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m = 1 mode in tokamaks
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Abstract

Earlier stﬁdies of sawtooth oscillations in Tokamak Fusion Test Reactor su-
pershots (Levinton, et al, Phys. Rev. Lett. 72, 2895 (1994); Zakharov,
et al, Plasma Phys. and Contr. Nucl. Fus. Res., Proc. 15th Int. Conf.,
Seville 1994, Vienna) have found an apparent contradiction between con-
ventional linear theory and experiment: even in sawtooth-free discharges,
the theory typically predicts instability due to a nearly ideal m = 1 mode.
Here, the nonlinear evolution of such mode is analyzed using numerical sim-
ulations of a two-fluid magnetohydrodynamic (MHD) model. We find the
mode saturates nonlinearly at a small amplitude provided the ion and elec-
tron drift-frequencies w,; . are somewhat above the linear stability threshold
of the collisionless m = 1 reconnecting mode. The comparison of the simula-

tion results to m = 1 mode activity in TFTR suggests additional, stabilizing
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| effects outside the present model are also important.
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I. INTRODUCTION

Recent comparisons™? of sawtooth behavior in TFTR® (Tokamak Fusion Test Reactor)
to theoretical models have revealed an apparent inconsistency: in sawtooth-free, higher-3
discharges, conventional linear MHD (Magnetohydrodynamic) stability analysis indicates
the presence of an unstable, predominantly ideal m = 1 mode.

To determine if this “anomalous stability” will apply to future tokamaks, its origin
must be understood. Important progress on this was made in Ref. 1, in which a simple
condition was found that reliably determines the sawtooth-free operational space of TFTR
in all presently known regimes. This condition is in fact the linear, m = 1 mode w,-
stability condition of the two-fluid model in a certain limit. The limit corresponds to the
collisionless reconnecting mode and may be defined in terms of three essential scale-lengths
in the two-fluid model: the ideal mode layer-width? A, ~ /37rZ(82—(0.3)2)/(q} R?) (related
to the ideal MHD m = 1 growth rate by Ay = y74/(r19;) with 74 = R/Va|,,, so Ax > 0

indicates instability); the ion-sound Larmor radius p; = \/(Te + T;)/m:¥%; (arising from
finite parallel electron compressibility); and the collisionless skin depth d, = ¢/wp. (due to
electron inertia in Ohm’s law, which is dominant over resistivity in TFTR). The collisionless
reconnecting mode limit is |Ax] < ps , d., i.e., the case in which the ideal MHD driving term
An is negligible compared to the destabilizing collisionless effects associated with p, and d..
The contradiction with experimental analysis is that typical supershot discharges seem to
correspond to the opposite case, Ay, > ps, de, in which the linear mode is unstable and
predominantly ideal. The results from linear theory in these two limits are now considered
in detail.

For either ordering of Ap, ps, and d. the two-fluid model predicts the m = 1 mode
can be linearly stabilized by sufficiently large values of w.;= —cpi/(ng;rB)|,,, j = i,e.
For example, taking the case of T; > T. and isothermal ions, the stability condition is
wei /2 > 7, where o is the growth rate of the mode for w.; = 0. For typical TFTR

supershot values, A, ~1—2 cm, p; ~ 0.5 cm, d. ~ 0.08 cm, one obtains (as discussed later)




YoTa = qi\//\,"; + (p2 + 5d2)/2 (> qjAn). For Ay =0 (and p; > d.), on the other hand, - is
given by® *y;)TA ~ g ps[2de/(psm)]/2 (< ¢ips)- Since A > ps, a range of w. values therefore
exists in which the former expression for o leads to a prediction instability whﬂe the latter
does not, and it is in such a range that the apparent violation of linear theory cited above
occurs.

In summary, when A is calculated for typical TFTR supershots (such as those discussed
in Ref. 1), it is so large that linear MHD stability analysis cannot account for the observed
periods of sawtooth-free operation with ¢(0) < 1. In particular, it is so‘ large that the
stability condition found in Ref. 1, which is based on A, = 0, cannot be justified in the
context of linear theory. The agreement of that condition with experiment therefore needs
further explanation.

A possible resolution of this problem is that effects outside the two-fluid model thus far
considered effectively reduce the value of A,. For example, trapped energetic® and thermal”
particles can have such an influence. Studies!® of the former effect, however, have found it
alone to be insufficient to explain the experimental results. Similarly, linear stabilization by
the latter is problematic’ due to the usual disparity between T; and 7. (e.g., T; > 2T.) in
TFTR. At a more basic level, these effects, while apparently important quantitatively, seem
too small to account for the observed stability in at least the more extreme cases.

