics Procedia 3, 1437-1441 (2010)

e [10] M. Bajdich, J. Kolorenc, L. Mitas, and P. J. Reynolds, Pairing in Cold Atoms and other
Applications for Quantum Monte Carlo methods, Physics Procedia 3, 1397-1410 (2010)

e [9] L. Mitas, J. Kolorenc, Quantum Monte Carlo Studies of Transition Metal Oxides, Reviews in
Mineralogy and Geochemistry, 71, 137, (2010).

e [8] W.A. Lester, Jr., L. Mitas, B.L. Hammond, Quantum Monte Carlo for atoms, molecules and
solids (invited review), Chem. Phys. Lett. 478, 1 (2009).

e [7] H. Kino, L.K. Wagner, L. Mitas, Theoretical study of electronic and atomic structures of (MnO)n,
J. of Computational and Theoretical Nanoscience, 6, 2583 (2009).

e [6] L.K. Wagner, M. Bajdich, L. Mitas, QWalk: quantum Monte Carlo code for electronic structure,
J. Comput. Phys., 228, 3390 (2009).

e [5] M. Bajdich, L. Mitas, Electronic structure quantum Monte Carlo, Acta Physica Slovaca, 59,
81-168 (2009)

e [4] K.P. Esler, J. Kim, D.M. Ceperley, W. Purawanto, E.J. Walter, H. Krakauer, S. Zhang, P.R.C.
Kent, R.G. Hennig, C. Umrigar, M. Bajdich, J. Kolorenc, L. Mitas, A. Srinivasan, Quantum Monte
Carlo algorithms for electronic structure at the petascale; the Endstation project, Journal of Physics:
Conference Series 125 012057: 1-15 (2008).

e [3] J. Kolorenc, L. Mitas, Quantum Monte Carlo calculations of structural properties of FeO solid
under pressure, Phys. Rev. Lett. 101, 185502 (2008); cond-mat/0712.3610



e [2] M. Bajdich, L. Mitas, K.E. Schmidt, Pfaffian pairing and backflow wavefunctions for electronic
structure quantum Monte Carlo methods, Phys. Rev. B 77, 115112 (2008); cond-mat/0610088.

e [1] L. Mitas, M. Bajdich, Nodal properties of fermion wave functions, in Recent Progress in Many-
Body Theories XIV, Ed. J. Boronat, G. E. Astrakharchik, F. Mazzanti, World Scientific, New
Jersey, 2008, pp.193-203.

3 Invited talks.

e Two colloquia for graduate students at MIT, BU and Harvard U., Boston, MA, Dec. 2009

e Fxcited States In Density Functional Theory Workshop, Kavli Institute of Theoretical Physics, UC
Santa Barbara, Oct. 2009

e Excited states in condensed matter Workshop, Kavli Institute, UC Santa Barbara, Oct. 2009

e International Workshop on Many-Body Methods for Strongly Correlated Systems, Leiden, Nether-
lands, August 2009

e Many-Body Methods for Correlated Electrons Workshop, ORNL, April 2009
e Current advances in quantm Monte Carlo, ACS Meeting, Salt Lake City , March 2009

e FeO solid at high pressures: quantum Monte Carlo study, invited talk at workshop on strongly
correlated systems, Oak Ridge National Laboratory, Nov. 2008

e Current advances in quantm Monte Carlo, Seminar at Center for Integration of Nanomaterial
Systems, UC Berkeley, Sep. 2008

e Topology of fermion wavefunctions, Summer school and workshop, Aspen, CO, August 2008
e Quantum Monte Carlo methods, International Symposium, Vancouver, July 2008

e Quantum Monte Carlo: fermion nodes and pfaffian pairing wavefunctions, International Sympo-
sium, Tokyo, June 2008

e Topology of fermion wavefunctions, Quantum Simulations and Design, International Workshop,
Tokyo, May 2008

e Quantum Monte Carlo Methods, Seminar, Brookhaven National laboratory, Long Island, May 2008
e Quantum Monte Carlo Methods, Seminar, Pennsylvania State University, Pennsylvania, April 2008

e Topology of fermion nodes and pfaffian pairing wavefunctions, Sanibel theoretical and computa-
tional quantum chemistry meeting, Georgia, February 2008

2 more invited talks were given by the postdoc M. Bajdich in 2009.

4 Quantum Monte Carlo computational tools: QWalk.

In what follows we describe several aspects of QWalk, a computational package capable of performing
QMC electronic structure calculations for molecules and solids with many electrons. We outline the
structure of the program and its implementation of Quantum Monte Carlo methods. It is open-source,
licensed under the GPL, and available at the web site http://www.qwalk.org.



4.1 Challenge of accurate electronic structure calculations.

For many problems in chemistry and solid-state physics, we are interested in solving for the eigenstates
of the electronic Born-Oppenheimer Hamiltonian

H:—%;Vf—;é+ N (1)
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where upper/lower cases indicate nuclei/electrons. This problem is very challenging because the wave
function is a general function in 3N.-dimensional space (where N, is the number of electrons), which
the Coulomb interaction guarantees is not separable into a product of 3-dimensional functions. Over
the past six decades or so, physicists and chemists have generated many powerful approximations and
theories that attempt to solve the electronic structure problem to varying degrees of accuracy. Among
these are the successful Hartree-Fock (HF), post Hartree-Fock (post-HF), and Density Functional theories
(DFT). Each of these methods occupies its place in the computational toolbox. DFT is a good tradeoff
between accuracy and computational efficiency, allowing thousands of electrons to be treated, usually
getting qualitative trends correct for most quantities(such as band gaps, cohesive/binding energies, and
other energy differences between different systems), and is often quantitatively correct for some quantities
(such as geometries). To treat the quantum many-body problem more accurately, one can turn to post-
Hartree-Fock methods, which are often quantitatively correct; however, they scale quite poorly with the
system size (approximately O(N5~7)). There are few methods that both scale well, at most O(N?2), and
also offer higher accuracy than DFT.

