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Abstract 
Ideally, quality is designed into software, just as quality is 

designed into hardware . However, when dealing with legacy 
systems, demonstrating that the software meets required quality 
standards may be difficult to achieve. Evolving customer needs, 
expressed by new operational requirements, resulted in the need 
to develop a legacy software quality assurance program at Los 
Alamos National Laboratory (LANL). This need led to the 
development of a reverse engineering approach referred to as 
software archaeology. This paper documents the software 
archaeology approaches used at LAN L to demonstrate the 
software quality in legacy software systems. A case study for 
the Robotic Integrated Packaging System (RIPS) software is 
included to describe our approach. 

I . INTRODUCTION 
In an ideal world, qual ity would be engineered into 

software during the design process just as it is engineered into 
hardware during design. While modem designs often apply this 
level of rigor to software as well as to hardware, this has not 
always been the case. Software was often created so that the 
system would work, with little thought given to its design or 
quality. As long as the system configuration (both hardware 
and software) remained constant and those responsible for the 
design remained available to deal with problems, the lack of 
detailed design documentation is not a significant problem. But 
when changes become necessary or the original people 
responsible for the software are lost to other programs, the 
quality of the software becomes important. 

At LANL, the need for a legacy Software Quality 
Assurance (SQA) effort became apparent with a regulatory 
change [ 1] that requ ired new and legacy systems to be brought 
into compliance with a Quality Assurance Plan (QAP) that is 
compatible with the ASME-NQA- l [2] standard. For new 
systems, the integration of this requirement does not 

substantially change the design process. However, for legacy 
systems, the choices were simple: 

I . Retire the system; or 
2. Replace the system with a new compliant system; 

or 
3. Bring the legacy system into compliance by 

establishing a SQA pedigree for the system 
including the software. 

If the system was not to be ret ired, establ ishing a quality 
pedigree for the hardware components of new and legacy 
systems often meant reviewing the existing procurement 
documentation or replacing the existing components with a 
equivalent pedigreed component. However, software 
components, particularly custom developed legacy software 
algorithms presented a different challenge. If system retirement 
is not an option, the chOice becomes one of either redeveloping 
the software fro m a blank slate or attempting to reverse 
engineer the software to develop a quality assurance pedigree, 

The case study used in th is paper uses the Robotic 
Integrated Packaging System (RIPS) as an example. RIPS is the 
product of nearly 15 years of development and is a one-of-a­
kind system with customized hardware and software involving 
mechanical, electrical, chemical, nuclear and robotics 
engineers, as we ll as material sc ientists, chemists, and nuclear 
physicists in its design. Retirement of the system is not an 
option. Wholesale replacement would result in unacceptable 
project delays and severe budgetary impacts that would 
probably result in not j ust the termination of the RIPS project, 
but of several other associated projects . The only option 
available was to bring the system into compliance with the new 
regulations by developing an quality pedigree for the system. 

While the system hardware either had sufficient 
documentation to establish a quality pedigree or could be eas ily 
replaced with pedigreed components, the system software is 
highly customized with limited documentation. Further 



complicating the SQA effort, was the fact that none of the 
original software developer remained on the project, and only 
two of the five could be contacted. Unfortunately, the 
remain ing individuals had limited knowledge of the system 
software beyond their own contributions and had not been 
involved with the software for several years . Consequently, 
their recollections of the software were of limited value. 
However, both individuals indicated that they were not aware 
of a SQA effort during the software design and development. 

So, the task for the team assigned to this project was, 
given a product, in this case a software package, develop a 
quality pedigree for the system software using the ava ilable 
design information, user manuals, source code, and the 
integrated system to bring the RIPS system into compliance 
with currently regulatory requirements. 

2. NECESSITY OF SOFTWARE QUALITY ASSURANCE 
Many program managers have asked "Why is software 

quality assurance a necessary component in many engineering 
systems?" The best answer is that SQA can reduce project costs 
by preventing hardware/software confl icts or errors, facilitating 
software changes and upgrades, while ensuring that the 
customer expectations are met by ensuring that the software 
implementation is complete. 

For a new system, SQA can be readily integrated into the 
design process. At its core, SQA is nothing more that a 
systematic documentation of the design process. However, 
during the development of a research and development system, 
a rigorous approach to SQA is rarely the priority of the 
scientists and engineers involved. LANL has many such 
systems and vast amounts of software code developed for 
research projects with li ttle or no SQA documentation. 