Here, we follow the assumption that such stabilizing effects are absent or insufficient,
and address the proposal of Ref. 2 that nonlinear w, effects lead to the observed sawtooth-
stability condition. Such an explanation is in fact consistent with? the common observation
in TFTR of a saturated, nonlinear m = 1 mode. Considering a linearly unstable parameter
regime like that of TFTR described above, we present numerical simulations of a reduced
two-fluid model that determine the early nonlinear evolution of the mode for various values
of Wy e-

The application of a reduced MHD model to a cylindrical geometry, like that previously

9,10

considered in studies of the m = 1 mode,”'? cannot address this problem, since the ideal




m = 1 mode in such a system is neutrally stable. The early nonlinear stage of interest
here, though, may be analyzed using a more efficient approach. Following the standard

1112 1 = 1 mode theory, the

boundary layer decomposition of linear and early-nonlinear

reduced two-fluid equations are solved numerically in a narrow “layer region” (|r —r;| < )

surrounding the ¢ = 1 surface which includes the reconnection layer and m = 1 island

~ only - see Fig. 1; the external regions are represented by the usual boundary condition

appropriate to an arbitrary, specified A -spectrum. Curvature is neglected in the layer

region, which is described in a Cartesian geometry. The parameter Ax, which is related to
A} by A, = —7/A], thus enters through the boundary condition.

To summarize the result, we find the linearly unstable mode indeed saturates, aside from

a very slow diffusive evolution on a timescale 7 > 100/~;, (possibly outside the model’s

scope of physical validity), at a small, w,-dependent amplitude, provided w.;. are some-

what above the reconnecting mode stability threshold. The main stabilizing effects are

nonlinear/quasilinear enhancements near r = r; of w, (i.e., in the present isothermal model,

p « n') and the magnetic shear ¢. The latter change is also found to weaken the ideal
mode contributions relative to those of the reconnecting mode. A nonlinearly/quasilinearly
generated, sheared flow layer along r = r; is also observed. This flow, caused primarily
by ion-gyroviscoéity, is in the ion diamagnetic drift direction at the center of the layer, but
reverses in the layer’s outer. regions so that the net flow is zero. Its effect is stabilizing, but
at a generally weaker level.

At least at smaller saturation amplitudes, these effects are well described by a quasilinear
analysis of the |m| = 1 and m = 0 poloidal harmonics. In the case of the density, for
example, the nonlinear steepening is then a consequence of Dn/Dt ~ 0, or equivalently,
the density continuity equation n = —V - nV with V-V ~ 0. Averaging the latter form
over 8 in polar coordinates gives an evolution equation for ng, the m = 0 component of
n: ng = —(1/r)0.(r(nV;)s) ~ —0;(nV.)¢, z = r — r; < r;. Expanding n and V, as
n = no+ne? +nle® V = Ve + Vie ™, this becomes np ~ —2Re[d,(n,V5)]. The

perturbations n; and V,;, with #; =~ yn,, are related by the m = 1 component of Dn/Dt = 0
5
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as ny = —ng Vp1/v (where ng, = 0:ng). Thus, ng ~ 2v,.9:(no|Vi1/7}?), or with ng ~
n® + fig for some equilibrium profile n9(z), fip =~ 8:(n'Q|V,1/9|?). Given the ideal MHD
result (valid even for w, # 0 — see the Appendix) |V;i/v]2 = (€3/(472)) (tan~ (2 /M),
where £ is shift of the plasma core, it is seen that quasilinear effects steepen the equilibrium
profile near z = 0 as no(0) = nQ(0)[1 + /(223 7?)]. Similar results for the helical flux 1
and the stream function ¢ are obtained in the ideal case from Ohm’s law and the vorticity
equation: %o ~ 8;(¥Q|V,1/7]?) and ¢o = (T3/2)f0.

We empbhasize that the stabilizing contribution from w, (i.e., n(%) in the above argument)
is essential for the nonlinear saturation of the mode. This is not the case in the one-fluid,
ideal MHD limit d. = n = p; = 0, w. = 0, in which the ideal m = 1 mode saturates at a
finite displacement & ~ 4.4}, due to nonlinear changes in 1 alone.!! This stability is lost,
however, in the presence non-ideal effects such as d., which allow magnetic reconnection to
take place and thus permit continued growth of the mode, e.g.,!® & ~ .54w for a given m = 1
island width w > Ax. As described above, in'the presence of w, the nonlinear saturation
can be regained at an amplitude which, depending on w., can be smaller or larger than the
ideal MHD value. In contrast to the ideal case, furthermore, the current layer near r = r;

in the saturated state is nonsingular.

