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Abstract

The mechanics of vertically layered porous media has some similarities to and some differences

from the more typical layered analysis for purely elastic media. Assuming welded solid contact at

the solid-solid interfaces implies the usual continuity conditions, which are continuity of the vertical

(layering direction) stress components and the horizontal strain components . These conditions are

valid for both elastic and poroelastic media. Differences arise through the conditions for the pore

pressure and the increment of fluid content in the context of fluid-saturated porous media. The

two distinct conditions most often considered between any pair of contiguous layers are: (1) an

undrained fluid condition at the interface, meaning that the increment of fluid content is zero (i.e.,

δζ = 0), or (2) fluid pressure continuity at the interface, implying that the change in fluid pressure

is zero across the interface (i.e., δpf = 0). Depending on the types of measurements being made on

the system and the pertinent boundary conditions for these measurements, either (or neither) of

these two conditions might be directly pertinent. But these conditions are sufficient nevertheless to

be used as thought experiments to determine the expected values of all the poroelastic coefficients.

For quasi-static mechanical changes over long time periods, we expect drained conditions to hold,

so the pressure must then be continuous. For high frequency wave propagation, the pore-fluid

typically acts as if it were undrained (or very nearly so), with vanishing of the fluid increment at

the boundaries being appropriate. Poroelastic analysis of both these end-member cases is discussed,

and the general equations for a variety of applications to heterogeneous porous media are developed.

In particular, effective stress for the fluid permeability of such poroelastic systems is considered;

fluid permeabilities characteristic of granular media or tubular pore shapes are treated in some

detail, as are permeabilities of some of the simpler types of fractured materials.
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1. Introduction

Studies of elastic systems containing holes, fractures, or pores possibly filled with fluids

typically employ a single step of upscaling, considering the otherwise homogeneous solid and

fluid constituents’ properties, volume fractions, and spatial arrangements, and subsequently

deducing an estimate of the likely macroscopic behavior of such systems [1-8]. In recent

work [9], the author has shown in some detail how the poroelastic coefficients are related to

the microstructural constants of the solid constituents when the overall behavior varies from

isotropic to orthotropic. The focus of the present effort is on layered poroelastic materials,

which clearly involves a second upscaling step needed to homogenize the macroscale system.

The resulting theory again is anisotropic, in part due to the anisotropy of individual layers,

and in part due to the layering procedure itself. The scale of interaction of the probes used

on such media is important, and can be either very large scale (as might happen with low

frequency seismic waves), or very fast (as might happen with ultrasonic waves). In this

study, each layer is assumed to satisfy the assumptions of the class of problems considered

in reference [9], and therefore the system is heterogeneous at the poroelastic mesoscale, as

we move from layer to layer. Then, the layer-averaging step takes us to a macroscale level

of analysis that simultaneously includes (via this effective-medium-style averaging) many of

these poroelastic layers whose local properties may differ substantially from one to another.

One main issue addressed here concerns how the interface boundary conditions between

anisotropic porous layers should be treated. For very low frequency (say quasi-static) anal-

ysis, this issue is clear since then the boundary conditions must be drained conditions and

therefore the fluid pressure is continuous across the boundary. However, for high frequency

wave propagation, it is expected to be more appropriate to treat the system as locally

undrained (pore-fluid is trapped), since the pressure of the pore-fluid does not have time

to equilibrate with the outside world via the drainage mechanism, and also since this can

take much longer than is appropriate to these quasi-static analyses. The most accurate way

to treat these situations in general is to consider the variables to be frequency dependent

and complex (therefore viscoelastic and including dissipation mechanisms). This approach

has been taken for example by Pride et al. [10-12] for some simple mixtures of isotropic

poroelastic materials. But these problems become harder for the anisotropic case because –

although there were simple exact results for the two-isotropic-component case – such simple
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results are not generally available for the anisotropic problems. And, more importantly, the

interest in layered media is not just for two-component examples, but ultimately for multi-

component layered media. So it is necessary for many applications of current practical

interest to consider these cases separately, as is being done here.

This analysis is restricted to anisotropic systems composed of locally anisotropic poroe-

lastic layers. The nature of the grains themselves composing the solid frame material of the

porous medium will not be a focus of the present paper. This issue does matter too, but

(as will be shown) it is most important for determining the relationship between the grain

constants and the off-diagonal coefficients that are called the β’s in this formulation. These

issues have been fully addressed in an earlier contribution of the author [9], and will therefore

not be treated again in such detail here. Our focus instead is on heterogeneous poroelastic

media when the heterogeneity is well-represented via layered porous-medium modeling.

2. Basics of Anisotropic Poroelasticity

2.1 Orthotropic poroelasticity

If the overall porous medium is anisotropic — either due to some preferential alignment

of the constituent particles or due to externally imposed stress (such as a gravity field and

weight of overburden, for example) — we consider the orthorhombic anisotropic version of

the poroelastic equations:














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−ζ














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
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
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











. (1)

(Note: Throughout most of the paper, the δ’s that are sometimes used to emphasize small-

ness of the stresses and strains will be suppressed, as this extra notation is truly redundant

when they are all being treated as small (and therefore resulting in linear effects) as we do

here, for small deviations from an initial rest state. Nevertheless, we will occasionally revert

to this notation when it seems important to emphasize smallness of certain variables, and/or

linearity of the system being studied.)