Even if the code is well-deve loped and thoroughly tested, 
it may be diffi cu lt to estab lish a quality pedigree if the design 
process was not well-documented. The LANL experience is 
that with legacy systems, the docwnentation is often lacking 
and some level of effort is therefore necessary to establish a 
quality pedigree. Ofte n, this effort requires the recreation of the 
design process so that design documentation can be developed 
to support the system. Ralph Johnson of The University of 
Illinois at Urbana-Champaign terms this process Software 
Archeology [3}. 

2.1. PURPOSE OF SQA 
SQA programs attempt to ensure that the needs of the 

customer(s) are met by the software. These needs can be 
described as expected, targeted and unexpected as shown by the 
Kano diagram [4] shown in Fig. 1. The expected requirements 
are often unstated by the customer - they are "expected" to be 
present in the software and their absence is a major source of 
customer dissatisfaction. The targeted needs are those that the 
customer intends to satisfy through the use of the software. 
These needs are also expected, or the customer will be 
dissatisfied with the software, but their presence is not 
necessarily a source of customer satisfaction. Unexpected needs 
are software features that meet needs of which the customer is 
unaware. The presence of unexpected software features is a 
major source of customer satisfaction. 
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In a software archeology effort, all three types of customer 
needs must be identified. The targeted needs are re latively 
apparent, they are the primary or core purpose of the software . 
However, most software packages include many functions that 
do not apparently meet the targeted need of the software. For 
instance, is the user interface an expected need (i.e. implic itly 
required by the customer) or an unexpected need (i.e. 
implemented by the programmer to enhance customer 
satisfaction). Understanding the needs lwderlying the software 
functions is vital to properly developing the SQA pedigree. 
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Figure 1. Kano Diagram of Customer Needs and 
Satisfaction versus Implementation Quality [4]. 

The quality of the software is a product of the quality of 
the design process [5]. Similarly, the quality of the pedigree is a 
product of the quality by which the design process is 
documented. If the goals in the design ofa product (including a 
software product) inc lude meeting the needs of the customer in 
terms of functionality, usability, reliabili ty, performance, and 
supportability, then the goal of an SQA program is to 
demonstrate that those needs have been addressed throughout 
the design process. Not doing so adequately may significantly 
add to the costs of maintaining software [6] and maintaining the 
associated documentation of the software [7]. A lack of 
documentation does not mean that the design process was 
flawed. Instead, it simply means that the quality of the software 
is unknown. In an integrated system composed of hardware and 
software components, unknown component qualities greatly 
affect the operating risks associated with the system. The 
potential risks associated with unqualified software are the 
underlying basis for the new SQA policies and procedures at 
LANL. 

2.2. IMPACT OF A LACK OF SQA 
Work in nuclear fac ilities is generally risk-adverse. 

Therefore, it is not surprising that the tnitial impact of the new 
SQA requirements began with the nuclear programs at LANL. 
The risks of the legacy software had to be assessed and 
mitigated by establishing an SQA pedigree for software which 
could not be retired, replaced, or redeveloped. 

Software failures are increas ingly reported in the press. 
Often, the cause of these failures is a lack of SQA. The 



Software QAlTest Resource Center website (8) maintains a 
listing of some of the more significant software fai lures 
attributable to a lack of SQA. A few of the more interesting 
highlights include: 

• In January 2009, regulators banned a health 
insurance company from sell ing policies due to 
computer bugs that resulted in erroneous denials 
of coverage or outright cancellations in coverage 
to certain patients. These errors threatened the 
health and safety of beneficiaries. 

• A January 2009 news report indicated that a major 
IT consulting company has spent four years 
correcting problems caused by an inadequately 
tested software upgrade. 

• In August 2008, more than 600 airline flights 
were delayed due to a software glitch in the FAA 
air traffic control system. 

• A lack of software testing was blamed for 
problems· that led to privacy breaches into the 
records of several hundred thousand customers of 
a large health insurance company in August 2008. 

• In December 2007, inadequate software testing of 
a new payroll system was blamed for $53 million 
of erroneous payments to employees of a school 
district. 

• An April 2007 subway rail car fire was caused by 
the fail ure of a software system to perform as 
expected in detecting and preventing excessive 
power usage in tbe new passenger cars. The 
subway system had to be evacuated and shut 
down for repairs. 

• A March 2007 recall of medical devices was 
blamed on a software bug that failed to detect low 
power levels in the devices. 

• A September 2006 news report indicated that 
insufficient software testing led to voter check-in 
delays during the primary elections in that state. 

There are dozens of addi tional examples of a lack of 
control over the development, use or maintenance of software 
that led to unintended failures. Clearly the need exists for 
producing better quality software. Software development 
failures also have been documented within the US Department 
of Energy (DOE) Laboratory Complex and at LANL. A series 
of software failures in DOE facilities, all attributable to a lack 
of SQA led to the implementation of formal SQA requirements 
at LANL. These new requirements apply not only to new and 
legacy software systems and led to the development of methods 
to establish an SQA pedigree for legacy systems. 