II. TWO-FLUID MODEL

We consider a reduced two-fluid model describing the evolution of the (normalized)

velocity stream function ¢, helical flux ¢, and electron pressure p:

W+V.-VW —7V-[p,Vd] = —B. - VJ + uV*W, (1)
Y+B.-V(¢— (1 +7)p) =nJ +d (J +[6—7p,J] - pV?J), (2)
p+V-Vp=—(p2/(1+7))B. - VJ+xV, (3)
Definitions (with toroidal unit vector § = —():
6




B.=—-gxVyp, V=gxVé, [a,b=g-Vax Vb,
J=V%, W=V, r=T/T.,

1/73 = (q™Va/R)r=r, , 1/ = my/(dnr]), 0 =T13/7,
Normalizations (normalized — physical units):

Ps — .05/7'1 3 d. = de/'f'l s Ap — )\h/rl , etc.
t— t/T.Z s Waie — W*i,e’rz , etc.

¢ = (ma/r)é, ¥ (R/IiaBDY , p— (Tawse/p))p — p),

Here, length and time scales are normalized to r; and 75 = 74/(r14}), respectively, where
the constants ¢}, e, p1, Py, €tc., refer to the unperturbed tokamak equilibrium. (In TRTR,
7y ~ 20 — 30 cm, 75 ~ 5 x 1077 sec.) This is a simplified version of the four-field model of
Hazeltine et al.}4. Since our main goal here is to demonstrate the basic phenomena, we have
omitted for simplicity (as in Ref. 15) various effects that we expect to have a quantitative but
secondary role: the toroidal curvature terms, some finite ion Larmor radius terms « p?V?2,
and the parallel ion velocity terms. In the linear m = 1 mode limit, these equations correctly
reproduce the w, factors obtained from more detailed two-fluid and kinetic treatments (e.g.,
Refs. 5 and 16}, given the implicit assumption of constant T;, T.

The diffusion terms o u, pte, k represent®10:17

effective ion and electron perpendicular
viscosity (u, pte) and anomalous particle diffusion (k). The role of g, in the simulations
deserves further comment. For p. = 0 and d. > n'/3, two-dimensional models like the

abovel!™18

generate exponentially small, sub-d, structure in the nonlinear current layer. This
behavior is probably unphysical, as three-dimensional studies*® have found such structure

to be broadened by current density gradient driven instabilities. In any event, the total




current associated with this structure is negligible, as is its effect on the global dynamics of
our system. Here, the p. term acts to suppress such sub-d, scale-length features.

The code used here to analyze this model is a suitably modified version of that described
in Ref. 17. The equations are solved on a Cartesian grid n, X n,, n, = 205, 128 < n, < 256,

with a variable grid-spacing in the z-direction.

A. Asymptotic Matching to Linear Ideal Solution

The layer region can be described using a Cartesian, layer-centered coordinate system
(z,z), with radial coordinate z, helical coordinate z (i.e., z ~ § — { with # and ¢ being the
poloidal and toroidal angles, respectively), and periodic boundary conditions in z. Some
explanation is needed regarding the definition of 2. As the m = 1 mode evolves nonlinearly,
flux surfaces near the central core are shifted rigidly some finite distance £y(¢). To maintain
force balance in the early nonlinear stage (§, < 71), the effective ¢ = 1 surface - i.e., the
axis of the reconnection layer and island — is shifted half this distance,?*!® and may be
defined for example by |r| ~ 7, 71 = r; + & cos(é — ()/2. This shift also preserves the
(approximate) symmetry of the helical flux and pressure gradient across the layer region.
Therefore, defining z as the radial distance from the shifted ¢ = 1 surface as ¢ ~ (r —7,) /ry,
one may apply even z-parity boundary conditions on ¢, p’ and ¢’ at the edge of the layer
region. The resulting definite parity solutions can be obtained from a simulation of only the
half-space x > 0, with appropriate “reflecting” boundary conditions at z = 0.

The z-boundary condition on the potentials can be applied at an arbitrary value |z| = z;
satisfying w/r; << 21 << 1 (here, typically, z; ~ 0.3). It is based on linear theory and the

z — 0 forms of the equilibrium profiles, taken as

¢ =0 (4)

(O = (cos(kpz) — 1)/k2 ~ —2%/2 + K2z /4! + ... (5)

PO = s (6)
8




for given constants w.e (= Tiwse), kz. As expected, the simulations are insensitive to the
choice of k; for k, ~ 1 or smaller (e.g., k; — 0 and k, = 1 yield nearly equivalent results).
Note the electric potential is related to ¢ by @eec = ¢ — 7p, so for 7 # 0 the above implies
an equilibrium, uniform radial electric field E, of magnitude 7w, = —w,;. This results in
no loss of generality, as other values of E; — E, — V; are obtained with the transformation
y — y— Vot.