The eii (no summation over repeated indices) are strains in the i = 1, 2, 3 directions. The

3



σii are the corresponding stresses, assumed to be positive in tension. The fluid pressure is

pf , which is positive in compression. The increment of fluid content is ζ, and is often defined

via:

ζ ≡
δ(φV ) − δVf

V
' φ

(

δVφ

Vφ
−
δVf

Vf

)

, (2)

where V = Vφ/φ ' Vf/φ is the pertinent local volume (within a layer in present circum-

stances) of the initially fully fluid-saturated porous layer at the first instant of consideration,

Vφ = φV is the corresponding pore volume, with φ being the fluid-saturated porosity of the

same volume. Vf is the volume occupied by the pore-fluid, so that Vf = φV before any

new deformations begin. (As mentioned already, δ’s indicate small changes in the quantities

immediately following them.) For “drained” systems, there would ideally be a reservoir of

the same fluid just outside the volume V that can either supply more fluid or absorb any

excreted fluid as needed during the nonstationary phase of the poroelastic process. The

amount of pore fluid (i.e., the number of fluid molecules) can therefore either increase or

decrease from that of the initial amount of pore fluid; at the same time, the pore volume

can also be changing, but — in general — not necessarily at exactly the same rate as the

pore fluid itself. The one exception to these statements is when the surface pores of the

layer volume V are sealed, in which case the layer is “undrained” and ζ ≡ 0, identically. In

such circumstances, it is still possible that both Vf and Vφ = φV are changing; but, because

of the imposed undrained boundary conditions, they are necessarily changing at the same

rate. The drained compliances are sij = sd
ij, with or without the d superscript.

Undrained compliances (not yet shown) are symbolized by su
ij.

Coefficients

βi = si1 + si2 + si3 − 1/3Kg
R, (3)

where Kg
R is again the Reuss average modulus of the grains. The drained Reuss average

bulk modulus is defined by
1

Kd
R

=
∑

ij=1,2,3

sd
ij. (4)

For the Reuss average [13] undrained bulk modulus Ku
R, we have drained compliances re-

placed by undrained compliances in a formula analogous to (4). A similar definition of the

effective grain modulus Kg
R is:

1

Kg
R

=
∑

i,j=1,2,3

sg
ij. (5)
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with grain compliances replacing drained compliances as discussed earlier by Berryman [9].

The alternative Voigt [14] average (also see [15]) of the stiffnesses plays no role in the present

work. And, finally, γ =
∑

i=1,2,3 βi/BK
d
R, where B is the second Skempton [16] coefficient,

which will be defined carefully later.

The shear terms due to twisting motions (i.e., strains e23, e31, e12 and stresses σ23, σ31, σ12)

are excluded from this poroelastic discussion since they typically do not couple to the modes

of interest for anisotropic systems having orthotropic symmetry, or any more symmetric

system such as those being either transversely isotropic (i.e., hexagonal) or isotropic. We

have also assumed that we know the true axes of symmetry, and make use of them in

our formulation of the problem. Note that the sij’s are the elements of the compliance

matrix S and are all independent of the fluid, and therefore would be the same if the

medium were treated as elastic (i.e., by ignoring the fluid pressure, or assuming that the

fluid saturant is air – or vacuum). In keeping with the earlier discussions, we typically

call these compliances the drained compliances and the corresponding matrix the drained

compliance matrix Sd. The fluids do not contribute to the stored mechanical energy if they

are free to drain into a surrounding reservoir containing the same type of fluid. In contrast,

the undrained compliance matrix Su presupposes that the fluid is trapped (unable to drain

from the system into an adjacent reservoir) and therefore contributes in a significant and

measurable way to the compliance and stiffness (Cu = [Su]−1), as well as to the stored

mechanical energy of the undrained system.

Although the significance of the formula is somewhat different now, we find again that

β1 + β2 + β3 =
1

Kd
R

−
1

Kg
R

=
αR

Kd
R

(6)

if we also define (as we did for the isotropic case) a Reuss effective stress coefficient:

αR ≡ 1 −Kd
R/K

g
R. (7)

Furthermore, we have

γ =
β1 + β2 + β3

B
=
αR

Kd
R

+ φ

(

1

Kf

−
1

Kφ
R

)

, (8)

since we have the rigorous result in this notation [3,16] that Skempton’s B coefficient is

given by

B ≡
1 −Kd

R/K
u
R

1 −Kd
R/K

g
R

=
αR/K

d
R

αR/Kd
R + φ(1/Kf − 1/Kφ

R)
. (9)
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Note that both (8) and (9) contain dependence on the distinct pore bulk modulus Kφ
R that

comes into play when the pores are heterogeneous [3], regardless of whether the system is

isotropic or anisotropic. We emphasize that all these formulas are rigorous statements based

on the earlier anisotropic analyses. The appearance of both the Reuss average quantities

Kd
R and αR is not an approximation, but merely a choice of notation made to provide both

emphasis and some additional clarity.