2.3. A RELATIONSHLP BETWEEN SQA AND DESIG N 
Figure 2 describes a typical product design lifecycle from 

the early problem identification process through design, 
production and the eventual retirement. The associated SQA 
process from ASME Standard NQA-l [2] is shown alongside 
for comparison. The QA- I standard is fwther discussed in 
Section 3. 

SQA naturally fits within a product development process 
such as that described in Fig. 2. This structure is appropriate for 
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the concurrent development of a software system with a new 
product. This should not be surprising, but should be expected. 
SQA is not an additional complexity to be added to the design 
process, but rather, SQA is a documentation of a structured 
design process. Properly done, SQA adds very little effort to a 
design effort, but instead documents the decisions made during 
that process. 
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Figure 2. A typical product development process alongs ide 
the ASME NQA-l software deve lopment process. [2]. The 
appropriate sections of the standard also are indicated. 

However, if there is an existing or legacy software product 
available, a reverse engineering or redesign structure should be 
considered. Based on the reverse engineering process 
description of Otto and Wood [9] an equivalent SQA reverse 
engineering process is defined in Fig. 3. In this case, SQA is a 
much more resource intensive effort than is the case in a blank­
slate design. Design processes have to be replicated in order to 
fill-in for the missing documentation . Inevitably, this a more 
problematic and uncertain approach than an original design 
process. However, for legacy systems, it may be the only 
possible choice. 
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Figure 3. SQA mtegrated wIth a reverse engmeenng 
process. 

The in itial goal of a reverse engineering process is to 
establish the underlying needs that justified the product. In this 
case, we are interested in the expected, targeted and unexpected 
needs previously identifi ed by the designers. Each need should 
be represented by a form embodied within the software. If 
programming is concerned with modeling rea lity with source 
code, reverse engineering software is concerned with obtaining 
a representation of reality from source code [10], 

2.4. REVERSE ENGINEERING SOFTWARE 
Sofhvare is conunonly reverse engineered for a variety of 

purposes, including: 

1. Coping with complexity; 
2, Generating altemative system views; 
3. Recovery of lost information; 
4. Detect side effects; 
5. Synthesize higher abstractions ; and 
6. Facil itate s ftware reuse [6]. 

In this application, our purpose is clearly to "recover lost 
information," in this case information that establishes the 
quali ty p d igree of the software. However, the process al so 
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facilitates reuse and modifi cation of the software, and uncovers 
potential interactions and side-effects within the system, 

The seminal definit ion of software reverse engineering is 
provided by Chikofsky and Cross [ II] as "the process of 
analyzing a subject system to (i) identify the system's 
components and their inter-relationships and (ii) create 
representations of the system in another form or at a higher 
level of abstraction." Effectively, this eans that software 
reverse engineering can be classified in terms of 
redocumentation and recovery of the original design [12] . 
These are our purposes in this project. 

The tasks involved included: 

• Redeveloping the original customer needs that led 
to the original software development (recovery); 

• Translating those needs into requirements and 
specifications (redocumentation); 

• Mapping the requirements and speci fications into 
the functional form of the design (recovery); 

• Developing appropriate testing procedures to 
confirm that the requirements and specifications 
are met in the software as implemented 
(redocumentation); and 

• Producing appropriate maintenance, upgrade and 
retirement plans and procedures 
(redocumentation). 

The similarities in activities between quality assurance and 
design procedures are striking. Specific techniques used at 
LANL to reverse engineer legacy software will be noted in the 
case study in Section 4. The common fear of most engineers 
when faced with a new quality assurance program that there 
will be additional effort and the design process will suffer is 
probably unfounded. What is required is a simple 
documentation of the act ivities that already occur. In short, 
SQA is simply good engineering practice. 

One fmal aspect of SQA that is not necessarily apparent is 
the importance of testing, Th is testing is beyond integrated 
system tests, although those certainly play a role in testing the 
software. Testing should demonstrate the "correctness, 
completeness, security, and quality of the software product 
against a specification" [13]. Several functions commonly 
included in LANL software may include access authorization 
protection, whose functionality was defined in the customer 
needs (as a expected need) but were not explicitly tested during 
the system acceptance tests because they were not identifi ed as 
targeted customer needs . SQA analysis revealed these needs 
and led to their inclusion in software acceptance testing. 

