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Abstract

Ideally, quality is designed into software, just as quality is
designed into hardware. However, when dealing with legacy
systems, demonstrating that the software meets required quality
standards may be difficult to achieve. Evolving customer needs,
expressed by new operational requirements, resulted in the need
to develop a legacy software quality assurance program at Los
Alamos National Laboratory (LANL). This need led to the
development of a reverse engineering approach referred to as
software archaeology. This paper documents the software
archaeology approaches used at LANL to demonstrate the
software quality in legacy software systems. A case study for
the Robotic Integrated Packaging System (RIPS) software is
included to describe our approach.

1. INTRODUCTION

In an ideal world, quality would be engineered into
software during the design process just as it is engineered into
hardware during design. While modemn designs often apply this
level of rigor to software as well as to hardware, this has not
always been the case. Software was often created so that the
system would work, with little thought given to its design or
quality. As long as the system configuration (both hardware
and software) remained constant and those responsible for the
design remained available to deal with problems, the lack of
detailed design documentation is not a significant problem. But
when changes become necessary or the original people
responsible for the software are lost to other programs, the
quality of the software becomes important.

At LANL, the need for a legacy Software Quality
Assurance (SQA) effort became apparent with a regulatory
change [1] that required new and legacy systems to be brought
into compliance with a Quality Assurance Plan (QAP) that is
compatible with the ASME-NQA-1 [2] standard. For new
systems, the integration of this requirement does not
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substantially change the design process. However, for legacy
systems, the choices were simple:

. Retire the system; or

2. Replace the system with a new compliant system;
or

3. Bring the legacy system into compliance by
establishing a SQA pedigree for the system
including the software.

If the system was not to be retired, establishing a quality
pedigree for the hardware components of new and legacy
systems often meant reviewing the existing procurement
documentation or replacing the existing components with a
equivalent pedigreed component. However, software
components, particularly custom developed legacy software
algorithms presented a different challenge. If system retirement
is not an option, the choice becomes one of either redeveloping
the software from a blank slate or attempting to reverse
engineer the software to develop a quality assurance pedigree.

The case study used in this paper uses the Robotic
Integrated Packaging System (RIPS) as an example. RIPS is the
product of nearly 15 years of development and is a one-of-a-
kind system with customized hardware and software involving
mechanical, electrical, chemical, nuclear and robotics
engineers, as well as material scientists, chemists, and nuclear
physicists in its design. Retirement of the system is not an
option. Wholesale replacement would result in unacceptable
project delays and severe budgetary impacts that would
probably result in not just the termination of the RIPS project,
but of several other associated projects. The only option
available was to bring the system into compliance with the new
regulations by developing an quality pedigree for the system.

While the system hardware either had sufficient
documentation to establish a quality pedigree or could be easily
replaced with pedigreed components, the system software is
highly customized with limited documentation, Further



complicating the SQA effort, was the fact that none of the
original software developer remained on the project, and only
two of the five could be contacted. Unfortunately, the
remaining individuals had limited knowledge of the system
software beyond their own contributions and had not been
involved with the software for several years. Consequently,
their recollections of the software were of limited value.
However, both individuals indicated that they were not aware
of a SQA effort during the software design and development.

So, the task for the team assigned to this project was,
given a product, in this case a software package, develop a
quality pedigree for the system software using the available
design information, user manuals, source code, and the
integrated system to bring the RIPS system into compliance
with currently regulatory requirements.

2. NECESSITY OF SOFTWARE QUALITY ASSURANCE

Many program managers have asked “Why is software
quality assurance a necessary component in many engineering
systems?” The best answer is that SQA can reduce project costs
by preventing hardware/software conflicts or errors, facilitating
software changes and upgrades, while ensuring that the
customer expectations are met by ensuring that the software
implementation is complete.

For a new system, SQA can be readily integrated into the
design process. At its core, SQA is nothing more that a
systematic documentation of the design process. However,
during the development of a research and development system,
a rigorous approach to SQA is rarely the priority of the
scientists and engineers involved. LANL has many such
systems and vast amounts of software code developed for
research projects with little or no SQA documentation.

Even if the code is well-developed and thoroughly tested,
it may be difficult to establish a quality pedigree if the design
process was not well-documented. The LANL experience is
that with iegacy systems, the documentation is often lacking
and some level of effort is therefore necessary to establish a
quality pedigree. Often, this effort requires the recreation of the
design process so that design documentation can be developed
to support the system. Ralph Johnson of The University of
[llinois at Urbana-Champaign terms this process Software
Archeology [3].