Neglecting the inertia terms in Eq. (1) for z ~ z;, 3 obeys B. - VJ & 0, which leads to

the conventional “exterior” linear solution for ¢ = 3 — 1©:

s
b= T dnmenleltyal) o =[] ©
for some ¢y, and a specified set {A’ }. In detai,
B. VJ = [J,4] = QY im ($noe + Knn) =0, ko =2 —m’ ®
so ¥, may be written as
Um(z) = zﬁm(wz)%"(% ‘ (9)
where
fulz) = é sinh(|kna]) + fz cosh([knz]) (K2 > 0) (10)
_ Tl;lm_!sinukmxn + —A—chos(]kmm]) (k2 < 0) (11)
= |a] + 2/, (k= 0) (12)
As a result,
Vi = -kl -1, [L,9]=0 | (13)

are satisfied exactly. Similar asymptotic forms for ¢ and p follow from the linearized versions
of Egs. (2) and (3) (neglecting the small diffusion, p;, and d. terms):

sin(kzz1) fu(z)
Sin(kxx) fm(xl) (14)

bm(z) = dm(z1)

sin(kzz1) fm(z)
sin(kzz) fm(z1)

ﬁm(x) = pm(21)

(15)

9




Linear theory clearly does not determine the amplitudes of the potentials at z = z;.
Rather, these amplitudes are determined by Fourier analysis at a given time in the simula-
tion. The above asymptotic forms are then used to compute the various z-derivatives that
are needed to advance the potentials to the next timestep near z = z;.

We consider a AJ -spectrum appropriate to a tokamak, e.g., Al = —n/A, ~ (R/ry)?
and, for |m| # 1, A}, ~ —1. The initial perturbation is chosen to have an |m| = 1
component only. Near the edge of simulation where the boundary condition is applied, the
|m| = 1 component remains much larger than the other components throughout the entire
simulation. Consequently, the results are insensitive to the values of A} for |m| # 1. For
lm| > 1, however, to avoid numerical instability, it is necessary to choose A, = —2k,,

which eliminates the growing exponential in Eq. (10).

III. SIMULATION RESULTS

Simulations have been carried out in a parameter range relevant to future and present
tokamaks (TFTR in particular) which is linearly unstable to a predominantly ideal m =1

mode; a typical case, referred to below, is

/\h=.03, ps=%)\h=.015, de=l)\h=.01, =1 (16)

n=10"°, pu=p.,=k=>5x10"7 (17)

That is, A, (= An/7r1) is positive and larger than the collisionless scale lengths p, and d..
(Here, d. is 2-3 times larger than realistic TFTR values.) These effects are dominant over the
diffusive terms o 7, i, fie, £, which modify the linear eigenfrequency by only a few percent.
Various values of w, are considered, all of which are insufficient to stabilize the mode linearly
(ignoring, that is, the diffusive terms, which can typically lead to weak instabilities for any
Wy ).

A useful diagnostic of the mode’s evolution is the maximum displacement of a flux surface,

&(2), relative to its initial z-position far from the singular layer, z > A.. Referring to the

10




lab frame £o(t) = 2€(¢), where & is the core displacement discussed earlier. Shown in Fig. 2
are the results of two simulations, which differ only in the values of w,: in one w.; = w.. = 0,
while w,; = —w.. = .054 = 1.8A; in the other. Both cases are linearly unstable, although
the growth rate in the second (v, (= 737.) =~ 0.017) is reduced relative to the w, = 0 value
(v 22 0.036) by roughly 50%.

The mode in the w. # 0 case does not completely saturate nonlinearly; rather, the
amplitude continues to grow slowly after it reaches an initial maximum. Such residual, slow
evolution results from the small diffusive terms o p., &, g which are necessarily included in
the model at some level for nﬁmerical reasons. This is illustrated in Fig. 3, which shows
£(t) for the same parameters as the w, # 0 case in Fig. 2 except pe =k =p =3 x 107° (a
factor of six increase). The resulting increase in the slow growth is consistent with a scaling,
e.g., Tsiow X P, 1/3 < p < 1/2 (further simulations indicate p here has a stabilizing
effect). Suéh behavior may be related to the claim of Ref. 9 that the resistive mode does
not completely saturate for |wie| < Yiin-

The approximate saturation amplitudes obtained from the simulations for various w,
values are plotted in Fig. 4. In the simulations marked by asterisk symbols, the parameters,
aside from w, and g = g, = k = 107, are the same as in Fig. 2. The triangles represent an
increase in 7 = T;/T, by a factor of three, i.e., T, = T;/3. The squares, also with T, = T;/3,
indicate the result of doubling ps, i.e., ps = 0.03 = A;. In all cases, the symbols correspond
to the £-values at which f first passes through zero. These values are insensitive to changes
in the small diffusion terms, and are typically about 25% smaller than the first maximum
of £, In Figs. 2 and 3, for example, £ = 0 at ¢ = 355 and ¢ = 378, respectively, where
€ (= &/r1) ~ 0.039 in both cases.