2.2 Determining off-diagonal coefficients βi

We will now provide several results for the βi coefficients, and then follow the results with

a general proof of their correctness.

In many useful and important cases, the coefficients βi are determined by

βi = sd
i1 + sd

i2 + sd
i3 −

1

3Kg
R

. (10)

Again, Kg
R is the Reuss average of the grain modulus, since the local grain modulus is not

necessarily assumed uniform here as discussed previously. Equation (10) holds as written

for homogeneous grains, such that Kg
R = Kg.

It also holds true for the case when Kg
R is determined instead [19] by an average over

isotropic grains such that
1

Kg
R

≡
∑

m=1,...,n

vm

Km
, (11)

where vm is the volume fraction (out of all the solid material present, so that
∑

m vm =

1). However, when the grains themselves are anisotropic, we need to allow again for this

possibility, and this can be accomplished by defining three directional grain bulk moduli

determined by:
1

3K
g

i

≡ sg
i1 + sg

i2 + sg
i3 = sg

1i + sg
2i + sg

3i, (12)

for i = 1, 2, 3. The second equality follows because the compliance matrix is always symmet-

ric. We call these quantities in (12) the “partial grain-compliance sums,” and the K
g

i are

the directional grain bulk moduli. Note that the factors of three have again been correctly

accounted for because
∑

i=1,2,3

1

3K
g

i

=
1

Kg
R

, (13)

in agreement with (5).
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We can further simplify and symmetrize our notation somewhat by introducing a similar

concept for the drained constants, so that

1

3K
d

i

≡ sd
i1 + sd

i2 + sd
i3 = sd

1i + sd
2i + sd

3i, (14)

for i = 1, 2, 3. Then, the formula for (10) is replaced by

βi =
1

3K
d

i

−
1

3K
g

i

. (15)

If the three contributions represented by (12) for i = 1, 2, 3 happen to be equal, then clearly

each equals one-third of the sum (13).

The preceding results are for perfectly aligned grains. If the grains are instead perfectly

randomly oriented, then it is clear that the formulas in (10) hold as before, but now Kg
R is

determined instead by (5).

All of these statements about the βi’s are easily proven by considering the simple exper-

imental situation when σ11 = σ22 = σ33 ≡ −pc = −pf . Because then, from (1), we have (no

i summation convention):

−eii =
1

3K
d

i

pc + βi(−pf ) = (sg
i1 + sg

i2 + sg
i3) pf ≡

pf

3K
g

i

, (16)

in the most general of the three cases discussed, and holding true for each value of i = 1, 2, 3.

This result is a statement about the strain eii that would be observed in this situation, as

it must be the same if these anisotropic (or inhomogeneous) grains were immersed in the

fluid, while measurements were taken of the strains observed in each of the three directions

i = 1, 2, 3, during variations of the fluid pressure pf . We may consider this proof to be a

thought experiment for determining these coefficients, in the same spirit as those proposed

originally by Biot and Willis [2,17] for the isotropic and homogeneous case.

2.3 The βi coefficients and effective stress

Making use of our previous definitions, it is easy to see that the coefficients βi are closely

related to a different sort of effective stress coefficient, for the individual principal strain

coefficients:

eii = −
1

3K
d

i

(pc −Dipf), for i = 1, 2, 3, (17)
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where

Di = 3K
d

i βi = 1 −
K

d

i

K
g

i

, for i = 1, 2, 3, (18)

and −pc = σ11 = σ22 = σ33 in the case of uniform applied confining pressure pc. Then

clearly, the Di’s are completely analogous to the usual Biot (or Biot-Willis [2,17]) coefficient

αR = 1 −Kd
R/K

g
R commonly defined for isotropic poroelasticity.

2.4 Coefficient γ

The relationship of coefficient γ to the other coefficients is easily established because we

have already discussed the main issue, which involves determining the role of the various

other constants contained in Skempton’s coefficient B [16]. This result is

B =

(

1

Kd
R

−
1

Kg
R

)

[

(

1

Kd
R

−
1

Kg
R

)

+ φ

(

1

Kf
−

1

Kφ
R

)]

−1

(19)

Again, from (1), we find that

−ζ = 0 = − (β1 + β2 + β3) σc − γpf , (20)

for undrained boundary conditions. Thus, we find that

pf

pc

≡ B =
β1 + β2 + β3

γ
, (21)

where pc = −σc is the confining pressure. Therefore, the scalar coefficient γ is determined

immediately and given by

γ =
β1 + β2 + β3

B
=
αR/K

d
R

B
= αR/K

d
R + φ

(

1

Kf

−
1

Kφ
R

)

. (22)

Alternatively, we could say that

B =
αR

γKd
R

, (23)

which gives a definition of Skempton B in terms of other constants.