2.1. PURPOSE OF SQA

SQA programs attempt to ensure that the needs of the
customer(s) are met by the software. These needs can be
described as expected, targeted and unexpected as shown by the
Kano diagram [4] shown in Fig. 1. The expected requirements
are often unstated by the customer — they are “expected” to be
present in the software and their absence is a major source of
customer dissatisfaction. The targeted needs are those that the
customer intends to satisfy through the use of the software.
These needs are also expected, or the customer will be
dissatisfied with the software, but their presence is not
necessarily a source of customer satisfaction. Unexpected needs
are software features that meet needs of which the customer is
unaware. The presence of unexpected software features is a
major source of customer satisfaction.

)

In a software archeology effort, all three types of customer
needs must be identified. The targeted needs are relatively
apparent, they are the primary or core purpose of the software.
However, most software packages include many functions that
do not apparently meet the targeted need of the software. For
instance, is the user interface an expected need (i.e. implicitly
required by the customer) or an unexpected need (i.e.
implemented by the programmer to enhance customer
satisfaction). Understanding the needs underlying the software
functions is vital to properly developing the SQA pedigree.
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Figure 1. Kano Diagram of Customer
Satisfaction versus Implementation Quality [4].
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The quality of the software is a product of the quality of
the design process [5]. Similarly, the quality of the pedigree is a
product of the quality by which the design process is
documented. If the goals in the design of a product (including a
software product) include meeting the needs of the customer in
terms of functionality, usability, reliability, performance, and
supportability, then the goal of an SQA program is to
demonstrate that those needs have been addressed throughout
the design process. Not doing so adequately may significantly
add to the costs of maintaining software [6] and maintaining the
associated documentation of the software [7]. A lack of
documentation does not mean that the design process was
flawed. Instead, it simply means that the quality of the software
is unknown. In an integrated system composed of hardware and
software components, unknown component qualities greatly
affect the operating risks associated with the system. The
potential risks associated with unqualified software are the
underlying basis for the new SQA policies and procedures at
LANL.

2.2. IMPACT OF A LACK OF SQA

Work in nuclear facilities is generally risk-adverse.
Therefore, it is not surprising that the initial impact of the new
SQA requirements began with the nuclear programs at LANL.
The risks of the legacy software had to be assessed and
mitigated by establishing an SQA pedigree for software which
could not be retired, replaced, or redeveloped.

Software failures are increasingly reported in the press.
Often, the cause of these failures is a lack of SQA. The



Software QA/Test Resource Center website [8] maintains a
listing of some of the more significant software failures
attributable to a lack of SQA. A few of the more interesting
highlights include:

o In January 2009, regulators banned a health
insurance company from selling policies due to
computer bugs that resulted in erroneous denials
of coverage or outright cancellations in coverage
to certain patients. These errors threatened the
health and safety of beneficiaries.

* A January 2009 news report indicated that a major
IT consulting company has spent four years
correcting problems caused by an inadequately
tested software upgrade.

¢ In August 2008, more than 600 airline flights
were delayed due to a software glitch in the FAA
air traffic control system.

e A lack of software testing was blamed for
problems that led to privacy breaches into the
records of several hundred thousand customers of
a large health insurance company in August 2008.

e In December 2007, inadequate software testing of
a new payroll system was blamed for $53 million
of erroneous payments to employees of a school
district.

o An April 2007 subway rail car fire was caused by
the failure of a software system to perform as
expected in detecting and preventing excessive
power usage in the new passenger cars. The
subway system had to be evacuated and shut
down for repairs.

* A March 2007 recall of medical devices was
blamed on a software bug that failed to detect low
power levels in the devices.

e A September 2006 news report indicated that
insufficient software testing led to voter check-in
delays during the primary elections in that state.

There are dozens of additional examples of a lack of
control over the development, use or maintenance of software
that led to unintended failures. Clearly the need exists for
producing better quality software. Software developrent
failures also have been documented within the US Department
of Energy (DOE) Laboratory Complex and at LANL. A series
of software failures in DOE facilities, all attributable to a lack
of SQA led to the implementation of formal SQA requirements
at LANL. These new requirements apply not only to new and
legacy software systems and led to the development of methods
to establish an SQA pedigree for legacy systems.