The amplitudes for the larger w.; values fall below that expected in the ideal MHD
case (€ ~ 2.2);), with larger, unshown w,; values leading to smaller amplitudes until linear
stability is reached. The linear, reconnecting mode stability boundary discussed in Ref.
1 can be represented in Fig. 4, for each of the three cases shown, as a vertical line at a

particular w. value. (For example, for T; = T, and ps > d., the marginal stability condition

11




is° Wy (= WaiTaw) = (ps/71)[2de/(ps7)]Y/3, with larger w. being stable.) Normalizing these
marginal w, values to the value of A in the simulations (A4 /r; = 0.03), one finds w,;/ Az ~ 0.5
(asterisks), 0.7 (triangles), 0.9 (squares). It is seen that the amplitudes increase more rapidly
as these limits are approached. Due to the restriction £/r; < 1, the largest amplitudes shown
are about 0.12r;, which occurs for w,;/Ax about 40 — 50% above the respective reconnecting
mode threshold. Thus, for the considered parameters, there is a substantial “gap” between
the latter threshold and the region of early-nonlinear stability. This may indicate additional
stabilizing factors, such as the trapped particle effects mentioned earlier, are important.

The contributions of w,; and w.. to the linear, A, = 0 stability boundary are comparable
(see, e.g., Ref. 16). As can be seen from the scaling of the nonlinear amplitudes with T,
the same is generally true nonlinearly. At the larger w.; values with p;, = A, /2 (asterisks,
triangles), however, the contribution of w,., relative to w,;, weakens. As discussed below,
wye enters the linear and quasilinear theory only though the non-ideal terms, which (for the
ps < A cases) are overwhelmed by ideal effects at larger w.;. Also, the larger amplitudes
of the two T, = T;/3 cases (triangles: p, = 0.015, squares: p; = 0.03) tend to converge,
indicating the influence of p; becomes weaker.

Referring to the w. # 0 simulation of Fig. 2, Figs. 5a,b show equally spaced contours of
the helical flux ¢ and current J at the time ¢ = 400 of the first maximum of £ ({ ~ —.054 =
1.8\, - a typical value). The saturated configuration contains an m = 1 island of half-width
w/2 ~ ¢ and angular extent (excluding the current layer) A8 ~ w. At larger /A, values,
the island proportions increase, gradually approaching the A, = 0 prediction!® w/2 ~ 2¢,
Ab ~ 47 /3.

At this same time (¢ = 400), Figs. 6a-c show Fourier analyses of ¢, p—p®, 1 — (. The
m = £1 components are dominant, followed in magnitude by the perturbation in the m = 0
component, followed by m = %2, etc. (Since the potentials are real, ¥, = 1%, etc., so for
m # 0 we plot ||+ [¥—m| = 2|¢m| rather than |i,,].) To clarify the saturation mechanism

we therefore consider the quasilinear analysis of the |m| = 1 mode, retaining quasilinear




corrections from the m = 0 mode only. We show below these m = 0 corrections alone—
particulé,rly those in p and ¥— can account for the saturation in the simulations. They
represent nonlinear enhancements of the pressure gradient, magnetic shear, and poloidal
flow, near r = r;. Due to the weakness of the mode from the MHD viewpoint, these changes
are small compared to the equilibrium profiles. This is demonstrated by Figs. 7a-c (solid
lines), which show the full m = 0 harmonic of &', p/, and ¢’ at t = 400, compared to
the initial, unperturbed profiles (dashed lines). In physical units, ¢’ — —(73/r1)V, p' —
(wieTa /PP, ¥ — (1—q)/(qi71). Figure 7a therefore implies V,(z = 0) ~ 0.03r; /75 ~ w.ry,

i.e., a localized flow approaching the w,-velocity.

A. Quasilinear Theory

Following a standard approach?!?%1%:1¢ described in the Appendix, the m = 1 compo-
nents of Egs. (1)-(3), neglecting all other harmonics except m = 0, may be combined to yield
a single differential equation obeyed by ¢;. We take ¢1, ¥1, p1 o exp(f* v(¢)dt), and consider
&0, Yo, po for now to be arbitrary functions of z which vary slowly in time relative to y71.
Also, for simplicity, we neglect the diffusive terms o g, p., &, and some terms o (ps/An)*
that vanish in the linear theory limit (i.e., arise from quasilinear corrections only)—see the

Appendix. Defining

Z=0:(JT) , T=ry—14 (18)

one finds Z obeys

2\, [oo 1 93, 2 2
Z = (T/o Zd:z;) T+ po0e (A0 (¥2)), (19)
where
D=2 +X, N=D-il), Qu=-10.=—75, (20)

AZ —_ ’\z + _)é )\2 —_ p§<r — iQ*i) /\2 — dZ(F - iQ*i) + n
wg‘x /\2 ’ s F -+ i(Q*e - Q*i) ’ € F + i(Q*e - Q*i).

13




Assuming o = ¢(°), Po = p(o), etc. the above reduces to usual linear theory result.