We have now determined the physical/mechanical significance of all the coefficients in the

poroelastic matrix (1). These results are as general as possible without considering poroe-

lastic symmetries that have less than orthotropic symmetry, while also taking advantage

of our assumption that we do typically know the three directions of the principal axes of

symmetry.
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2.5 Inverting poroelastic compliance

Being in compliance form, the matrix in (1) has extremely simple poroelastic behavior

in the sense that all the fluid mechanical effects appear only in the single coefficient γ. We

can simplify the notation a little more by lumping some coefficients together, combining the

3 × 3 submatrix in the upper left corner of the matrix in (1) as S, and defining the column

vector b by

bT ≡ (β1, β2, β3). (24)

The resulting 4 × 4 matrix and its inverse are now related by:





S −b

−bT γ



 =





A q

qT z





−1

, (25)

where the elements of the inverse matrix can be shown to be written in terms of drained stiff-

ness matrix Cd = C = S−1 by introducing three components: (a) scalar z =
[

γ − bTCb
]

−1
,

(b) column vector q = zCb, and (c) undrained 3 × 3 stiffness matrix (i.e., the pertinent

one connecting the principal strains to principal stresses) is given by A = C + zCbbTC =

Cd+z−1qqT ≡ Cu, since Cd is drained stiffness and A = Cu is clearly undrained stiffness by

construction. This result is the same as that of Gassmann [1] for anisotropic porous media.

Note the important fact that the observed decoupling of the fluid effects occurs only in

the compliance form (1) of the equations, and never in the stiffness (inverse) form for the

poroelasticity equations.

From these results, it is not hard to show that

Sd = Su + γ−1bbT . (26)

This result emphasizes the fact that the drained compliance matrix can be found directly

from knowledge of the inverse of undrained stiffness, and the still unknown, but sometimes

relatively easy to estimate, values of γ, and the three distinct orthotropic βi coefficients, for

i = 1, 2, 3.

There are clearly many measurements required to determine all these various poroelastic

coefficients. Furthermore, the strategy for finding the coefficients depends on available data

sets, and whether the porous media of interest are constructed from a homogeneous or

heterogeneous set of solid materials, and whether the individual grains are isotropic or
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anisotropic. It also makes some difference if the pores are approximately round (for granular

media) or flat (for fractured media). All these issues have been discussed previously at some

length [9], and this discussion will not be repeated here.

The remainder of the paper will concentrate on making use of these general poroelastic

equations in situations where at least two and possibly many distinct layers of porous ma-

terials (individually obeying the equations of this type) are under stress (either quasi-static

or dynamic as would occur in a wave propagation scenario). As we shall see, the layered

poroelastic equations behave somewhat differently from layered elastic equations because

there are two distinct additional pore-fluid boundary conditions (drained and undrained)

that can occur depending on the details of the excitation itself.

3. Layer-Averaging Results for All Drained or All Undrained Boundaries

The two most common boundary conditions to consider in poroelastic media are the

drained and undrained conditions. Drained conditions imply that the fluid pressure change

is zero, while the increment of fluid content in the individual layers may be considered

arbitrary. Of course, the total amount of fluid present needs to be properly conserved in

the analysis we present, but the usual idea for drained conditions is that the poroelastic

system is immersed in an infinite reservoir of like-fluid so that pore fluid is free to move in

and out of the region of interest. For our present considerations, this situation implies that

the layer increments ζ can take arbitrary (but typically small) values, but the fluid pressure

is constrained to be a constant value pf everywhere. So changes in pf always vanish for

drained conditions.

Undrained boundary conditions place the hard constraint on the fluid increment ζ, re-

quiring no flow at the boundaries, so ζ = 0 at all boundaries. These conditions ensure that

the fluid pressure pf does change, since as the boundaries move in or out the pressure on

the confined fluid is increasing or decreasing.

Both of these conditions must be approximations to conditions in a generally realistic

earth model. We can easily imagine situations where some boundaries between layers (the

vertical direction) are plugged, so undrained boundary conditions ζz ≡ 0 might be correct

while neighboring layers (horizontal direction) might be open to fluid flow (so perhaps ζx

and/or ζy 6= 0 at the x and y boundaries). We will neverthless limit the analysis to that for
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either all drained conditions or all undrained conditions. All undrained conditions are also

appropriate, as mentioned previously, regardless of the physical boundary conditions if the

probe changing the physical variables is a passing high frequency acoustic or seismic wave

train or pulse.

3.1 General analysis for layered poroelastic systems

We will now formulate the layered porelastic earth problem in a way so that both of

these standard boundary conditions can be imposed, as needed in any particular modeling

problem.

We assume throughout the remainder of the paper that the porous layers are stacked

vertically (along the 3- or z-axis), and for this geometry it is easy to see that the three

horizontal strains e11, e22, and e12 must be continuous if the layers are in solid-welded

contact. Furthermore, the vertical stress σ33, and rotational stresses involving the vertical

direction σ13 and σ23 must also be continuous. These conditions follow from an assumption

of welded solid-solid contact between layers. If contact is not welded, then the system can

have much more complicated behaviors than we are considering here.

Appendix A summarizes the Backus [20] and/or Schoenberg-Muir [21] approach to elastic

layer averaging. The method we present here is a slight generalization of this approach,

taking the presence of the pore fluid into account. For the drained situation, the influence of

the fluid on the system mechanics is minimal (as we shall see). But we should nevertheless

have this result available to compare it with the more interesting case of the undrained

layers.