2.3. ARELATIONSHIP BETWEEN SQA AND DESIGN

Figure 2 describes a typical product design lifecycle from
the early problem identification process through design,
production and the eventual retirement. The associated SQA
process from ASME Standard NQA-1 [2] is shown alongside
for comparison. The NQA-1 standard is further discussed in
Section 3.

SQA naturally fits within a product development process
such as that described in Fig, 2. This structure is appropriate for

the concurrent development of a software system with a new
product. This should not be surprising, but should be expected.
SQA is not an additional complexity to be added to the design
process, but rather, SQA is a documentation of a structured
design process. Properly done, SQA adds very little effort to a
design effort, but instead documents the decisions made during
that process.
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Figure 2. A typical product development process alongside
the ASME NQA-1 software development process. [2]. The
appropriate sections of the standard also are indicated.

However, if there is an existing or legacy software product
available, a reverse engineering or redesign structure should be
considered. Based on the reverse engineering process
description of Otto and Wood [9] an equivalent SQA reverse
engineering process is defined in Fig. 3. In this case, SQA is a
much more resource intensive effort than is the case in a blank-
slate design. Design processes have to be replicated in order to
fill-in for the missing documentation. Inevitably, this a more
problematic and uncertain approach than an original design
process. However, for legacy systems, it may be the only
possible choice.
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Figure 3. SQA integrated with a reverse engineering
process,

The initial goal of a reverse engineering process is to
establish the underlying needs that justified the product. In this
case, we are inferested in the expected, targeted and unexpected
needs previously identified by the designers. Each need should
be represented by a form embodied within the software. If
programming is concerned with modeling reality with source
code, reverse engineering software is concerned with obtaining
a representation of reality from source code [10].

2.4. REVERSE ENGINEERING SOFTWARE
Software is commonly reverse engineered for a variety of
purposes, including;

1. Coping with complexity;

Generating alternative system views;
Recovery of lost information;

Detect side effects;

Synthesize higher abstractions; and
Facilitate software reuse [6].
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In this application, our purpose is clearly to “recover lost
information,” in this case information that establishes the
quality pedigree of the software. However, the process also

facilitates reuse and modification of the software, and uncovers
potential interactions and side-effects within the system.

The seminal definition of software reverse engineering is
provided by Chikofsky and Cross [11] as “the process of
analyzing a subject system to (i) identify the system's
components and their inter-relationships and (ii) create
representations of the system in another form or at a higher
level of abstraction.” Effectively, this means that software
reverse engineering can be classified in terms of
redocumentation and recovery of the original design [12].
These are our purposes in this project.

The tasks involved included:

e Redeveloping the original customer needs that led
to the original software development (recovery);

e  Translating those needs into requirements and
specifications (redocumentation);

*  Mapping the requirements and specifications into
the functional form of the design (recovery);

¢ Developing appropriate testing procedures to
confirm that the requirements and specifications
are met in the software as implemented
(redocumentation); and

e  Producing appropriate maintenance, upgrade and
retirement plans and procedures
(redocumentation).

The similarities in activities between quality assurance and
design procedures are striking. Specific techniques used at
LANL to reverse engineer legacy software will be noted in the
case study in Section 4. The common fear of most engineers
when faced with a new quality assurance program that there
will be additional effort and the design process will suffer is
probably unfounded. What is required is a simple
documentation of the activities that already occur. In short,
SQA is simply good engineering practice.

One final aspect of SQA that is not necessarily apparent is
the importance of testing. This testing is beyond integrated
systemn tests, although those certainly play a role in testing the
software. Testing should demonstrate the “correctness,
completeness, security, and quality of the software product
against a specification” [13]. Several functions commonly
included in LANL software may include access authorization
protection, whose functionality was defined in the customer
needs (as a expected need) but were not explicitly tested during
the system acceptance tests because they were not identified as
targeted customer needs. SQA analysis revealed these needs
and led to their inclusion in software acceptance testing.

3. SOURCES OF SQA STANDARDS

Several professional organizations have arrived at
standards for SQA programs. Among them are the American
Society of Mechanical Engineers (ASME), Nuclear Quality
Assurance Level 1, referred to as NQA-1 [2]'. NQA-1 forms
the basis for most of the relevant DOE and LANL standards
and requirements for SQA. In addition to NOQA-I, relevant

' Note that there are more recent versions of NQA-1, however,
the DOE Orders specifically reference NQA-1-1997, and so
therefore the SQA program is based on this version.