In the case AZ > p?, d?, one can obtain an iterative solution to Eq. (19) in powers of

(ps/Mn)2, (de/Mn)?:

Z=294+zW4+z@4 ) Z2O= (35& ]0 ” de) Il)-. (22)

™

To first order in p2/A2, d2/)Z, Z can be replaced by Z(?) in A%-term of Eq. (19):

2’\h & 1 ¢§,z A2

which, integrating from (0, oc), leads to the approximate dispersion relation:

1= 2—:—" 0°° [—113 + A2 (83 (%")ﬂ dz. (24)

Neglecting quasilinear corrections (and taking k, = 0), this equation leads the linear theory
result A2 = AZ + (A2 + 5)?%)/2, which agrees with Ref. 23 as it should for p, = 0 and yields
(complex) values of v that agree well with the simulation results in the linear phase.

We now turn to the calculation of the perturbation in the m = 0 harmonic. This
perturbation, like the |m| > 2 harmonics, is generated by nonlinear interactions of the
m = %1 modes. Taking the m = 0 moment of Egs. (1)-(3), for example, neglecting |m| > 2,

one obtains (with V2 ~ §2):

o = 2Im [(¢1 — 7015 + Prx¥5] (25)

'iz’eo = 23rlm [(¢1 - TPl)d);l + PI'QZ);] 5 ¢e =1~ d§¢,xx, (26)
2

po = 20;Im [¢1P; + (Tp_:—ﬂ%,xxiﬂ‘f] . (27)

To leading (i.e., quadratic) order in the m = 1 amplitude ~ ¢, the quasilinear corrections in

the m = 1 eigenfunctions on the right-hand side (RHS) may be neglected. For A} > p2, 42

e’

therefore, the leading order results for ¢, 1/;0, Do are obtained by substituting the ideal,

linear m = 1 eigenfunctions, e.g., Z(%) with ¥, = —2, po s = Wee, etc., into the RHS, which
gives
b0 = —(wui/2)0z101 [T, Po = wiele|1 /TP, o= —0, ($i¢1/rlz) . (28)
14




where

I61/T = (€/7%) (tan™ (z/ M) (29)

It is seen from Figs. (8a-c) that these are in reasonable agreement with the simulation results.

Returning to the dispersion relation, it is now possible to compute the quasilinear eigen-
value . We consider here only the simplest case in which 5 (in addition to g., x and p)
is neglected. As in the linear theory, in that case (and only in that case) real solutions for
w = —17 can exist, and one can calculate a stability boundary {;(w.;), which is the value of
¢ for a given w,; at which a real solution for w first appears. Larger values of ¢ are stable.

The result obtained from Eq. (24) for 7 = 1 is shown as the dashed line in Fig. (4).
Instead of the lowest order expressions of Eq. (28), slightly more refined versions of ¢y, ¥o,
Po were used that account for the p;, d. corrections to the m = 1 linear eigenfunctions. This
modification, however, makes only a small change in the final answer. The deviation of the
analytic result from the simulation values at smaller w,; probably indicates the progressive
breakdown of the perturbative treatment underlying Egs. (23) and (24).

Due to the localization of Z « ¢| near z = 0, a qualitative understanding of the satura-

tion behavior may be obtained from Eq. (19) with the estimates

$oo(T) 2 Go(0) = X’wee , X =E/(TAn), (30)
Poz(T) ~ Pos(0) = owne , a=1+2x% (31)
¢O,z($) pad ¢0,xz(0)z = _q’$ ’ q_l =1+ 6X2' (32)

Also taking A% ~ A%(0) for simplicity, Eq. (19) can then be written in a form which is
identical to the linear theory result with “renormalized” parameters. For example, the
quasilinear corrections associated with ¢o and po lead to v — I['(0) = v — ix*w,. and
Weie =+ i e(0) = aw.;e. Similarly, the quasilinear shear parameter ¢ (which is related
to the physical, perturbed shear as (q})ezo = §'(¢1)e=0) is accounted for by the additional

substitutions:

M= A%, A= MG (33)

-
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The linear dispersion relation mentioned above, for example, is therefore modified as A%/g? =

A2 /gt + (/\f + 5A2)/2, which, in the simplest case w,; > w.., leads to the stability condition

(/T wui > 2/ N /T* + (02 + 5d2) /2. (34)

Note the quasilinear enhancement of the shear (§ > 1) has a net stabilizing effect on the
ideal mode contribution (), but a destabilizing effect with respect to the p, and d. terms.
The quasilinear enhancement of w,; (o > 1), on the other hand, is of course stabilizing for
both. Thus, the two effects are additive (and stabilizing) with respect to the ideal mode but
tend to cancel in the case of the reconnecting mode terms. This may account for the rough
correlation of nonlinear stability in the simulations with the linear condition with A; = 0.
In the above approximation, ¢ introduces only a shift in the real frequency of the mode,
and so does not effect the stability condition. Indeed, ¢; is generally found to make only
a weak stabilizing contribution to the stability boundary discussed above. Also, note from
Eq. (19) that w.. can enter the stability condition only through the p;, d. terms (that is, the
ideal mode is sensitive to w.; only). As a result, the contribution of w., to the saturation

amplitude is small for w,; well above the collisionless stability threshold.