3. SOURCES OF SQA STANDARDS 
Several professional organizations have arrived at 

standards for SQA programs. Among them are the American 
Society of Mechanical Engineers (ASME), Nuclear Quality 
Assurance Level I, referred to as NQA- l [2) 1. NQA- l forms 
the basis for most of the relevant DOE and LANL standards 
and requirements for SQA. In addition to NQA- I, relevant 

I Note that there are more recent versions ofNQA-I, however, 
the DOE Orders specifically reference NQA-I -1 997, and so 
therefore the SQA program is based on this version. 



IEEE computer engineering standards such as IEEE 1228-1994 
[14], Department of Defense standards such as MIL-STD-882D 
[1 5] and standards from the American Society for Quality 
(ASQ) were used to further refine the meanings of the ASME 
standards. 

3.t. REGULATORY DRIVERS 
DOE SQA programs are driven by regulations in 10 CFR 

830.122 [2]. Th is code specifies a Quality Assurance Plan 
(QAP) and indicates that the QAP must address management, 
performance, and assessment criteria. Additional requirements 
are imposed for software if its location or use may affect the 
safety and/or security of a facility. Professional standards 
including ASME-NQA- I have been codified into this code. 

10 CFR 830.122 [2] resulted in DOE Order 414.IC [16], 
which is specific to quality assurance, safety software, and 
software defined as computer programs, procedures, and 
associated documentation and data pertaining to the operation 
of a computer system with in DOE nuclear fac ilities. LANL 
translated this order into a LANL LIR 308-00-05.1 entitled 
"Software Quality Management" revised on December 29, 
2006. This document has been further superseded by additional 
procedures and requirements. 

At each level. the details of SQA implementations become 
increasingly specific . The SQA program developed for the 
ARIES proj ect and used as the basis fo r the legacy work on 
RlPS, has been successfully audited several times and is in 
accord with all of the relevant DOE and LANL procedures. 

3.2. THE ARIES APPROACH TO LEGACY SOFfW ARE 
The Advanced Recovery and Integrated Extraction System 

is a program that has been active at LANL since the mid-1990s. 
The program runs a series of gloveboxes, many of which 
contain integrated automation and processing systems [17, 18] 
for which extensive customized software was created. The 
ARIES glovebox lines convert nuclear materials from retired 
nuclear weapons into forms suitable for packaging for long­
term storage, international inspection and for reuse as mixed­
oxide (MOX) reactor fuel [19]. Because of the potential to 
reuse ARIES material in nuc lear reactors. the need for an SQA 
program was recognized by the ARIES project long before 
other programs at LANL realized the need. 

However. ARJES still had hundreds of thousands of lines 
of code for which the necessary docwnentation of the software 
quality was incomplete. To correct this deficiency, the ARIES 
program embarked on an aggressive software reverse 
engineering program to estab lish a defensible SQA pedigree for 
its legacy software systems. This program qu ickly became 
known as a software archaeology effort and is the basis for the 
case study in the fo llowing section. 

This project used the ASME NQA-l standard as a baseline 
for what information needed to be identified, documented and 
retained for both legacy and new software systems. These 
requirements are shown in Fig. 4. Some elements are only 
required of new software. Others are optional, and their need is 
determined during the development of the initial software 
project plan through a risk analysis. 
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Figure 4. The elements of the ARIES SQA program. 

The ARIES SQA plan has been through several internal 
and external audits and has earned glowing reviews each time. 
Furthermore, the program did review issues which had not been 
previously identified during system integration, acceptance 
testing or system operation. Most importantly, the project has 
increased confidence in our end-users that our product is 
produced to meet the required specifications. 

4. SOFTWARE ARCHEOLOGY: RIPS CASE STUDY 
The RIPS module is one of six major processes that make 

up the ARIES glovebox line. RIPS is responsible for packaging 
nuclear materials produced by the modules into stainless steel 
cans that meet the DOE 3013 packaging standard [20]. The 
cans are automatically packaged with two robotic systems and 
uses five independent subsystems to complete the process. 
These systems are controlled by no less than six separate 
computer systems and interface with six additional "inte lligent" 
instrumentation subsystems [17. 18] . 

RIPS is the result of nearly 15 years of R&D by a team of 
about 50 people. Currently. only five individuals remain on the 
project and about the same number remain accessible to the 
project. More significantly for this project only two of the 
original five programmers remain accessible to the project. 
Most of the design knowledge for the module has been lost to 
retirements and career changes. A significant amount of the 
design history has been lost. 



The RIPS glovebox, Fig. 5, is divided into three chambers 
called the hot side (which is radioactively contaminated), the 
cold side and the flu id processing side. Materials to be 
packaged in RIPS arrive in the hot side in a crimped 
convenience can. One robot then loads the convenience can 
into a 301 3 stainless steel can which is then welded shut in a 
helium atmosphere. The welded can is inspected, leak checked 
and placed in an electrolytic decontamination chamber to be 
radioactively decontaminated (see Fig. 6 and 7). 