IEEE computer engineering standards such as IEEE 1228-1994
[14], Department of Defense standards such as MIL-STD-882D
[15] and standards from the American Society for Quality
(ASQ) were used to further refine the meanings of the ASME
standards.

3.1. REGULATORY DRIVERS

DOE SQA programs are driven by regulations in 10 CFR
830.122 [2]. This code specifies a Quality Assurance Plan
(QAP) and indicates that the QAP must address management,
performance, and assessment criteria. Additional requirements
are imposed for software if its location or use may affect the
safety and/or security of a facility. Professional standards
including ASME-NQA-1 have been codified into this code.

10 CFR 830.122 [2] resulted in DOE Order 414.1C [16],
which is specific to quality assurance, safety software, and
software defined as computer programs, procedures, and
associated documentation and data pertaining to the operation
of a computer system within DOE nuclear facilities. LANL
translated this order into a LANL LIR 308-00-05.1 entitled
“Software Quality Management” revised on December 29,
2006. This document has been further superseded by additional
procedures and requirements.

At each level, the details of SQA implementations become
increasingly specitic. The SQA program developed for the
ARIES project and used as the basis for the legacy work on
RIPS, has been successfully audited several times and is in
accord with all of the relevant DOE and LANL procedures.

3.2. THE ARIES APPROACH TO LEGACY SOFTWARE

The Advanced Recovery and Integrated Extraction System
1s a program that has been active at LANL since the mid-1990s.
The program runs a series of gloveboxes, many of which
contain integrated automation and processing systems [17, 18]
for which extensive customized software was created. The
ARIES glovebox lines convert nuclear materials from retired
nuclear weapons into forms suitable for packaging for long-
term storage, international inspection and for reuse as mixed-
oxide (MOX) reactor fuel [19]. Because of the potential to
reuse ARIES material in nuclear reactors, the need for an SQA
program was recognized by the ARIES project long before
other programs at LANL realized the need.

However, ARIES still had hundreds of thousands of lines
of code for which the necessary documentation of the software
quality was incomplete. To correct this deficiency, the ARIES
program embarked on an aggressive software reverse
engineering program to establish a defensible SQA pedigree for
its legacy software systems. This program quickly became
known as a software archaeology effort and is the basis for the
case study in the following section.

This project used the ASME NQA-1 standard as a baseline
for what information needed to be identified, documented and
retained for both legacy and new software systems. These
requirements are shown in Fig. 4. Some elements are only
required of new software. Others are optional, and their need is
determined during the development of the initial software
project plan through a risk analysis.
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Figure 4. The elements of the ARIES SQA program.

The ARIES SQA plan has been through several internal
and external audits and has earned glowing reviews each time.
Furthermore, the program did review issues which had not been
previously identified during system integration, acceptance
testing or system operation. Most importantly, the project has
increased confidence in our end-users that our product is
produced to meet the required specifications.

4. SOFTWARE ARCHEOLOGY: RIPS CASE STUDY

The RIPS module is one of six major processes that make
up the ARIES glovebox line, RIPS is responsible for packaging
nuclear materials produced by the modules into stainless steel
cans that meet the DOE 3013 packaging standard [20]. The
cans are automatically packaged with two robotic systems and
uses five independent subsystems to complete the process.
These systems are controlled by no less than six separate
computer systems and interface with six additional “intelligent”
instrumentation subsystems [17, 18].

RIPS is the result of nearly 15 years of R&D by a team of
about 50 people. Currently, only five individuals remain on the
project and about the same number remain accessible to the
project. More significantly for this project only two of the
original five programmers remain accessible to the project.
Most of the design knowledge for the module has been lost to
retirements and career changes. A significant amount of the
design history has been lost.



The RIPS glovebox, Fig. 5, is divided into three chambers
called the hot side (which is radioactively contaminated), the
cold side and the fluid processing side. Materials to be
packaged in RIPS arrive in the hot side in a crimped
convenience can. One robot then loads the convenience can
into a 3013 stainless steel can which is then welded shut in a
helium atmosphere. The welded can is inspected, leak checked
and placed in an electrolytic decontamination chamber to be
radioactively decontaminated (see Fig. 6 and 7).