Although the shear moduli normally associated with the twisting shear components e23,

e31, and e12 usually do not interact with the pore-fluid itself in systems as symmetric or

more symmetric than orthotropic, we nevertheless need to carry these terms along in the

poroelastic formulation for layered systems because of possible boundary effects due to

welded contact at interfaces. To accomplish this goal, we will generalize the form of equation

(79) from Appendix A. In compliance form, the equations will relate the strains

ET ≡











e11

e22

e12











, and EN ≡











e33

e32

e31











, (27)
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and fluid increment ζ to the stresses

ΠT ≡











σ11

σ22

σ12











, and ΠN ≡











σ33

σ32

σ31











, (28)

and the fluid pressure change pf .

The required general relationship is:











ET

−ζ

EN











=











STT −g12 STN

−gT
12 γ −gT

3

SNT −g3 SNN





















ΠT

−pf

ΠN











, (29)

where, for example, in the orthotropic media considered here we have

STT ≡











s11 s12 s16

s21 s22 s26

s61 s62 s66











=











s11 s12

s21 s22

s66











, (30)

SNN ≡











s33 s34 s35

s43 s44 s45

s53 s54 s55











=











s33

s44

s55











, (31)

and

SNT ≡











s31 s32 s36

s41 s42 s46

s51 s52 s56











=











s31 s32

0

0











, (32)

with STN = ST
NT (the T superscript indicates the matrix transpose). Here all these ex-

pressions for elastic compliance refer specifically to drained compliances sij = sd
ij, for all

i, j = 1, . . . , 6 within each poroelastic anisotropic layer.

All the poroelastic contributions to (29) are determined by γ, g12, and g3. The scalar γ

within the 7 × 7 matrix in (29) was defined earlier in (8), and is the only term in the 7 × 7

matrix that includes fluid effects directly through fluid bulk modulus Kf . The remaining

pair of vectors contained within the 7 × 7 matrix in (29) is defined by:

gT
12 = (β1, β2, 0) (33)

12



and

gT
3 = (β3, 0, 0), (34)

where the β’s were defined previously following (1).

We now consider two examples of special uses of the general equation (29) for different

choices of boundary conditions. These two physical circumstances being considered are

distinct end-members. For relatively high-frequency wave propagation, it is appropriate to

consider that the fluids do not have time to equilibrate during the time of wave passage.

Therefore fluid pressures can be different in distinct layers. The fluid particles do not have

time to move very far during wave passage time, so the fluid increment is also ζ = 0

essentially everywhere. This situation is called the “undrained” condition. An alternative

condition considers the fully drained condition, in which the fluid particles have as much time

as they need to achieve fluid-pressure equilibration, so that pf = constant at longer times.

These two limiting situations may be connected physically via Darcy’s law, which provides

the mechanism to move fluid particles, and ultimately to guarantee that the fluid pressure

reaches an equilibrium state. Bringing Darcy’s law actively into play in the equations would

result in Biot-style equations which are beyond our current quasi-static scope. So we limit

further discussion to these end-member conditions.

3.2 Drained scenario (pf ≡ 0)

Now, recall that, in the drained scenario, changes in pore-fluid pressure are assumed to

be zero (or at least negligibly small), so pf ≡ 0 in these equations. Accounting for this

condition, the results should (and do) recover the Backus [20] and Schoenberg-Muir [21]

results for the elastic parts of the system (found in Appendix A) exactly. Also, we find the

additional (expected) result for the poroelastic case that the average fluid increment is:

〈ζ〉 = 〈β1σ11〉 + 〈β2σ22〉 + 〈β3〉σ33, (35)

if σ33 is nearly constant. The result shown in (35) is easy to reconcile with the definitions of

the β’s, and the meaning of averaging operator 〈·〉 across all layers. When pf vanishes ev-

erywhere, the final results for the averaging and the various stresses and strains are identical

to the results in Appendix A. For the drained scenario, the only difference is the addition

of equation (35).
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3.3 Undrained scenario (ζ ≡ 0)

Now consider that the fluid pressure might vary across the stack of layers (as should be

expected to happen either because of hydrostatic overburden, or due to fluid injection or

extraction at certain chosen depths). Then we can treat this case as well, assuming undrained

circumstances, by averaging the fluid pressure itself via 〈pf〉. For this undrained scenario,

the fluid pressure in each undrained layer is free to vary compared to all the others; so there

is no constancy of pf across layers. The averaging condition resulting from the formulation

for such a reservoir according to (29) is:

〈pf 〉 = −

〈

1

γ
(β1σ11 + β2σ22)

〉

+

〈

β3σ33

γ

〉

. (36)

Proper choice of the range of depth for averaging will clearly depend on the details of each

reservoir, and the type of physical probe being used. For example, either quarter- or half-

wavelength for seismic waves (otherwise the average over a full cycle is always zero for wave

propagation problems), when used as the probe, would be typical choices of the averaging

depth in this case.