Quantum Monte Carlo methods fill this gap by using stochastic algorithms to treat the many-body
wave function in the full 3N.-dimensional space. It has several advantages—good scaling in the number
of electrons (O(N973)) and is easily implemented in parallel at 99% efficiency. Over the past ~20 years,
QMC has been applied to a host of systems including atoms, molecules, clusters, surfaces and solids, with
impressive accuracy across this wide range.

QMC methodology has proved to be a powerful technique for studies of quantum many-body systems and
also real materials. In essence, QMC has a number of advantages when compared with other approaches:

- direct and explicit many-body wave function framework for solving the stationary Schrédinger
equation;

- favorable scaling with the systems size;

- wide range of applicability;

- the fixed-node approximation which enables to obtain 90-95% of the correlation effects;
- scalability on parallel machines;

- new insights into the many-body phenomena.

For extended systems, particularly, it is the most accurate method available for total energies on the
materials that have been tested. However, there are very few programs available that perform these
calculations. We have developed a new program QWalk for general purpose QMC calculations written in
C++ with modern programming techniques and incorporating state of the art algorithms in a fast and
scalable code. QWalk has already been used in a number of publications and in what follows we present
an overview of its structure and capabilities.



5 Methods

5.1 Variational Monte Carlo

The expectation value for an arbitrary operator O and a given trial variational wave function ¥ is given
by
(0) = (Or|Owr) [ U3 (R)[O¥r(R)/¥r(R)]dR

(Ur|Vr) J Y7 (R)dR

where R = (r1, s, ...,ry, ) denotes a set of N, electron coordinates in 3D space. Typically, such integrals
are evaluated by reducing the multi-dimensional integral into a sum of products of low-dimensional
integrals. Unfortunately, this either restricts the functional form of W7 (R) or makes the calculations
undoable for more than a few electrons. One of the key motivations for employing stochastic approaches
is to eliminate this restriction and to gain qualitatively new variational freedom for describing many-body
effects.

In order to evaluate the expectation value integral stochastically we first generate a set {R.,,} of
statistically independent sampling points distributed according to ¥2(R) using the Metropolis algorithm.
The expectation value is then estimated by averaging over the samples {R,,}. For example, the VMC
energy is given by the average of the quantity called local energy
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with the statistical error e proportional to 1/ VM.
It is straightforward to apply the variational theorem in this framework. Consider a variational wave

function ¥ (R, P), where R is the set of all the electron positions and P is the set of variational parameters

in the wavefunction

_ [¥7(R,P)HY(R, P)dR

- [ VZ(R, P)dR

E(P) (2)
A (hopefully) good approximation to the ground state is then the wavefunction with the set of parameters
P that minimizes E(P). The stochastic method of integration allows us to use explicitly correlated trial
wave functions such as the Slater-Jastrow form, along with other functional forms as explained later. In
fact, as long as the trial function and its derivatives can be evaluated quickly, any functional form can
be used.

Within the program, this procedure is broken down into two parts: sampling U2, while evaluating energy
and other properties, and optimizing the wave function. The first part, sampling V2., is carried out using
the Metropolis-Hastings algorithm. We start with a point R in 3N, dimensional space and generate a
second point R’ according to the transition probability T (R’ « R). T is a completely arbitrary function
solong as T(R' — R) # 0 & T'(R «— R’) # 0; that is, all moves are reversible. We then accept the move
with probability

a = min (1 VR ROT(R! R)> (3)

"WZ(R)T(R — R/)

After a few steps, the distribution converges to U2, and we continue making the moves until the statistical
uncertainties are small enough. The total energy and its components are evaluated, as well as other
properties.

We then optimize the wave function using a fixed set of sample points. Since the samples are then
correlated, small energy differences can be determined with much greater precision than the total
energy. There are many quantities other than energy that, upon being minimized, will provide a good



approximation to the ground state wave function. One important one is the variance of the local energy;
that is

2 _ de\IJ%(R)(Eloc — <El00>)2 (4)
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Since Ej,. is a constant when |Ur) = |®g), the variance will go to zero for an exact eigenstate. There
are several other possible functions, listed in Sec 7.2, but variance and energy are the most common
quantities to minimize.

5.2 Projector Monte Carlo

To obtain accuracy beyond a given ansatz, we employ another method which projects out the ground
state of a given symmetry from any trial wave function. To do this, we simulate the action of the operator
e~ (H=Eo)T on the trial function, where 7 is the projection time and Ej is the self-consistently determined
energy of the ground state. As 7 — oo, e (H~Fo)™l — &, where ® is the ground state. For large
7, there is no general expansion for e~ =Eo)7 hut for small 7, we can write the projection operator in
R-representation as

G(R/,R,7) ~ exp(—(R' — R)?/27)
x exp(—7(V(R) + V(R') — 2Ey)/2)

which can be interpreted as a dynamic diffusion kernel Gp(R/,R,7) = exp(— (R’ — R)?/27) while the
other term represents the branching kernel Gg(R/,R,7) = exp(—7(V(R) + V(R') — 2Ey)/2).

The basic idea of projector Monte Carlo is to sample a path G(Ry,Rn_1,7)...G(Ra,R1,7)¥U7(Ry).
For N large enough (for a long enough path), the distribution of Ry will approach ®,. However, to
interpret this as a stochastic process, the path distribution must be positive; that is, the product of all
G’s with U must be positive. This gives rise to the fixed node approximation, where the nodes (the
places where the trial function equals zero) of the trial wave function are approximated as the nodes of
the ground state wave function. One can avoid this restriction by performing a released-node calculation
although the price is a change from polynomial to exponential scaling with system size. With the nodal
constraint, the projector Monte Carlo approach typically obtains 90-95% of the correlation energy in an
amount of time proportional to a low order polynomial(2-3) of the system size.