Fluid Side

—=4 Hot Side
LYTP
a

Cold Side

Figure 5. Schematic of the ARIES RIPS Module.

Within the electrolytic decontamination chamber, the
surface of the can is electropolished which removes
contamination from the surface of the can. The chemicals used
to electropolish the can are recycled in the fluid processing
chamber of the glovebox and the removed contamination is
collected and removed from the system. Once the process is
complete, the can is transferred to the cold side of the glovebox
for final processing.

o w—

igure 7. Handling the welded 3013 can.

On the cold side, Fig. 8, a second robot conducts a
radiation survey on the surface of the can, and conducts a
second leak check to confirm that the can remains sealed. Once
these checks are completed, the can is released from the RIPS
module and taken to the next process in the ARIES process.

Figure 6. Handling the convenience can on the hot side.

Figure 8. RIPS Cold Side Activities.

The operation of the RIPS system is controlled by a master
PC, which can delegate system control to either robot, the
welding subsystem, the electrolytic decontamination system, or
the two leak check systems. When control is handed off to the
subsystems, the master computer “locks-out” the uninvolved
systems until control is returned by the subsystem completing
its assigned task. The master computer and each of these
subsystems include software which needed to be evaluated. In
addition, the radiation checks use three additional “intelligent”
instruments to survey the surface of the can. These instruments
also included software that needed to be addressed.

Due to the nature of the RIPS system, complete details of
the hardware and software are not included in this paper. The
information provided is as complete as possible; however, some
data is not presented as completely as may be desired by the
readers. The authors believe that the level of detail provided is
adequate to provide the interested readers guidance in the
processes used to develop the SQA pedigree for the RIPS
system and to apply this approach to other legacy systems.



4.1. SOFTWARE PROJECT PLAN

The Software Project Plan (SPP) is the initial step in the
reverse engineering process used by ARIES at LANL. The
purpose of the SPP is to document the original customer needs
for the software and to establish a plan to complete the SQA
process. Particular attention is paid in this initial phase with the
identification of expected, targeted and unexpected needs. The
main techniques used to develop the system needs included
interviews with the system operators, reviews of the existing
design documentation and user manuals, and a systemic review
of the system software to catalog each feature. Features that did
not clearly map to a particular customer need were identified
and their purpose was defined. This final set of functions led to
the identification of many of the unexpected customer needs.

The SPP identified four targeted customer needs for the
system, including:

e the automated welding of the 3013 containers;

e the automated verification that the weld sealed the
container;

e the automated decontamination of the outer
surface of the container; and

e the automated verification of satisfactory
decontamination and that the container remains
intact.

In addition, this analysis led to the identification of several
expected customer needs, including for example:

e a graphical user interface to the main operating
program;

* a graphical user interface to the decontamination
prograr;

e localized control that prevented independent
operation of subsystems without authorization of
the main control system;

e error detection of a set of limited error conditions
with associated error recovery procedures; and

e access authorization control to override automated
routines.

Furthermore, the development of the SPP identified several
unexpected customer needs, including for example:

e multiple access levels enabling increasing control
of subsystem interfaces with reduced safety
margins;

e database parameter control;

e centralized data collection and package report
preparation;

e system expandability for program modifications;
and

o logging of system activity.

During the original system acceptance testing, only the
functionality —associated with the targeted needs was
systematically tested. Several element of the expected needs
and the unexpected needs were also tested, but the tests were
not explicit. For instance, the access authorization was tested,
but not intentionally, So the system operators were confident
that it worked, but there was no documentation of an access

denial. Similarly, while system logs were created of the
acceptance test activities, generation of a system log was not a
requirement for the acceptance test.

Beyond the identification of the customer needs for the
RIPS system, the SPP provided the opportunity to identify the
system components and their connections. At this point in the
project, an important issue was identified concerning the
presence of “intelligent” instrumentation within RIPS and to
what level of granularity within the system should the SQA
process be terminated.

These intelligent instruments contain internal software,
often in the form of firmware, which processes the sensor data
and provides a result to a local user interface and to the main
system through a network connection. The issue is whether or
not an adequate quality pedigree existed for these instruments
or whether a separate quality pedigree needed to be developed.