IV. CONCLUSION

On the basis of two-fluid MHD simulations, we have confirmed the theoretical prediction?
that a linearly unstable m = 1 mode, in a TFTR-like parameter regime, can saturate in
the early nonlinear stage for sufficiently large values of the diamagnetic frequencies w,;.
Although this linear mode is predominantly ideal, the saturation process is essentially dif-
ferent from that of the purely ideal m = 1 mode,!* which is inoperative here due to effects
that allow magnetic reconnection (e.g., finite electron inertia). Rather, as in the case of the
resistive mode,? the saturation depends on the presence of w.;, to halt the reconnection.

We find nonlinear effects act in two main ways: (1) they weaken the ideal mode driving

term (o< Az) relative to those of the reconnecting mode (x ps, d.), and (2) they enhance
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the effective values of w,ie. These changes lead to a rough correlation between the early-
nonlinear stability and the linear w.; .~stability condition with A, = 0; ps,de # 0 - i.e., the
collisionless reconnecting mode stability condition.

The nonlinear saturation a.mplifude reached by the mode in the simulations is w.; .-
dependent: it becomes finite as w. falls below the linear stability threshold, and continues
to increase monotonically as w. is further reduced. The saturation level of the central core
displacement & can therefore be smaller or larger than, but is typically comparable to, the
ideal MHD value!! & ~ 4.4),. Because the validity of our approach is restricted to the
early nonlinear stage ({, < r1), the largest saturation amplitudes considered here are about
o ~ (0.25)r; ~ 8\, which occur (for the simulated parameters) at w,; . values roughly 1.5 -
2 times above the linear, Ay, = 0 stability limit. Thus, although the nonlinear amplitudes at
these extreme w, values increase quite rapidly for decreasing w,, no particular value of w. can
be clearly identified which deﬁnes a transition from nonlinear stability to instability. This
is in obvious contrast to linear theory, and also possibly experiments, as discussed further
below. | |

The saturated configuration contains an m = 1 island of length | ~ 7r; and width
w ~ cobp, where ¢g ~ 1 for & ~ 4A, or smaller, and ‘cg ~ 2 for & > Ap. Due to small
diffusion  effects present in thé model, this island can continué to evolve after saturation
on a very slow timescale 7 > 100/7;,. The behavior of the saturated mode in TFTR
over such timescales is erratic and complex. In view of the many effects not considered in
this analysis, and the physical uncertainties in the diffusion terms, here we will leave this
long-term behavior as an unresolved issue.

Fourier analyses of perturbations in the simulated potentials p, ¥» and ¢ at saturation
show the m = n = +1 and m = n = 0 harmonics are dominant. The latter, m = n =0
perturbations were shown to arise from quadratic interactionsof them =n=1landm=n =
—1 modes, and represent localized enhancements of the pressure gradient, magnetic shear,
and poloidal flow in the singular layer. A quasilinear analysis indicates these enhancements

alone can stabilize the m = n = £1 modes, and lead to saturation amplitudes in reasonable
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agreement with the simulations.

As shown in Ref. 1, sawtooth stability in TFTR is reasonably well described by the
linear, reconnecting mode (i.e., \p = 0; ps,de # 0) w.-stability condition. As explained
above, however, saturation in the early nonlinear stage is found here only for w.-values
somewhat above this level. Also, the saturation amplitudes predicted by the simulations
are typically larger than those observed in experiments (where, e.g., { ~ 1 — 2 cm). This
failure of the simlations to more closely reproduce the observed stability condition and
m = 1 mode saturation amplitudes in TFTR seems to indicate stabilizing factors outside
the present, simplified model are immportant. A possible explanation is that trapped particle
effects, or some other stabilizing effects, act to reduce the effective value of Ap, thereby
reducing the gap between the observed stability and linear theory. Further work is needed

to determine the contribution of these and other physically realistic factors.
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APPENDIX: M =1 QUASILINEAR EQUATIONS

With V2 ~ 92, the vorticity equation (1) may be integrated once over z with the result

bo+ [0~ TP bg] = [, V0] — [, % clen (A1)

for some zoo ~ 21 > Ay. The 74, term may be written as

{"/’,1/)@] = ~izb§,zc?x (¢’1/¢0,z) (A2)
Ay —i%ﬁ (1;’[:)2)%0 , T Tos (A3)
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= e, (A%)

where the second line follows from the definition of Ay = —7/A]. The third line follows from
the pressure equation (3) and Ohm’s law (2) neglecting 7, d., ps (valid for large z), which
yield p; = —iQue¢1/T and ¢; = —ito¢1/T. In detail, the pressure equation, eliminating