In actual calculations, we perform an importance-sampling transformation, where G(R’, R, 7) is replaced
by the importance sampled Green’s function

GR,R,7) =¥ (R)GR/',R,7)/¥7(R) (5)
The dynamic part of the Green’s function then becomes
Gp(R/,R,7) = exp(—(R' — R — 7VIn¥r(R))?/27) (6)
and the branching part becomes
Gp(R',R,7) = exp(—7(EL(R) + EL(R') — 2Ey)/2), (7)

both of which are much better-behaved stochastically, since the *force’ Vin¥ r(R) biases the walk to where
the wavefunction is large, and the local energy Ey(R) is much smoother than the potential energy. Then
if we generate the path G(Ry,Ry_1,7)...G(Ra2, Ry, T)UZ(R,), for large enough N, the distribution of
Ry is U7 (Rn)Po(Ry), which is called the mixed distribution. The ground state energy is obtainable by
evaluating the integral f VUrdgHY 7 /VUrdR = f PyHYdR = Ey, since P is an eigenstate of H within
the nodal boundaries. In QWalk, two versions of the projector method are implemented: Diffusion Monte
Carlo, which has the advantage that the large N limit is easily obtained, and Reptation Monte Carlo,
which makes the "pure’ distribution ®3 available.

Diffusion Monte Carlo has been discussed by many authors, and suffice it to say that it attains the mixed
distribution by starting with a distribution of U2, and interpreting the action of the Green’s function as a



Method
(vMC) Most Abstraction
System Wavefunction_data Dynamics generator
(Molecule) (Multiply) (Delayed Rejection)
Wavefunction_data Wavefunction_data
(Slater Determinant) (Jastrow factor)
Molecular orbital One-body Jastrow Two-body Jastrow
evaluator(Linear)
Basis_function Basis_function Basis_function \ 4
(Gaussian) (cutoff Pade) (cutoff Pade) Least abstraction

Figure 1: Calculation structure for the VMC method on a molecule using a Slater-Jastrow wave function.

stochastic process with killing and branching, eventually ending up with U 7®,. It has the advantage that
the 7 — oo limit is easy to achieve, but the disadvantage of not having access to the pure distribution. A
more subtle limitation is that the branching process spoils any imaginary-time data and can decrease the
efficiency of the simulation if there is too much branching. Even with these limitations, DMC is probably
the most efficient way to obtain the fixed-node approximation to the ground state energy.

For quantities that do not commute with the Hamiltonian, we use Reptation Monte Carlo with the
bounce algorithm. We sample the path distribution

H(S) = \I/T(Ro)G(Ro, Rl, ’7') e G(Rnfl,Rn, T)\IJT(RTL) (8)

where s = [Rg,R1,...,Rpu—1,Ry] is a projection path. In the limit as 7 — oo, exp(—HT)|¥r) — |Po),
the ground state, and, since it is a Hermitian operator, the conjugate equation also holds. Therefore,
the distribution of Rg and R, is the mixed distribution ¥7(R)®¢(R),and the distribution of R,, /5 is
®E(R,,/2) in the limit as n — oo. We evaluate the energy as Erye = ([EL(Ro) + Er(Ry)]/2) and
operators non-commuting with H as Ogye = (O(Ry/2)) Reptation Monte Carlo does not include
branching, instead using an acceptance/rejection step. This is a tradeoff, allowing us to project only for
a finite 7, since otherwise the probability distribution function is not normalizable, but allowing access to
the pure distribution and imaginary time correlations. The path can sometimes get stuck, however, even
with the bounce algorithm, which limits the efficiency of the algorithm. In QWalk, RMC is approximately
as efficient as DMC until the rejection rate begins to increase, making the path move very slowly. In our
calculations, this slowdown appears at approximately 150 electrons.

6 Organization and Code Structure

The code is written in a combination of object-oriented and procedural techniques. The object-oriented
approach is coarse-grained, creating independent sections of code that are written efficiently in a
procedural fashion. It is extremely modular; almost every piece can be removed and replaced with



Table 1: The central objects of the code and their physical correspondents

Module name Mathematical object

System parameters and form of the Hamiltonian
Sample point R, the integration variables

Wave function type  Wave function ansatz

Wave function Ur(R), VI (R), V2Ur(R)

Dynamics generator Metropolis trial move
(Green’s function)

another. A contributor of a module only has to change one line in the main code to allow use of a new
module. This allows for flexibility while keeping the code base relatively simple and separable. The
modular structure also allows for partial rewrites of the code without worrying about other parts. In
fact, each major module has been rewritten several times in this manner as we add new features and
refactor the code. For the user, this structure shows itself in flexibility.

The modules form a tree of successive abstractions (Fig 1). At the top of the tree is the QMC method,
VMC in this case. It works only in terms of the objects directly below it, which are the concepts
of System, Wave function data, etc. (see Table 1). These in turn may have further abstractions below
them, as we’ve shown for the wave function object. The highest wave function object is of type ‘Multiply’,
which uses two wave function types to create a combined wave function. In this case, it multiplies a Slater
determinant with a Jastrow correlation factor to form a Slater-Jastrow function. Since the wave functions
are pluggable, the Slater determinant can be replaced with any antisymmetric function, as well as the
Jastrow factor. The type is listed along with the specific instant of that type in parenthesis. At each
level, the part in parenthesis could be replaced with another module of the same type.