For instance, RIPS uses several thermocouples and a
thermocouple controller to monitor temperatures in the
electrolytic decontamination system. The thermocouple
controller uses firmware to convert the thermocouple voltage to
a temperature readout which is supplied to the system software.

The quality issue is whether the data supplied by the
thermocouple is correct. If the firmware is in error, the system
will not provide correct data and may cause errors in other
system components. Furthermore, is the firmware controlled
and cannot be modified without knowledge of the project.

On one hand, the firmware is software which needed to be
validated. On the other hand, this software can only be
modified by the vendor, and since the systems are located in a
secure facility, the firmware configuration is controlled.
Furthermore, the instruments were subject to a calibration plan,
which also served to verify that the firmware and the sensor are
functioning correctly. Consequently, it is our conclusion that
the quality issues in the intelligent instruments are controlled
through the existing project change control and calibration
requirements. Therefore, these intelligent instruments have an
adequate quality pedigree to support their continued use within
the system and do not need to be reverse engineered.

Consequently, the SPP allowed for the system hardware
configuration and major software components to be
diagrammed, initially resulting in the diagram shown in Fig. 9.
Figure 9 is obviously lacking in significant detail, including the
nature of the network connections, specific hardware
components and interfaces, and software communication
protocols. However, it represents an initial high level
conceptual system diagram that was refined as the reverse
engineering project proceeded. This diagram is equivalent to an
early system sketch.

Finally, the SPP required an analysis of the safety
significance of the software. The safety analysis was conducted
with a formalized questionnaire completed by the responsible
system engineers that resulted in a determination of the level of
safety significance of the software. RIPS was determined not to
be safety significant software and therefore did not require a
Software Safety Plan (SSP). It also was determined that the
software maintenance plan could be integrated into the system
maintenance plan which was also under development at the
time. Finally, the retirement plan development was deferred
since there are no immediate plans to retire this system.
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Figure 9. Software Architecture uncovered with the SPP.

So, in summary, the primary design techniques used in to
develop the SPP included:

e customer interviews and surveys;

e literature reviews (of existing design documents
and user manuals);

e functional analysis of the existing software (to
generate additional customer needs); and

e conceptualization sketches of the system
architecture yielding a high level black box model
of the system.

4.2. REQUIREMENTS & SPECIFICATIONS

The next phase of the SQA process for RIPS involved the
development of the initial general customer needs defined in
the SPP into a detailed set of engineering requirements and
specifications. These included both requirements for system
functionality during normal and abnormal operations as well as
requirements for data interfaces and network connections
between the various hardware systems. All of this information
was documented in a Software Requirements and
Specifications (SRS) document.

This analysis led to the development of a Requirements
Traceability Matrix (RTM), organized hierarchically into 33
major categories corresponding to the final listing of customer
needs and encompassing more than 500 individual
requirements. Each requirement was also associated with a
particular component from Fig. 9. This matrix was used in
subsequent documentation. A sample of the content of the
RTM is shown in Table 1.

Detail in the RTM was added through a combination of
system operations and studies of the documentation and source
code. The desired level of granularity in the RTM was that each
action occurred within a single component of the software
system and within an identifiable module of code. It was
possible that during this study that additional customer needs
could be identified, which is indicative of an iterative design
process and would not surprise the authors. While no additional
needs were uncovered during the RIPS study, several customer
needs were refined to better correlate with the underlying
details within the software.

As the process proceeded, the RTM was modified. Specific
algorithm names were identified, such as the Hot Robot
Program, G_MC_DE, which moves the robot into position to
grasp the material can (MC) in the decontamination location.
Many of these program names were not associated until the
Software Design Document, described in Section 4.3 was
completed. The RTM also began to reveal interfaces between
software levels, such as that associated with requirement 32.2
where the H_Robot class in the top level software package
(called CanOut) interfaces with the Hot Robot to call the
individual programs defined by requirements 32.2.1 through
32.2.8. Thus, requirement 322 is dependent upon the
successful integration of the eight subrequirements. The
interfaces between the two software packages are represented
in their own set of requirements.

In constructing the RTM, a detailed diagram of the
operation of the CanOut software system was generated, This
flow chart was instrumental in the development and
organization of the RTM and in the development of testing
procedures. The testing data is documented in the last three
columns of the RTM. The flow chart for CanOut is shown in
Fig. 10.