Cold Side 

Figure 5. Schematic of the ARIES RIPS Module. 

Within the electrolytic decontamination chamber, the 
surface of the can is electropolished which removes 
contamination from the surface of the can. The chemicals used 
to electropolish the can are recycled in the fluid processing 
chamber of the gJovebox and the removed contamination is 
collected and removed from the system. Once the process is 
complete the can is transferred to the cold side of the glovebox 
for fi nal processing. 

Figure 6. Handl ing the convenience can on the hot side. 
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Figure 7. Handling the welded 3013 can. 

On the cold side, Fig. 8, a second robot conducts a 
radiation survey on the surface of the can, and conducts a 
second leak check to confmn that the can remains sealed. Once 
these checks are completed, the can is released from the RIPS 
module and taken to the next process in the ARIES process. 

The operation of the RIPS system is controlled by a master 
PC, which can delegate system contTol to either robot, the 
welding subsystem, the electrolytic decontaminat ion system, or 
the two leak check systems. When control is handed off to the 
subsystems, the master computer "I cks-out" the uninvolved 
systems until control is returned by the subsystem completing 
its assigned task. The master computer and each of these 
subsystem s include software which needed to be evaluated. In 
addition, the radiation checks use three addi tional " intelligent" 
instruments to survey the surface of the can. These instruments 
also included software that needed to be addressed. 

Due to the nature of the RIPS system, complete details of 
the hardware and software are not included in this paper. The 
information provided is as complete as possible; however, some 
data is not presented as completely as may be desired by the 
readers. The authors bel ieve tbat the level of detail provided is 
adequate to provide the interested readers guidance in the 
processes used to develop the SQA pedigree for the RIPS 
system and to apply this approach to other legacy systems. 



4.1. SOFTWARE PROJECT PLAN 
The Software Project Plan (SPP) is the initial step in the 

reverse engineering process used by ARlES at LANL. The 
purpose of the SPP is to document the original customer needs 
for the software and to establish a plan to complete the SQA 
process. Particular attention is paid in this initial phase with the 
identification of expected, targeted and unexpected needs. The 
main techniques used to develop the system needs included 
interv iews with the system operators, reviews of the existing 
design documentation and user manuals, and a systemic review 
of the system software to catalog each feature. Features that did 
not clearly map to a particular customer need were identified 
and their purpose was defined. This final set of functions led to 
the identification of many of the unexpected customer needs. 

The SPP identified four targeted customer needs for the 
system, including: 

• the automated welding of the 3013 containers; 
• the automated verification that the weld sealed the 

container; 
• the automated decontamination of the outer 

surface of the container; and 
• the automated verification of satisfactory 

decontamination and that the container remains 
intact. 

In addition, this analysis led to the identifi cation of several 
expected customer needs, incl ding for example: 

• a graphical user interface to the main operating 
program; 

• a graphical user interface to the decontam ination 
program; 

• localized control that prevented independent 
operation of subsystems without authorization of 
the main control system; 

• error detection of a set of limited error conditions 
with associated error recovery procedures; and 

• access authorization control to override automated 
routines. 

Furthermore, the development of the SPP identified several 
unexpected customer needs, including for example: 

• multiple access levels enabling increas ing control 
of subsystem interfaces with reduced safety 
margins; 

• database parameter control; 
• centralized data collection and package report 

preparation; 
• system expandabili ty for program mod ifications; 

and 
• logging of system activity. 

During the original system acceptance testing, only the 
fu nctionality associated with the targeted needs was 
systematically tested. Several element of the expected needs 
and the unexpected needs were also tested, but the tests were 
not explici t. For instance, the access authorization was tested, 
but not intentionally. So the system operators were confident 
that it worked, but there was no documentation of an access 
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denial. Similarly, while system logs were created of the 
acceptance test activities, generation of a system log was not a 
requirement for the acceptance test. 

Beyond the identification of the customer needs for the 
RIPS system, the SPP provided the opportunity to identifY the 
system components and their connections . At this point in the 
project, an important issue was identified concerning the 
presence of "intell igent" instrumentation within RlPS and to 
what level of granu larity within the system shou ld the SQA 
process be termi nated. 

These intell igent instruments contain internal software, 
often in the form of firm ware, which processes the sensor data 
and provides a result to a local user interface and to the main 
system through a network connection. The issue is whether or 
not an adequate quality pedigree existed for these instruments 
or whether a separate quality pedigree needed to be developed. 

For instance, RIPS uses several thermocouples and a 
thermocouple contro ller to monitor temperatures in the 
electrolytic decontamination system. The thermocouple 
controller uses firm ware to convert the thermocouple voltage to 
a temperature readout which is supplied to the system software. 