We present an implementation of the VMC algorithm as an example of how the code is organized(Fig 2).
For reasons of space, we do not write the function line-by-line, which includes monitoring variables, etc.,
but instead give a sketch of the algorithm. The VMC method works at the highest level of abstraction,
only in terms of the wave function, system, and random dynamics. It does not care what kind of system,
wave function, etc. are plugged in, only that they conform to the proper interfaces.

We will now provide a listing of the available modules for the major types, along with some details of
their implementation.

7 Methods Implementation

7.1 Variational Monte Carlo

The VMC module implements the Metropolis method to sample the probability density ¥ (R). It has
been described in Sec 5.1 to some detail-the method is more or less a direct translation. Beyond the
basic algorithm, it implements correlated sampling as explained in Sec 7.5 for small energy differences
between very similar systems.

7.2 Optimization of Wave Functions

We have implemented three different methods for optimization. All methods are capable of optimizing
several objective functions (See Table 2). Any of these objective functions will obtain the correct ground
state with an infinitely flexible function, but may obtain different minima for incomplete wave functions
and some are easier to optimize than others. The first (OPTIMIZE) is based on variance optimization.
The method minimizes the objective function on a set of fixed configurations from VMC using a conjugate
gradient technique, usually not reweighting the averages as the wave function changes. Optimizing the
energy using OPTIMIZE is quite expensive, because it requires many configurations to evaluate an



Vmc_method: :run(vector <string> & vmc_section,
vector <string> & system_section,
vector <string> & wavefunction_section) {

//Allocate the objects we will be working with
System * sys=NULL;
allocate(sys, system_section);

Wavefunction_data * wfdata=NULL;
allocate(wfdata, sys, wavefunction_section);

Sample_point * sample=NULL;
sys—->generateSample (sample) ;
Wavefunction * wf=NULL;
wfdata->generateWavefunction(wf) ;

//the Sample_point will tell the Wavefunction
//when we move an electron
sample->attachWavefunction(wf) ;
sample->randomGuess () ;

//This is the core part of the VMC algorithm
for(int s=0; s< nsteps; s++) {
for(int e=0; e < nelectrons; e++) {
dynamics_generator->sample(e,timestep,wf,sample) ;
} //end electron loop
//gather averages
} //end step loop

//report final averages

Figure 2: Sketch of the main loops in a simplified code for the VMC method

unbiased estimate of the energy derivative.

Method OPTIMIZE2 also uses a fixed set of configurations, but instead of evaluating only the first
derivatives of the objective function, as conjugate gradients do, it uses a low-variance estimator for the
Hessian matrix and Newton’s method to find the zeros of the first derivatives. OPTIMIZE2 is able to
produce better wave functions with lower energies than OPTIMIZE by directly optimizing the energy
even for very large systems (we have applied it for up to 320 electrons) while costing slightly more.

Finally, NEWTON_OPT uses a fixed set of configurations to evaluate only a single Hessian matrix,
then evaluates the optimal length of the optimization step using VMC correlated sampling, as suggested
by another U. Cornell group lead C. Umrigar. This method is able to find the very lowest energy wave
functions, since the configurations are regenerated every optimization step. However, NEWTON _OPT is

much more expensive than the other two methods.

Table 2: Optimization objective functions implemented

Function

Minimized quantity

Variance
Absolute value

Lorentz (In(1 4+ (EL(R) —

Energy

Mixed aEnergy + (1 — a)Variance, 0 < a <




7.3 Diffusion Monte Carlo

DMC is implemented almost identically to VMC, except that the time step is typically much smaller
and each walker accumulates a weight equal to exp(— "4~ (EL(R') + EL(R) — 2E,.y)). Since we use an
acceptance/rejection step, Ty s is chosen somewhat smaller than 7 as 7.5 = pr, where p is the acceptance
ratio. To control the fluctuations in the weights, we employ a constant-walker branching algorithm, which
improves the parallel load balancing properties of DMC. Every few steps we choose a set of walkers that
have large weights (w1 ) for branching. Each one of these walkers is matched with a smaller weight walker
(we) which is due for killing. The large weight walker is branched and the small weight walker is killed
with probability -4, with each copy gaining a weight of wl;”’“. Otherwise, the small weight walker
is branched and the large weight walker is killed, with the copies having the same weight as before.
Walkers are then exchanged between nodes to keep the number of walkers on each node constant, and
thus preserve high parallel efficiency. QWalk keeps track of two numbers: E,.; and Ey. E,.; is first set
to the VMC average energy, and then to the energy of the last block. The energy that goes into the
weights, Ejy, is then calculated every few steps as

9)

Eo = Evey — log (Z_W>

Nconf

where Ngopn s is the number of sample points (configurations) in the simulation.

During the DMC calculation, the local energy will very occasionally fluctuate down drastically, causing
the weight to increase too much. This can be fixed by cutting off the weights. For fluctuations beyond
ten standard deviations of the energy, we smoothly bring the effective time step to zero for the weights,
which avoids the efficiency problem without introducing a noticeable error.

7.4 Reptation Monte Carlo

The fluctuations in the local energy part of the Green’s function can cause the path in RMC to get
stuck, so we cut off the effective time step in the same way as in DMC. The branching part of the
Green’s function is otherwise quite smooth. We use the same dynamic Green’s function as we do in DMC
(either a standard metropolis rejection step or the UNR algorithm), so we accept/reject based only on
the branching part of the Green’s function. We use the bounce algorithm, which improves the efficiency
by allowing the path to explore the many-body phase space much more quickly.