In addition, as detailed task requirements and
specifications were developed, the information within Fig. 9
was further refined to include network structures,
communication protocols, data flows, software versions and
hardware interfaces. The functionality of these interfaces and
data flows also are represented within the RTM. Notably, these
requirements and specifications were not the result of the
targeted customer needs for the system, but instead evolved
from the expected and unexpected customer needs that
appeared as the system was integrated.

The SRS document used design methods and techniques
that included:

o task studies and decomposition;

s  process and software process observations;

e process and software flowcharts (developed
similarly to function structures and incorporating
a grammar of movements and actions specific to
the system)

e reviews of the system bill of materials and wiring
diagrams; and

e software class diagrams and automated code
review technologies.

4.3. SOFTWARE DESIGN DOCUMENT

The Software Design Document (SDD) associated each
requirement and specification with particular software and
hardware components. It is at this phase of the project where
specific hardware was cailed out for the system, network
connections were identified and data exchange protocols were
specified. This phase is not that dissimilar from how an SDD
might be created for new software with one exception. In this
case, no new software was written. Instead, the source code was
reviewed to determine which module(s) were responsible for
each requirement. This information was used to refine the RTM
by associating specific requirements with code modules.
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Figure 11. Process Flow Chart for the CanOut Software Module of RIPS. This represents approximately 100,000 lines of code.




The source code reviews of the RIPS software modules
were performed by subject matter experts. While some
automated tools were used to generate class diagrams and
related programming representations, ultimately the task
became to simply review the individual classes and identify
functionality. This is in essence a reverse function structure,
where the implementation or solution to the function is known -
but the function structure is unknown.

The code review was completed to the level of detail
required for integrated software testing. The function of every
line of code was not identified, but the goal was to identify the
major blocks of code responsible for each requirement. Thus,
the SDD provides a starting point for code revisions, should
changes prove necessary at some later date.

If this should be the case, the SDD also provides a format
to capture new design knowledge and design changes to the
software. Updating the associated software documentation is an
important, but often overlooked step in software maintenance
[7].

The final process used to develop the SDD was a software
and requirements review by the system engineers. The goal of
the review was to identify if the developed system
representation captured the real system and if there were
deficiencies that needed to be explained before the software
would be validated, verified and placed under change control.

The design techniques used to develop the SDD included:

e system hardware reviews;

e reverse functional analysis to translate forms into
functions and match the functional organization of
the source code with the requirements for the
system;

e formalization of the system interface and data
exchange standards; and

e system engineering conceptual design review.

4.4. SOFTWARE TESTING

Perhaps the most important documents resulting from the
SQA effort are the Software Test Plan (STP) and the Software
Test Report (STR). The STP allows the integrated system to be
tested to validate that the system performs as expected. This is
the primary metric by which the quality pedigree of the system
is determined [5].

At LANL, systems for use in a nuclear facility (such as
RIPS) are required to pass a cold acceptance test in a non-
nuclear environment and a hot acceptance test within the
nuclear facility before operations may begin with nuclear
materials. Both of these tests are integrated system tests that
include both hardware and software. These tests were capable
of revealing flaws involving the integrated system, but often
did not test all of the software requirements identified for the
system. The regulatory change that required a SQA pedigree
for systems at LANL highlighted the need to completely
evaluate the software in order to properly assess the risks
associated with the system.

In the case of RIPS, when the SQA effort began, the
system had already completed and passed its cold acceptance
test and the hot acceptance test was underway. Consequently,
an STP was prepared to be conducted following the hot
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acceptance test plan. The goal of the STP was not to repeat
tests conducted in either the cold acceptance test plan or the hot
acceptance test plan, but rather to capture any software
requirements not tested by those plans. Therefore, planning for
the STP began by reviewing the tests previously conducted and
determining if the documented results adequately tested any of
the identified software requirements from the RTM.

As a result of this review about 10-15% of the software
requirements identified in the RTM were identified as either
not tested during acceptance testing or were Inadequately
tested. Most of the requirements that were missed were
relatively minor requirements from an operational standpoint of
the system. For instance, the access authorization to the
software was not formally tested during acceptance testing. The
operators who performed the testing were certain that it
worked, and could recall incorrectly entering their password
and being rejected by the software, but there were no explicit
requirements in either the cold or hot acceptance test plans to
test the access authorization, nor was there any documentation
that the function of the software worked.

