skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Optoelectronic and excitonic properties of oligoacenes and one-dimensional nanostructures.

Technical Report ·
DOI:https://doi.org/10.2172/1002094· OSTI ID:1002094

The optoelectronic and excitonic properties in a series of linear acenes are investigated using range-separated methods within time-dependent density functional theory (TDDFT). In these highly-conjugated systems, we find that the range-separated formalism provides a substantially improved description of excitation energies compared to conventional hybrid functionals, which surprisingly fail for the various low-lying valence transitions. Moreover, we find that even if the percentage of Hartree-Fock exchange in conventional hybrids is re-optimized to match wavefunction-based CC2 benchmark calculations, they still yield serious errors in excitation energy trends. Based on an analysis of electron-hole transition density matrices, we also show that conventional hybrid functionals overdelocalize excitons and underestimate quasiparticle energy gaps in the acene systems. The results of the present study emphasize the importance of a range-separated and asymptotically-correct contribution of exchange in TDDFT for investigating optoelectronic and excitonic properties, even for these simple valence excitations.

Research Organization:
Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
AC04-94AL85000
OSTI ID:
1002094
Report Number(s):
SAND2010-5687; TRN: US1100817
Country of Publication:
United States
Language:
English