7.5 Correlated Sampling

Correlated sampling is a technique where one samples two very similar systems with the same sets of
samples. The variance in the difference will decrease as Var(X —Y) = Var(X) +Var(Y) —2Cov(X,Y),
so for perfectly correlated sampling, the variance will be zero for the difference. In QWalk, this is handled
by performing a primary walk that samples some probability distribution P; (X). Averages are obtained
as usual by calculating the integral (O1) = [ P1(X)O1dX. Suppose we wish to find (O — O1). It can be
written as

/PQ(X)OQ — Py(X)0ydX = /Pl (X) [%og - 01} dX. (10)

Since we are sampling P;(X), in the Monte Carlo averaging, this integral is evaluated by averaging the
weighted difference over sample points:

N
w; (X;)02(X;) _ 01(Xy)

i

The difference in the methods is only in how they determine the weights.
VMC, DMC and RMC all support correlated sampling between arbitrary systems. In VMC, the weights

2
are w(X) = ‘\%gg,

the Green’s function to weight the secondary averages properly.

which is an exact relationship. DMC and RMC both require some approximation to

10



8 Systems

8.1 Boundary Conditions

Most systems of interest are treatable either by open boundary conditions or periodic boundary
conditions. Adding new boundary conditions is also quite simple. Molecules with arbitrary atoms,
charge, spin state, and with finite electric field are supported. In 3D periodic systems, the calculation
can be done at any real k-point, allowing k-point integrations (recently, complex points were implemiented
as well). In many-body simulations, there is an additional finite size approximation due to the Coulomb
interaction between image electrons. We correct this as 0E = T—i, where the 75 is that of the homogeneous
electron gas and ¢ has been empirically fitted to 0.36 Hartrees. We have found this correction to function
about as well as other methodologies to correct the finite size error. The code has been used on systems
with up to 135 atoms and 1080 electrons; the limiting factor is the amount of computer time needed to
reduce the stochastic uncertainties.

8.2 Pseudopotentials
QWalk accepts pseudopotentials as an expansion of nonlocal angular momentum operators:

Ilmax

Vecr = Vieeal(R) + Y VI(R)[1)(1] (12)
=0

for arbitrary maximum angular moment. V; is a basis function object that is typically a spline
interpolation of a grid or a sum of Gaussian functions. While any pseudopotential of this form can
be used, we use soft potentials in which the % divergence has been removed from the nuclei-electron
interaction. These potentials have been created specifically for QMC and are available in the literature
although more traditional Hartree-Fock or DFT pseudopotentials in the Troullier-Martins form work as

well.

9 Forms of the Wave function

For Coulomb interactions systems, the first-order trial function is usually written as a Slater determinant
taken from Hartree-Fock or Density Functional Theory multiplied by a correlation factor(known as a
Jastrow factor) which is optimized in Variational Monte Carlo. Between 90% and 95% of the correlation
energy is typically obtained with this trial wave function in Diffusion Monte Carlo.

One of the attractions of QMC is that, since all the integrals are done by Monte Carlo, almost any ansatz
can be used, as long as it is reasonably quick to evaluate. QWalk’s modular structure makes adding new
wave function forms as simple as coding one-electron updates of the function value and derivatives, and
adding one line to the main code to support loading of the module. We have implemented several forms
of wave functions, which the user can combine. For example, to create the Slater-Jastrow wave function,
the user first asks for a multiply object, which contains two wave function objects. The user then fills in a
Slater determinant object and a Jastrow object. For a Pfaffian-Jastrow wave function, the user replaces
the Slater determinant input with the Pfaffian input. Obviously, it is up to the user to make sure that
the total wave function is properly antisymmetric and represents the problem correctly.

9.1 Slater Determinant(s)

This is the standard sum of Slater determinants, written as ¥p = > clvDiT Dil, where DiT i a determinant
of the spin up(down) one-particle orbitals. The coefficients are optionally optimizable within VMC.
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9.2 Jastrow Factor

The Jastrow factor is written as eV, where

U= car(rin) + Y cibu(ry) + Y ciimlar(riai(r;r) + ar(rjn)ai(ri)bm(ri;), — (13)

ilk ijk ijTklm

1,7 are electron indices, and I is a nuclear index. Both the coefficients and parameters within the basis
functions can be optimized. For the basis functions, we satisfy the exact electron-electron cusp conditions
with the function b(r) = cp(r/recut)/(1 + yp(r/rcut)), where p(z) = z — 2% + 23/3, « is the curvature,
which is optimized, and c is the cusp(0.25 for like spins and 0.50 for unlike spins). Further correlation is

added by including functions of the form by (r) = ax(r) = % where zpp(z) = 2%(6 — 8z + 32?)
and [ is an optimized parameter. These functions have several favorable properties, going smoothly to
zero at a finite cutoff radius, and covering the entire functional space between 0 and rcut. This allows the
Jastrow factor to be extremely compact, typically requiring optimization of around 25 parameters while
still coming close to saturating the functional form. While these are the standard basis functions, they
can be replaced or augmented by any in the program by a simple change to the Jastrow input. The third
term in Eqn 13, which sums over two electron indices and ionic indices, can be expensive to evaluate
for large systems and is sometimes excluded. A Jastrow factor with only the first two terms is called a

two-body Jastrow, and with the eei term included is called a three-body Jastrow.

9.3 Pfaffian Pairing Wave Function

We write the wave function as ¥ = eVdet®, where eV is the Jastrow factor of above and the matrix
®;; = x(rs,7;) is the pairing function between opposite-spin electrons(the function is easily extended for
Nup # Ngown). This function contains the Slater determinant as a special case when x is written as
the sum over the occupied single-particle orbitals: x(r;,r;) = ZkN &1 (ri)oK(r;). We have implemented
the Pfaffian pairing wave function, which allows not only unlike-spin pairing, as the canonical projection
of the BCS wave function does, but also allows like-spin pairing. The wave function is written as the
Pfaffian of the matrix P, appears as the following:

ETT P! SOT
P=pf| -7 ¢l Ll |. (14)
—<PTT _(plT 0

The ® matrices are the same as in the BCS wave function, and the ¢ matrices are made up of the
one-particle orbitals for a spin-polarized system. The £ are antisymmetric triplet pairing matrices. The
operation of the Pfaffian ensures that the entire wave function is antisymmetric. The Pfaffian wave
function contains the BCS wave function as a special case without triplet pairing, and thus contains the
Slater determinant wave function as well. The general expansion for ® is

O(ry,r2) = Y crdr(ri)di(ra) (15)
Kl
under the constraint that cy; = ¢j. € is written in a very similar way:
E(r1,r2) =) drud(ry)eu(rs) (16)
kl
under the constraint that dy; = —d;;. The sum extends over the virtual space of orbitals.