The quality issue is whether the data supplied by the 
thermocoup le is correct. If the fmnware is in error, the system 
will not provide correct data and may cause errors in other 
system components. Furthermore, is the firmware controlled 
and cannot be modified without knowledge of the project. 

On one hand, the firmware is software which needed to be 
validated. On the other hand, this software can only be 
modified by the vendor, and since the systems are located in a 
secure facility, the fmnware configuration is controlled. 
Furthermore, the instruments were subject to a calibration plan, 
which also served to verifY that the firmware and the sensor are 
functioning correctly. Consequently, it is our conclusion that 
the quality issues in the inte lligent instruments are controlled 
through the existing project change control and calibration 
requirements. Therefore, these intell igent instruments have an 
adequate quality pedigree to support their continued use within 
the system and do not need to be reverse engineered. 

Consequently, the SPP allowed for the system hardware 
configuration and major software components to be 
diagrammed, initially resulting in the diagram shown in Fig. 9. 
Figure 9 is obviously lacking in signifi cant detail, including the 
nature of the network connections, speci fic hardware 
components and interfaces, and software communication 
protocols. However, it represents an initial high level 
conceptual system diagram that was refined as the reverse 
engineering project proceeded. This diagram is equivalent to an 
early system sketch. 

Finally, the SPP required an analys is of the safety 
significance of the software. The safety analysis was conducted 
with a formalized questionnaire completed by the responsible 
system engineers that resulted in a determination of the level of 
safety significance of the software . RIPS was determined not to 
be safety significant software and therefore did not require a 
Software Safety Plan (SSP). It aJso was determined that the 
software maintenance plan could be integrated into the system 
maintenance plan which was also under development at the 
tinle. Finally, the retirement plan development was deferred 
since there are no immediate plans to retire this system. 
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Figure 9. Software Architecture uncovered with the SPP. 

So, in summary, the primary design techniques used in to 
develop the SPP included: 

• customer interviews and surveys; 
• literature reviews (of existing design documents 

and user manuals); 
• functional analysis of the existing software (to 

generate additional customer needs); and 
• conceptualization sketches of the system 

architecture yielding a high level black box model 
of the system. 

4.2. REQUIREMENTS & SPECrFICA TlONS 
The next phase of the SQA process for RlPS involved the 

development of the initial general customer needs defmed in 
the SPP into a detailed set of engineering requirements and 
specifications. These included both requirements for system 
functionality during normal and abnormal operations as well as 
requirements for data interfaces and network connections 
between the various hardware systems. AU of this information 
was documented in a Software Requirements and 
Specifications (S RS) document. 

This analys is led to the development of a Requirements 
Traceability Matrix (RTM), organized hierarchically into 33 
major categories corresponding to the fmal listing of customer 
needs and encompassing more than 500 individual 
requirements. Each requirement was also associated with a 
particular component from Fig. 9. This matrix was used in 
subsequent documentation. A sample of the content of the 
RTM is shown in Table I. 

Detail in the RTM was added through a combination of 
system operations and studies of the documentation and source 
code. The desired level of granularity in the RTM was that each 
action occurred within a single component of the software 
system and within an identifiable module of code. It was 
possible that during this study that additional customer needs 
could be identified, which is indicat ive of an iterative design 
process and would not surprise the authors. While no additional 
needs were uncovered during the RIPS study, several customer 
needs were refined to better correlate with the underlying 
details within the software. 
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As the process proceeded, the RTM was modified. Specific 
algorithm names were identified, such as the Hot Robot 
Program, G_MC_DE, which moves the robot into position to 
grasp the material can (MC) in the decontamination location. 
Many of these program names were not associated until the 
Software Design Document, described in Section 4.3 was 
completed. The RTM also began to reveal interfaces between 
software levels, such as that associated with requirement 32.2 
where the H_Robot class in the top leve l software package 
(called CanOut) interfaces with the Hot Robot to call the 
individual programs defined by requirements 32.2.1 through 
32.2.8. Thus, requirement 32.2 is dependent upon the 
successful integration of the eight subrequirements. The 
interfaces between the two software packages are represented 
in their own set of requirements. 

In constructing the RTM, a detailed diagram of the 
operation of the CanOut software system was generated. This 
flow chart was instrumental in the deve lopment and 
organization of the RTM and in the development of testing 
procedures. The testing data is documented in the last three 
columns of the RTM. The flow chart for CanOut is shown in 
Fig. IO. 