With the untested requirements identified, brainstorming
sessions were held with the system operators and engineers to
develop appropriate and credible test cases. These test cases
were organized into a logical progression and developed into
the STP used for testing. Therefore, the STP was developed as
an outgrowth of the RTM developed throughout the project.
The final three columns shown in Table 1 shoudl now be self-
explanatory.

Surprisingly, lessons were learned during the software
testing. Some tests produced unexpected results which had to
be explained. One example was a failure message that was
reported when a fault was deliberately caused, but the message
reported a more generic fault condition than what was expected
by the test and the operators. All of the test results, whether
indicating success or failure, were reported in the STR.
Erroneous conditions required explanation and an accept-as-is
or correct-with-change-order decision.

In the case of the failure message, investigation revealed
that the software was reporting a correct error response. But,
because of limited communication channels, two different fault
conditions generated a common error message to the main
software system. This hardware decision meant that the
software could not distinguish between the two different failure
causes as had been expected by the operators. Hence the
message that indicated a failure had occurred, but did not
indicate that there were two sources. The underlying design
decision to piggyback the two error signals on a common
communication pathway was cbviously known to the original
software developer - but was not documented in any of the
available materials reviewed and required a much more detailed
code review than was performed during the SDD to uncover its
existence. This new information was not only documented in
the STR, but also was used to update the Software User Manual
(SUM). In this case, the test result was accepted-as-is.

Both the STP and the STR are subjected to a review
process that includes system experts, software experts, and the
responsible management for the operations and engineering of
the system. These reviews provide a valuable check on the rigor
of the STP and the conclusions drawn in the STR. The review
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committees must alsg approve of any accept-as-is or coirect
decisions proposed by the responsible system engineers. This
rigorous process forces the engineering underlying the system
to be completely documented and produces an auditable
document record of critical design decisions.

The development of an STP will also play an important
role in the configuration management of the software. Once it
was established that the existing software was functional and
met the existing requirements; the software was baselined and
the configuration frozen. A formal change process is now in
place to prevent software and hardware changes without an
associated software impact review and a subsequent testing
after the change is implemented. Any changes will require use
of the STP and Integrated Acceptance Test Plan for the system
to confirm system modifications have not madvertently effect
the capabilities of the system. Subsequent testing will generate
additional STRs.

For systems that were not already in the acceptance testing
process, the plan is to integrate the STP into the Cold and Hot
Acceptance Test Process. For legacy systems that have already
completed the acceptance testing process, the STP approach
used in RIPS allows those systems to be evaluated and test
deficiencies identified and tested individually.

The use of the RTM as the basis for establishing the
necessary tests provides a systematic means of demonstrating
that the project requirements have been met. The result is a
software package backed by demonstrable performance metrics
and capable of exceeding customer expectations.

In the development of the STP, again typical design
methods were used, including:

e review of prior test documentation;

e identification of testable requirements and test
methods;

brainstorming of credible test configurations;
design of experiments;

experimental testing; and

design reviews of the resulting test plans and test
results.

5. CONCLUSIONS AND LESSONS LEARNED

Even in a tightly controlled and regulated environment
such as a DOE nuclear facility, there remains room for
improvement. The implementation of a SQA program within
the ARIES project required some creative problem solving
approaches. Since adequate documentation was not produced
during the initial software design and implementation,
additional resources were required to reverse engineer the
design. These reverse engineering efforts, colloquially called

"software archaecology,” revealed previously lost design
decisions and features that had been lost.
These discoveries have enhanced our present

understanding of systems such as RIPS. However, perhaps
most importantly, the results of the SQA project have provided
a quality pedigree for the software within ARIES that did not
previously exist. Hardware and software upgrades can now be
pursued with a much better understanding of their potential
impacts upon the system, which should lead to a more
predictable design and integration process. Furthermore, with
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an established set of software and hardware testing procedures,
any upgrades or modifications to the system can be evaluated
before the system is returned to operation. As a result, the risk
profile of the system is much more clearly defined.

The relationship between a quality assurance program and
design should be a strong one. Many of the features and
requirements are similar. Strong formal design methods, when
well documented are the backbone of quality assurance
documentation. And if that documentation is lacking, reverse
engineering methods are the central to the recovery, recreation
and rediscovery of what has been lost. Good engineering design
practices make quality assurance programs easy to implement
and quality assurance programs can nurture good engineering
practice.
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