10 Omne-particle orbital evaluation

We provide two major ways of evaluating the one-particle orbitals, the most expensive part of the QMC
calculation. For a single electron, this is the problem of finding m = M,,.;b, where m is a vector of the
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values of each orbital, M,,; is the orbital coefficient matrix, and b is the vector of basis functions. The
first (CUTOFF_MO) is a linear scaling technique, which, for localized orbitals and large enough systems,
will take O(N) time to evaluate all orbitals for all electrons. For each basis function, it creates a list
of orbitals for which the coefficient is above a cutoff. This is done at the beginning of the calculation.
Then, given an electron position, it loops over only the basis functions within range of the electron, and
then only the orbitals contributed to by the basis function. These are both O(1) cost for large enough
systems, so all the orbitals for each electron is evaluated in O(1) time, giving O(N) scaling.

The second method (BLAS_MO) is slightly simpler. While it scales in principle as O(N?), it can be
faster than CUTOFF_MO in medium-sized systems and certain types of computers that have very fast
BLAS routines, such as Itaniums. Given an electron position, it loops through the basis functions within
range of the electron, and adds to each molecular orbital the coefficient times the value of that basis
function using fast BLAS routines.

11 Other Utilities

11.1 Conversion of One-particle Orbitals

Currently, QWalk can import and use the orbitals from GAMESS code (gaussian basis on molecules),
CRYSTAL code (gaussian basis for extended systems), SIESTA code, and GP (plane waves for extended
systems). The GP interface is not currently available for distribution due to licensing issues. More
interfaces are planned, and are quite easy to add.

11.2 Plane Wave to LCAO converter

Gaussian basis sets have been used in quantum chemistry for years and have been developed to the point
that there are well-defined sets which saturate the one-body Hilbert space surprisingly quickly. They are
localized, which improves the scaling of QMC, and allow a very compact expression of the one-particle
orbitals, so less basis functions need to be calculated. Overall, a gaussian representation can improve
the performance of the QMC code by orders of magnitude over the plane-wave representation. We have
developed a simple method to do this conversion that is fast and accurate. We start with the plane-
wave representation of the k-th orbital ®x () = > = c,5es(7), and wish to find the LCAO equivalent
PLCAO () = > ak;j¢;(7), where e is a plane-wave function and ¢; is a Gaussian function. Maximizing
the overlap between ®; and fbﬁc“‘o, we obtain Say = Pcg, where S;; = (¢i|¢;) and P,z = (diles).
Then the Gaussian coefficients are given as a, = S™!Pcj. All the overlap integrals are easily written
in terms of two-center integrals for S, and P is easily evaluated in terms of a shifted Gaussian integral.
The limiting part of the conversion is the calculation of the inverse of S, which can be done with fast
LAPACK routines.

11.3 Summary on Qwalk.

QWalk is a significant step forward in creating a state of the art, usable, and extensible program for
performing Quantum Monte Carlo calculations on electronic systems. It is able to handle very medium
to large systems of electrons; the maximum size is mostly limited by the available computer time. It
works in parallel very efficiently, so it can take advantage of large clusters, multi-core computers, etc.
Since QWalk is available without charge and under the GNU Public license, it is hoped that it will help
bring both development and use of Quantum Monte Carlo methods to a wide audience. More information
such as testing examples, manual pages and other material is more convenient to obtain from the website
www.qwalk.org.
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12 Applications to transition metal oxides.

12.1 Transition metal oxides: strongly correlated materials.

Transition metal compounds and transition metal oxides (TMOs) in particular belong to the most complex
and important types of solid materials. TMOs exhibit a multitude of collective effects such as ferro-, ferri-
and anti-ferromagnetism, ferroelectricity, superconductivity, in addition to a host of structural transitions
resulting from temperature and pressure changes or doping. In addition, several of these systems, such
as FeO, can be identified as parent compounds of materials which are ecnountered in the Earth interior
and therefore are of central interest for geophysics.

Electronic structure of TMOs poses a well-known challenge both for theory and experiment and this
challenge has remained on a forefront of condensed matter research for decades. In particular, systems
such as MnO, FeO, CoO, NiO and some other similar oxides have become paradigmatic examples of
inuslators with strong electron-electron correlation effects and antiferromagnetic ordering. Let us for
simplicty consider just the MnO solid for a moment. Since the transition elements in these systems
have open d-shells, such solids should be nominally metals. However, for a long time it has been
known and experiments have shown that these systems are large gap insulators. In addition, they
exhibit antiferromagnetic ordering with the Neel temperatures of the order of a few hundred Kelvins.
Interestingly, the gap remains present even at high temperatures when there is no long-range magnetic
order. Using qualitative classification it was suggested that there are basically two relevant mechanisms:
Mott-Hubbard and charge transfer. In the Mott-Hubbard picture, the gap opens because of large Coulomb
repulsion associated with the double occupancy of the strongly localized d-states. The spin minority bands
are pushed up in the energy, leading to gap opening. In the charge transfer mechanism, 4s electrons of
the transition metal atom fill the unoccupied p-states of oxygen with resulting gap opening as well. In
the real materials both of these mechanisms are present to a certain extent and therefore the systems
exhibit insulating behavior. The antiferromagnetism happens on the top of this and is caused by weak
super-exchange interactions between the moments of neighbouring transition metal atoms mediated by
bridging oxygens. The localized d subshells feature unpaired spins which at low temperatures order into
an antiferromagnetic AF II insulator with alternating spin (111) planes in cubic rocksalt structure. Due
to magnetostrictive effects at low temperatures appear distortions of into a lower symmetry structures
such as rhombohedral, for example, in the case of MnO and FeO.