In addition, as detailed task requirements and 
specifications were developed, the in fOim ation within Fig. 9 
was further refined to include network structures, 
communication protocols, data flows, software versions and 
hardware interfaces. The functionality of these interfaces and 
data flows also are represented within the RTM. Notably, these 
requirements and specifications were not the result of the 
targeted customer needs for the system, but instead evolved 
from the expected and unexpected customer needs that 
appeared as the system was integrated. 

The SRS document used design methods and techniques 
that included: 

• 
• 
• 

• 

• 

task studies and decomposition; 
process and software process observations; 
process and software flowcharts (developed 
similarly to function structures and incorporating 
a grammar of movements and actions specific to 
the system) 
reviews of the system bill of materials and wiring 
diagrams; and 
software class diagrams and automated code 
review technologies. 

4.3. SOFTWARE DESJGN DOCUMENT 
The Software Design Document (SOD) associated each 

requirement and specification with particular software and 
hardware components. It is at this phase of the project where 
specific hardware was called out for the system, network 
connections were identified and data exchange protocols were 
specified. This phase is not that dissimilar from bow an SDD 
might be created for new software with one exception. In this 
case, no new software was written. Instead, the source code was 
reviewed to determine which module(s) were responsible for 
each requirement. This information was used to refme the RTM 
by associating specific requirements with code modules. 
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The source code reviews of the RIPS software modules 
were performed by subject matter e, perts. While some 
automated tools were used to generate class diagrams and 
related progranuning representations, ultimately the task 
became to simply review the individual classes and identify 
functionali ty. This is in essence a reverse function structure, 
where the implementation or solution to the function is known -
but the function structure is unknown . 

The code review was completed to the level of detail 
required for integrated software testing. The function of every 
line of code was not identified, but the goal was to identify the 
major blocks of code responsible for each requirement. Thus, 
the SDD provides a starting point for code revisions, should 
changes prove necessary at some later date. 

If this should be the case, the SDD also provides a format 
to capture new design knowledge and design changes to the 
software. Updating the associated software documentation is an 
important, but often overlooked step in software maintenance 
[7]. 

The fmal process used to develop the SDD was a software 
and requirements review by the system engineers. The goal of 
the review was to identify if the developed system 
representation captured the real system and if there were 
deficiencies that needed to be explained before the software 
would be validated, verified and placed under change control. 

The design techniques used to develop the SOD included: 

• system hardware reviews; 
• reverse functional analysis to translate forms into 

functions and match the functional organization of 
the source code with the requirements for the 
system; 

• formalization of the system interface and data 
exchange standards; and 

• system engineering conceptual design review. 

4.4. SOFTWARE TESTING 
Perhaps the most important documents resulting from the 

SQA effort are the Software Test Plan (STP) and the Software 
Test Report (STR). The STP allows the integrated system to be 
tested to validate that the system performs as expected. This is 
the primary metric by which the quality pedigree of the system 
is determined [5]. 

At LANL, systems for use in a nuclear facility (such as 
RIPS) are required to pass a cold acceptance test in a non­
nuclear environment and a hot acceptance test within the 
nuclear facility before operations may begin with nuclear 
materials. Both of these tests are integrated system tests that 
include both hardware and software. These tests were capable 
of revealing fl aws involving the integrated system, but often 
did not test all of the software requirements identified for the 
system. The regulatory change that required a SQA pedigree 
for systems at LANL highlighted the need to completely 
evaluate the software in order to properly assess the risks 
associated with the system. 

In the case of RIPS, when the SQA effort began, the 
system had already completed and passed its cold acceptance 
test and the hot acceptance test was underway. Consequently, 
an STP was prepared to be conducted following the hot 
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acceptance test plan. The goal of the STP was not to repeat 
tests conducted in either the cold acceptance test plan or the hot 
acceptance test plan, but rather to capture any software 
requirements not tested by those plans . Therefore , planning for 
the STP began by reviewing the tests previously conducted and 
determining if the documented results adequately tested any of 
the identified software requirements fro m the RTM. 

As a result of this review about 10-1 5% of the software 
requirements identified in the RTM were identifi ed as either 
not tested during acceptance testing or wer inadequately 
tested. Most of the requirements that were missed were 
relatively minor requirements from an operational standpoint of 
the system. For instance, the access authorization to the 
software was not formally tested during acceptance testing. The 
operators who performed the testing were certain that it 
worked, and could recall incorrectly entering their password 
and being rejected by the software, but there were no explicit 
requirements ;in either the cold or hot acceptance test plans to 
test the access authorization, nor was there any documentation 
that the fu nction of the software worked. 