While the preceding part of the averaging for undrained boundary conditions was straight-

forward, we still need to check what happens when averaging the remainder of the equations.

We show the work in Appendix B leading to the general undrained result (98), and just quote

the final result here – being valid for each undrained layer in the overall system:





ET

EN



 =





Su
TT Su

TN

Su
NT Su

NN









ΠT

ΠN



 , (37)

where

Su
TT ≡











su
11 s

u
12

su
21 s

u
22

s66











, (38)

Su
NN ≡











su
33

s44

s55











, (39)
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and

Su
NT ≡











su
31 s

u
32

0

0











, (40)

while Su
TN = (Su

NT )T . Once these definitions are used for the undrained matrices, the layer

analysis for the system follows exactly the same steps as in Appendix A. Note that we

arrived at these results in another (step-by-step) way in Appendix B independently in order

to verify that this is the right answer for the undrained problem. Fortunately, the right

answer is also the same as the intuitive answer.

4. Application to Effective Stress for Fluid Permeability of Granular Systems or

Tubular Pores

Following Reference [24], Darcy’s constant k for the fluid permeability has dimensions of

length squared, so a uniform shrinking or swelling of an isotropic porous medium changes the

value of the isotropic permeability by a factor proportional to V 2/3 (volume to the two-thirds

power, since volume has dimensions of length cubed). For anisotropic permeability of the

orthotropic porous media under consideration, we need to make some assumptions about

the strain dependence of the principal permeability components in three dimensions: k11,

k22, and k33. First we assume that these three components are in fact the eigenvalues of the

permeability tensor, and that the axes are aligned with axes of the orthotropic system itself.

These assumptions can be modified as needed, but for first considerations, they should be

adequate for our purposes.

Many models of fluid permeability are in use, including those in References [24-27]. Here

we will emphasize the formula (together with analogous ones for directions 2 and 3):

k11 =
φ2

1

2s2
1F1

, (41)

where φ1 is an apparent (averaged over the volume) porosity as seen in the x1-direction. That

is to say, the porous surface area per unit surface area may be found by viewing a cross-

section of the material that is orthogonal to the x1-direction. Similarly, s1 is the apparent

surface area per unit volume (also averaged over the volume), again for pores when viewed

in cross sections. Both of these values can be determined to high accuracy by the use of
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digital image processing methods [28] on cross-sections of rocks. The remaining term is

the pertinent formation factor F1 for electrial conduction in brine-filled porous media. This

value is not so easy to determine from images, but can nevertheless be estimated using one

of the well-known forms of Archie’s law [29], such as

F1 = φ−m1
1 , (42)

where m1 is an appropriate Archie cementation exponent associated with electrical current

conduction in the x1-direction. Typical values of exponent m1 [24] lie in the range 1 < m1 ≤

2.

If the composite material model we wish to model contains several significantly different

types of poroelastic materials, then we may also need to consider additional formation

factors associated with the composite structure itself, as was done in Reference [24] for two-

component porous media. We will ignore this issue for now, as analysis of the layer structure

under consideration suggests that, for many cases of interest, the pertinent distributional

formation factors could be close unity. If this is not true in a particular application, then

the methods developed in [28] can be generalized fairly easily to account for such additional

complications. For now, we assume these particular effects are not of primary importance.

There is also potential for mismatching/offsetting of pores at the boundaries between

layers [46], and these effects can further reduce the effective overall permeabilities of these

systems. However, such effects are fairly easy to take into account whenever it is known

that they are present, so we shall not treat such issues specifically here.

Now it is clear that the pertinent porosities and formation factors (also closely related to

the same porosity values) are unitless measures of areas perpendicular to the three main flow

directions. That means the strains that need to be considered are also the ones perpendicular

to those directions. So for example, we must have

k11 '
φ2+m1

2[s
(0)
11 ]2

(1 + e22) (1 + e33) ,

k22 '
φ2+m2

2[s
(0)
22 ]2

(1 + e33) (1 + e11) ,

k33 '
φ2+m3

2[s
(0)
33 ]2

(1 + e11) (1 + e22) ,

(43)

for the diagonal permeabilities of such porous systems. Motivation for such statements comes

from an equivalent result for the orthotropic/anisotropic system of the form s−2 ∝ V 2/3 for

the specific surface area dependence on volume in the isotropic case [24].
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Our permeability result then takes the form:

δk11

k11

= (2 +m1)
δφ

φ
+ δe22 + δe33 = (2 +m1)

δφ

φ
+ δe− δe11. (44)

The δ’s are shown explicitly to emphasize that these are all presumed to be relatively small

changes in each of these respective quantities. The second equality follows from the definition

of total strain e = e11 + e22 + e33, and provides emphasis to a general symmetry of the

dependencies: the permeability changes depend explicitly on strains in those directions

perpendicular to the flow. So changes in k11 depend on the total strain minus the strain in

the x1-direction of flow, and analogously for the other two permeability eigenvalues.