It is also known that spin-unrestricted Hartree-Fock, surprisingly, provides a useful insight into the
nature of the electronic structure in these systems. In particular, studies of MnO and NiO with
unrestricted Hartree-Fock theory (UHF), seemingly a rather poor method choice, since it neglects the
electron correlation completely showed some interesting results. The reason is that for transition elements
the exchange, which is treated explicitly in the HF theories, is at least as important as correlation,
especially for metallic ions with an effective d—subshells occupation close to half-filling. The UHF
results confirmed the crucial role of exchange in TMOs and provided a complementary picture to DFT
with overestimated gaps and underestimated cohesion, but also with the correct AF order, magnetic
moments within 10% from experiments and reasonably accurate lattice constants. Moreover, unlike DFT
approaches which predict insulator only for the AF II ground state, UHF keeps the gap open also for the
ferromagnetic or any spin-disordered phases. This agrees with experiment which shows that MnO is an
insulator well above the Néel temperature Ty ~ 118K since the spin ordering Mn-O-Mn superexchange
mechanism is very weak and so that it enables localized moment flips without disturbing the overall
gapped phase.

Here we present some results of our quantum Monte Carlo (QMC) calculations of MnO and also QMC
calculations of FeO ambient and high pressure phases equations of state.

Our aim in using QMC for TMO has been to understand and quantify the impact of explicit treatment
of both exact exchange and correlation on the key properties such as cohesion, band gap and several
other properties.

MnO calculations. For the MnO solid we first carried out calculations with the spin-unrestricted Hartree-
Fock and DFT (B3LYP and PW86) methods using the CRYSTAL98/03 packages. The orbitals were
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expanded in gaussian basis sets with (12s,12p,7d) gaussians contracted to [3s,3p,2d] and (8s, 8p, 1d)
contracted to [4s,4p, 1d] for Mn and O atoms, respectively. Figure 1 shows the band structure of MnO
solid which is obtained from UHF (a), B3LYP (b), PW86 (c) methods. Note that B3LYP hybrid functional
contains 20% of the Hartree-Fock exchange so that it “interpolates” between the exact HF exchange and
the effective local DFT exchange limits and it often provides an improved picture of excitations both in
molecules and solids.

In QMC the MnO solid is represented by a supercell with periodic boundary conditions. This way
of simulating an infinite solid involves finite size errors which scale as 1/N where N is the number of
atoms in the supercell. The finite size errors affect mainly the estimation of cohesive energy where one
needs to calculate the energy per primitive cell vs. isolated atoms. In order to filter out the finite size
bias we have carried out VMC calculations of supercells with 8, 12, 16, 20 and 24 atom/supercell. Only
I'-point for each supercell and Ewald energies extrapolations were used to estimate the total energy in the
thermodynamic limit. The most accurate and extensive fixed-node DMC (FN-DMC) calculations were
carried out with B3LYP orbitals for 16 and 20 atoms in the supercell. The cohesive energy obtained by
the DMC method shows an excellent agreement with experiment (Tab. 3). To evaluate the impact of the
correlation on the gap we have estimated the energy of the I' — B excitation by an exciton calculation.
The QMC result for excitation energy is less perfect with the difference from experiment being a fraction
of an eV. This clearly shows that the wavefunction and corresponding fixed-node error is larger for an
excited state. Nevertheless, the differential energy gain for excited vs. ground state from correlation of
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Figure 3: The band structures of MnO obtained by (a) the unrestricted Hartree-Fock method, (b)
DFT/B3LYP functional, and (c¢) DFT/PW86 functional. The PW91 and PBE functionals provide
essentially the same picture as the PW86 functional. The calculated excitation in QMC is indicated
by an arrow on the UHF plot and the corresponding one-particle states are denoted by open and filled
circles.

~ 8 eV is substantial and demonstrates the importance of this effect both in qualitative and quantitative
sense. Due to large computational demands, similar but statistically less precise DMC calculations were
carried out also with the UHF orbitals. While for the ground state the difference between the two sets
of orbitals was marginal, the excited state with UHF orbitals appeared higher in energy approximately
by ~ 1.5(0.5) eV indicating thus, not surprisingly, even larger fixed-node bias for the excited state in the
UHF approach.

It is quite encouraging that the fixed-node DMC with the simplest possible single-determinant
wavefunction leads to a consistent and parameter-free description of the basic properties of this strongly
correlated system. An obvious question is whether one-determinant is sufficiently accurate for an
antiferromagnet since the wavefunction with different spin-up and spin-down orbitals is manifestly not an
eigenfunction of the square of the total spin operator. In order to eliminate the spin contamination one
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Table 3: The MnO solid cohesive energy and B — I' excitation energy calculated by UHF, DFT and
DMC methods compared with experiment. The determinantal part of the DMC wavefunction used the
B3LYP one-particle orbitals.

UHF PWs6 B3LYP DMC  Exp.
Econ 603 11.00 921 940 (5) 9.50
B—T 135 1.2 40  48(2) ~4l

would need to explore wavefunction forms beyond the single-determinant Slater-Jastrow, for example,
generalized valence bond wavefunctions. However, since the actual mechanism is the Mn-O-Mn
superexchange, one can expect the resulting effect to be small and very difficult to detect within our
error bars.