[¥,J] with Eq. (1), can be written as

= ——iQ*efbl/F + (1 + )Pa (( xi)¢1,z + i¢0,z‘$(¢1 - Tpl)) (A5)
nd —Z'Q*eél/r + — (1 + )F (( iQ*i)(¢1,x + i¢0,xz¢l/r)) (A6)
~ifleedi/T + 1 2 0 (Yau(e1/D) (AT)

where p; & —iQue$1 /T + O(p?/A\2) was used in the quasilinear correction term o ¢g z-p; in
the second line, leading to an error of O(p?/A}). Substituting this result for p; into Ohm’s

law (2) gives

“Z’l ¢1 3 2 451 n¢1,zx/¢0,z
bo. = T T (Aa (P))+I‘+i(9*e—9*,~)

dg(r - ZQ*i) (d’l,zx ¢1 ¢0,zz:z:)

[+ 6(Qhe — Qi) \ 2o +e I' Yoe

Neglecting quasilinear correction terms of order d2p?/Ai, we may take i¢ /T’ ~ —1); /4o, in

+

(A8)

the d? term above, in which case

¢1,:r:c ¢1 1/)0 rrzr wl,za: _ ¢1 d’O,zzz _ 1 a:r (¢g$ A ( ¢1 )) )

+ - —_—
¢0,.1: F ¢0,z 1/)0,2: lbo,:t: ¢0,x ¢(2), Z/JO,Z

Indeed, it is seen to be consistent with the earlier assumption V2 ~ §? to completely neglect

(A9)

the ¢; term in the above compared to ¥ z2/%0z, in which case that expression may also be

used in the n term. As a result, Eq. (A8) becomes:

¢l — _@é_l_ s 2 d’l iz’_l_
zpHO,:z: B z F a (/\ 8 ( )) ¢0z (¢Oz (!/Jo,x)) ’ (AIO)

The final result, Eq. (19), is obtained by operating on the above with 8., and using the

(integrated) vorticity equation (A1) to eliminate J; (¥1 /tpo.). The latter equation, replacing

p1 with Eq. (A7), can be written as




22

N20;(¢1/T) = =185 .0z (%1 /%bo,z) + — (#1/),, (Al1)
or equivalently
o1 2An [o°
Oz (¥1/%0z) = z¢g’z </\2Z - —ﬂ_f— A Zdz) . (A12)
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FIGURES

FIG. 1. A sketch of the simulated “layer region” containing the m = 1 island and reconnection

layer.

FIG. 2. £ (= &/r1) vst (=t/7}) for w. = 0 (upper curve) and wyi{ = WuiT)) = —~wie = 0.054

(lower curve).

FIG. 3. Same as the w. # 0 case in Fig. 2 (shown as dashed line) except p = . = k = 3 x 1076,

FIG. 4. Approximate saturation amplitudes obtained from simulations: (1) asterisks: p = 1,
ps(= ps/r1) = 0.015; (2) triangles: r = 3, p, = 0.015; (3) squares: r = 3, p, = 0.03. Also, dashed

line is analytic result for r = 1, p; = 0.015 from Eq. (24).

FIG. 5. (a) Contours of ¢ at ¢t = 400 of w, # 0 case in Fig. 2 (¢ = z/r1, z = z/r;). (b)

Contours of J = V24 at t = 400.

FIG. 6. (a) Fourier transform of ¢ for |m|=1,0,2,3 at ¢ = 400 (descending order, z < 0.01).
Curves show @y, + |¢-m| = 2|¢m| for m # 0 and |¢g| for m = 0. (b) Fourier transform of
p—p® for |m| = 1,0, 2,3 at t = 400, displayed as in Fig. 6a. (c) Fourier transform of ¢ — 4(©) for

|m| =1,0,2,3 at t = 400, displayed as in Fig. 6a.

FIG. 7. (a) The m = 0 harmonic of ¢’ vs z at ¢ = 400 from simulation (solid line) and
unperturbed, ¢t = 0 profile (dashed line). (b) The m = 0 harmonic of p’ vs z at t = 400 from
simulation (solid line) and unperturbed, ¢t = 0 profile (dashed line). (c) The m = 0 harmonic of %’

vs z at t = 400 from simulation (solid line) and unperturbed, ¢ = 0 profile (dashed line).

FIG. 8. (a) ¢o vs z (= z/71) at t = 400 from simulation (solid line) and from analytic expression
in Eq. (28) (dashed line). (b) po— péo) vs z at ¢ = 400 from simulation (solid line) and from analytic
expression in Eq. (28) (dashed line). {c) 9o — 1/)((,0) vs z at t = 400 from simulation (solid line) and

from analytic expression in Eq. (28) (dashed line).
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