The author has shown in earlier work [24] that the porosity for an isotropic system satisfies

the following effective stress rule:

−
δφ

φ
=

(

αR − φ

φKd
R

)

(δpc − χδpf) , (45)

where the effective stress coefficient is χ is given by

χ =

(

ω − φ

αR − φ

)

αR, (46)

where, for isotropic systems, we have:

ω =
1

B
−
Kp

Kf

. (47)

Again, B is Skempton’s second coefficient from (19), and Kp = φKd
R/αR is the bulk modulus

of pore volume.

Another result for the effective stress coefficient for these types of porous materials is

discussed in Appendix C.

5. Quasi-statics and Layer-Averaged Permeability

Our treatment has purposely concentrated on the parts of the analysis that are quasi-

static. This choice is not as limiting as it might seem at first sight, because it includes both

drained and undrained behavior, and also higher frequency wave propagation problems that

can be treated as undrained whenever we want to analyze only the wave speeds, but not

the wave attenuation aspects of these problems. (For field applications, attenuation is also

harder to measure reliably than wave speeds.) Modelling wave attenuation in poroelastic
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media necessarily requires knowledge of fluid permeability, and therefore spatial gradients

of fluid pressure as well as time derivatives of the increments of fluid content. The results

presented here are nevertheless of direct interest in those more complicated problems, as we

also need to know these quasi-static results, especially in the low frequency limit of the full

frequency-dependent problems.

It is useful to note that Schoenberg [42] studies the problem of layered permeable systems,

using analysis methods very similar to the ones used here. However, Schoenberg’s paper does

not address the issues of poroelasticity and effective stress for changes in the permeability,

but only the effects of the layering itself on the overall fluid-flow behavior and effective

permeability.

The averaging scheme used by Schoenberg [42] for permeability is completely analogous

to the one described here in Appendices A and B for elasticity and poroelasticity. If the

permeability in each layer can be written in the form:

k =











k11 k12 k13

k12 k22 k23

k13 k23 k33











, (48)

and, if w is the flow rate of the moving fluid particles while ρ is the fluid density such that

ρw is the local fluid momentum per unit volume, then

w = −
1

ρν
k · ∇pf , (49)

or equivalently










wx

wy

wz











= −
1

ρν











k11 k12 k13

k12 k22 k23

k13 k23 k33





















pf,x

pf,y

pf,z











(50)

is Darcy’s law for the local behavior in any one layer, with ν being the uniform viscosity of

the pore fluid.

Now (again following Schoenberg), we define

RTT =





k11 k12

k12 k22



 , (51)

rTN =





k13

k23



 = rT
NT , (52)
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and

rNN = k33. (53)

Then, we can rewrite the permeability k for one layer of the overall layered systems as:

k =





RTT rTN

rNT rNN



 , (54)

in terms of 2 × 2 matrix R, vector r, and scalar r. Next, averaging the results for the

permeability, we find:

r∗NN =
〈

r−1
NN

〉

−1
, (55)

r∗NT = r∗NN

〈

r−1
NNrNT

〉

= r∗TTN , (56)

and

R∗

TT = 〈RTT 〉 −
〈

rTNr
−1
NNrNT

〉

+ r∗TN (r∗NN)−1
r∗NT . (57)

So finally, the averaged permeability is given by:

k∗ =





R∗

TT r∗TN

r∗NT r∗NN



 . (58)

Schoenberg [42] also describes how to do the analogous layered calculations for the in-

verse of permeability (i.e., the impermeability). Defining the form of the impermeability

analogously via

k−1 ≡





XTT xTN

xNT xNN



 , (59)

then the corresponding result for the averaged impermeability is

(k∗)−1 ≡





X∗

TT x∗

TN

x∗

NT x∗NN



 , (60)

where

X∗

TT =
〈

X−1
TT

〉

−1
, (61)

x∗

TN = X∗

TT

〈

X−1
TTxTN

〉

= (x∗

NT )T , (62)

and

x∗NN = x∗

NT (X∗

TT )−1
x∗

TN . (63)
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[Note that there is an obvious typographical error in Schoenberg’s equation (9) since his

term corresponding to x∗NN is not dimensionally correct.]

When these formulas are compared to the ones obtained here (and also by others) for

the average compliances, we see a close formal similarity between averaged compliance and

averaged impermeability results. So it is not surprising that there must also be a formal

similarity between the averaged stiffness and the averaged permeability results for such

layered materials. This simple fact is useful nevertheless, as it provides another means of

checking that results have been correctly derived.