It is interesting to revisit now the one-particle results and provide some feedback from our QMC
calculations. The analysis of orbitals indicates that the nature of the top valence bands is rather similar
in all approaches with both p and d states having significant weights in these states across the Brillouin
zone. This is supported also by the Mullikan population analysis which shows effective magnetic moments
on Mn atoms in UHF, B3LYP and PW86/PW91/PBE methods to be 4.92, 4.84 and 4.78u 5, respectively;
these values are quite close to each other and border the range of experimental estimates of 4.58-4.78 u .

The bottom of the conduction band is free-electron-like I' state with significant amplitudes from atomic
O(3s) and Mn(4s) orbitals and it is this state which is responsible for the DFT gap closing in ferromagnetic
or spin-disordered phases. For the ferromagnetic phase BSLYP exhibits a gap of ~ 2.4 eV and it
is straightforward to check that by decreasing the weight of exact exchange the gap decreases. For
example, with 10% of exact exchange in B3LYP the gap lowers to &~ 1.2 eV. The functionals without the
exact exchange, such as PW86/PW91/PBE, lead to ferromagnetic metals due to the overlaps with the
uppermost valence bands and subsequent rehybridization of states around the Fermi level.

FeO calculations. If one applies mainstream DFT approaches to FeO, the results are highly
unsatisfactory. First, the equilibrium atomic structure which comes out is not correct. Instead of the
rocksalt antiferromagnet another structure, a tetrahedral distortion dubbed iB8, appears to have the
lowest energy at equilibrium conditions. Interestingly, iB8 is actually a high pressure phase of FeO. This
discrepancy is surprising since DF'T methods typically lead to correct equilibrium structures and very
reasonable geometric parameters such as lattice constants. Another problem appears in the electronic
structure since for the correct structure and geometry DFT leads to a metallic state. More sophisticated
methods beyond DFT have been applied to this system in order to reconcile some of the results with
experiments, nevertheless, a number of questions remain unanswered. For example, at high pressures,
FeO undergoes a structural transition into the iB8 phase, however, the value of the transition pressure
which agrees with experiment is difficult to obtain using the mainstream approaches. Similar transition
appears in MnO, where recent bechmarking of several DFT and post-DFT approaches provided transition
pressure estimates between 65 and 220 GPa, i.e., more than 300% spread in the predictions. Significant
discrepancies between expriments and DFT results exist also for CoO and more complicated transition
metal compounds.

We have carried out QMC calculations of FeO using supercells with periodic boundary conditions to
model the infinite solid. Several supercell sizes were calculated and k-point sampling of the Brillouin
zone was carried out by the so-called twist averaging with the purpose of eliminating finite size effects.
The core electrons were replaced by pseudopotentials for both Fe (Ne-core) and O (He-core). The largest
simulated supercells had more than 300 valence electrons and the total energies were sizeable due to the
presence of “semicore” 3s and 3p states of Fe in the valence space, what have made the calculations
rather demanding. The wave function had the Slater-Jastrow form and the orbitals were obtained from
unrestricted (spin-polarized) calculations within DFT with hybrid functionals and HF.

In Tab. 4 are shown the QMC calculated equilibrium parameters. Note that QMC identifies the correct
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Table 4: Comparision of the calculated structural properies of FeO solid in DFT and in the fixed-node
DMC with experimental data. The energy difference E;ps-Ep1 is evaluated at the experimental lattice
constant 4.334 A.

Method /quantity DFT/PBE FN-DMC Exper.

E;ps-EB1 [QV] -0.2 05(1) >0
cohesion energy [eV] ~ 11 9.66(4) 9.7
lattice constant [A] 4.28 4.324(6)  4.334
bulk modulus [GPa] 180 170(10)  ~ 180
band gap [eV] ~ 0 2.8(3) 2.4
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Figure 4: FN-DMC Energy as a function of volume for FeO for B1 (red squares) and iB8 (blue circles)
phases. Lines are fits with Murnagham equation of state.

equilibrium structure and provides very accurate value of the cohesive energy. Cohesive energies are very
difficult to calculate since the DFT methods show typical bias of 15-30%. At present, there is basically
no other method besides QMC which can get this level of accuracy. Note also good agreement with
experiments for the other quantities including the band gap. In QMC the band gap is calculated as a
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difference of two total energies— ground state and excited state, where the excited state is formed by
promoting an electron from the top valence band into the conduction band.

In addition, the equations of state have been calculated for both the equilibrium structure and also for
the high pressure phase, see Fig. 4. The estimated transition pressure is 65(5) GPa, at the lower end of
the experimental range 70-100 GPa. Clearly, the agreement with exepriment is not perfect and reflects
several idealizations used in our calculations. We checked that the rhobohedral distortion did not change
the results within our error bars so it appears unlikely that this was the dominant contribution. The
fact that the experimental results also vary significantly suggests that there other reasons need to be
considered. For example, it is well known that FeO is basically always slightly nonstochiometric what
could affect the experimental pressures significantly. Another reason could defects which could also push
the experimental observations towards higher pressures. Clearly, this question will have to be resolved
with further effort on both theoretical and experimental fronts.

The calculations clearly illustrate the capabilities of QMC methods and considering that only the
simplest trial wave function of Slater-Jastrow type was employed, the results are remarkable and very
encouraging. Note that the calculations do not have any free non-variational parameters. It is simply
the best possible solution within the trial function nodes and the given Hamiltonian.

More information about these projects can be found in Refs. [3],[9],[12] at the beginning of this report.
We note that our study of FeO solid was the first QMC calculation of transition metal oxides
at high pressures and provided a convincing demonstration of the QMC method potential for this
important class of solid materials.
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