With the untested requirements identifi ed, brainstorming 
sessions were he ld with the sys tem operators and engineers to 
develop appropriate and credible test cases. These test cases 
were organized into a logical progression and developed into 
the STP used for testing. Therefore, the STP was developed as 
an outgrowth of the RTM developed throughout the project. 
The final three columns shown in Table I shoudl now be self­
exp lana tory . 

Surprisingly, lessons were learned during the software 
testing. Some tests produced unexpected results which had to 
be explained. One example was a failure message that was 
reported when a fault was de lib rately caused, but the message 
reported a more generic faul t condition than what was expected 
by the test and the operators. All of the test results, whether 
indicating success or failure, were reported in the STR. 
Erroneous conditions required exp lanation and an accept-as-is 
or correct-with-change-order decision. 

In the case of the fa ilure message, investigation revealed 
that the software was reporting a correct error response. But, 
because of limited communication channels, two different fau lt 
conditions generated a common error message to the main 
software system. This hardware decision meant that the 
software could not distinguish between the two different fail ure 
causes as had been expected by the operators. Hence the 
message that indicated a failure had occurred, but did not 
indicate that there were two sources . The underlying design 
decision to piggyback the two error signals on a common 
communication pathway was obviously known to the original 
software developer • but was not documented in any of the 
available materials reviewed and required a much more detailed 
code review than was performed during the SOD to uncover its 
existence. This new information was not only documented in 
the STR, but also was used to update the Software User Manual 
(SUM). In this case, the test result was accepted-as-is. 

Both the STP and the STR are subjected to a review 
process that includes system experts, software experts, and the 
responsible management for the operations and engineering of 
the system. These reviews provide a val uable check on the rigor 
of the STP and the conclusions drawn in the STR. The review 

Copyright © 2009 by ASME 



corrunittees must also approve of any accept-as-is or correct 
decisions proposed by the responsible system engineers. Th is 
rigorous process forces the engineering underlying the system 
to be completely documented and produces an auditable 
document record of critical design decisions. 

The development of an STP will also play an important 
role in the configuration management of the software. Once it 
was established that the exist ing software was functional and 
met the existing requirements; the software was base lined and 
the configuration frozen. A formal change process is now in 
place to prevent software and hardware changes without an 
associated software impact review and a subsequent testing 
after the change is implemented . Any changes will require use 
of the STP and Integrated Acceptance Test Plan for the system 
to confmn system modi tlcations have not in advertently effect 
the capabilities of the system. Subsequent tes ting will generate 
additional STRs. 

For systems that were not already in the acceptance testing 
process, the plan is to integrate the STP into the Cold and Hot 
Acceptance Test Process. For legacy systems that have already 
completed the acceptance testing process, the STP approach 
used in RIPS allows those systems to be evaluated and test 
deficiencies identified and tested individually. 

The use of the RTM as the basis for establishing the 
necessary tests provides a systematic means of demonstrating 
that the project requirements have been met. The result is a 
software package backed by demonstrable perfonnance metrics 
and capable of exceed ing cus!omer expectations. 

In the development of the STP, again typical design 
methods were used, including: 

• review of prior test documentation; 
• identification of testable requirements and test 

methods; 
• brainstonni ng of credible test configmations; 
• de sign of experiments; 
• experimental testing; and 
• design reviews of the resulting test plans and test 

results. 

5. CONCLUSIONS AND LESSONS LEARNED 
Even in a tightly contro lled and regulated environment 

such as a DOE nuclear fac ility, there remains room for 
improvement. The implementation of a SQA program within 
the ARIES project required some creative problem solving 
approaches . Since adequate documentation was not produced 
during the initial software design and implementation, 
additional resources were required to reverse engineer the 
design. These reverse engineering efforts, colloquially called 
"software archaeology," revealed previously lost design 
decisions and features that had been lost. 

These discoveries have enhanced our present 
understandin g of systems such as RlPS. However, perhaps 
most importantly, the resu lts of the SQA project have provided 
a quality pedigree for tbe software within ARlES that did not 
previously exist. Hardware and software upgrades can now be 
pursued with a much better understanding of their potential 
impacts upon the system, which should lead to a more 
predictable des ign and integration process. Furthermore, with 
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an established set of software and hardware testing procedures, 
any upgrades or modifications to the system can be evaluated 
before the system is returned to operation. As a result, the risk 
profile of the system is much more clear ly defined. 

The relationship betweel1 a q uality assurance program and 
design should be a strong one. Many of the featur·es and 
requirements are simi lar. Strong formal design methods, when 
well documented are the backbone of quality assurance 
documentation. And if that documentation is lacking, reverse 
engineering methods are the central to the recovery, recreation 
and rediscovery of what has been lost. Good engineering design 
practices make qual ity assmance programs easy to implement 
and quality assurance programs can nurture good engineering 
practice. 
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