6. Analysis of Fracture Permeability: Formulation and Effective Stress Behavior

6.1 Horizontal fractures

Chen and Bai [43] and Chen et al. [44] present a careful and clear analysis of the

permeability tensor for fractured systems, including some discussion of stress dependence,

which we will carry forward in our current applications. Two key parameters for simple,

flat fractures (which was the focus of [43] and [44] and will also be our focus in this section)

are the aperture b and the spacing between fractures d. If these values are not uniform in

the material, then these values should be replaced by their average values. When the only

porosity present is the fracture porosity φf , it is easy to see then that φf = b/d — assuming

only that the individual fractures are connected across the entire region of study, and that

they do not intersect or overlap. Now, writing permeability k as a matrix for horizontal

fractures, we have

k ≡
φ3

fd
2(1 + 2e33)

12











1 0 0

0 1 0

0 0 0











. (64)

In xyz-coordinates, this formula says that the anisotropic permeability is exactly zero in the

vertical or z-direction, and has equal values of k0 ≡ φ3
fd

2/12 in both the x- and y-directions,

with a small correction due to strain e33 in the z-direction, whenever this effect might be

significant enough to consider. Permeability k has dimensions of length squared, and these

dimensions are supplied by the d2 factor for the squared-spacing, and this factor can change

due to changes in strain along the z-axis. Thus, the factor due to strain changes in the
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z-direction is (1+ e33)
2 ' (1 +2e33), and this determines the magnitude of any extension or

contraction occurring along the z-axis. The factor φ3
f also provides one means of emphasizing

the experimentally well-known cube-law for fluid flow in fractured media [45]. This choice of

representation also provides an efficient means of determining the effect of pressure on the

fracture permeability, since (as will next be argued) the only quantity to change significantly

when the fluid pressure changes will be the fracture porosity itself.

Porosity is defined as the ratio of pore volume over total volume, so φ = Vφ/V and

δφ =
δVφ

V
−
VφδV

V 2
= φ

(

δVφ

Vφ
−
δV

V

)

. (65)

From our earlier analysis, we have:

−
δV

V
=
δpd

Kd
R

+
δpf

Kg
R

=
1

Kd
R

(δpc − αRδpf) , (66)

and

−
δVφ

Vφ

=
δpd

Kp

+
δpf

Kφ
R

=
1

Kp

(δpc − ξδpf) , (67)

where

Kp ≡
φKd

R

αR
, and ξ = 1 −Kp/K

φ
R, (68)

where (67) may be treated as the defining equation for Kφ
R, and αR ≡ 1 − Kd

R/K
g
R is the

usual Biot-Willis [2] parameter. The pertinent equation for the strain component e33 is

determined by (1) and (3). When the confining pressure and fluid pressure have comparable

values, this strain component depends mostly on the compliance factor 1/Kg
R, which will

normally be one of the smallest compliances in the system since it depends only on the solid

grain behavior. This fact suggests that it should be a good approximation in many cases to

neglect the contribution to the effective stress coming from this term in (64).

Thus, we conclude that the effective stress behavior for permeability due to horizontal

fractures is determined largely by the changes in fracture porosity φf itself, and therefore

we have:

δk = δφf

φ2
fd

2

4











1 0 0

0 1 0

0 0 0











, (69)

where δφf was determined by (65) through (68).
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6.2 Nonhorizontal fractures

While we generally expect fractures to be more or less planar, there is no reason to think

that they will always be horizontal. We can treat the more general problem of nonhorizontal

fractures by considering rotations of the matrix equation for k given in (64).

We will consider the three choices of rotation matrices:

Rx =











1

cosψ sinψ

− sinψ cosψ











, Ry =











cosχ sinχ

1

− sinχ cosχ











, Rz =











cos θ sin θ

− sin θ cos θ

1











, (70)

which are, respectively, appropriate rotation matrices for rotations about the x-axis, y-axis,

and z-axis.

Since rotations about the z-axis if performed first actually do not change the permeability

matrix in (64), and since rotations about the z-axis after rotations in x and y only produce

an effective change in the definitions of x and y, we will ignore the z-rotations, and only

consider the possibility of doing first x-rotations, and then y-rotations. The result is:

RyRxkR
T
xR

T
y = k0











1 − sin2 χ cos2 ψ − sinχ cosψ sinψ − sinχ cos2 ψ cosχ

− sinχ cosψ sinψ 1 − sin2 ψ − sinψ cosψ cosχ

− sinχ cos2 ψ cosχ − sinψ cosψ cosχ 1 − cos2 ψ cos2 χ











. (71)

Checks on the correctness of this rotation matrix include: (i) the sum of the diagonal should

be 2k0, (ii) the matrix should be symmetric, and (iii) the determinant should equal zero.

All three of these necessary constraints are satisfied, as is easily checked.

To conform with the results of Chen et al. [43, 44], we should also note that, if the

direction cosines are given by cx, cy, and cz (where c2x + c2y + c2z = 1), this matrix should have

the general form:

k0











1 − c2x −cxcy −czcx

−cxcy 1 − c2y −cycz

−czcx −cycz 1 − c2z











. (72)

Equation (71) differs from (72) only because we did not allow for any rotations about the

z-axis in the previous case. Note that the rotated permeability matrix in (72) also has zero

determinant and trace equal to 2k0, as expected.
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6.3 Effective stress for fracture permeability

The preceding results show that the effective stress for changes in permeability depends

only the scalar factor k0. This factor also depends principally on the pressure dependence

of the cube of fracture porosity φf . Recall that, as a general rule, we also expect Kd
R <

(1− φf)K
g
R (for example, from Hashin-Shtrikman bounds [24, 31]), which then implies that

φf < αR. So we find that magnitude of the permeability k0 varies as:

δk0

3k0
∝
δφf

φf
= −

αR − φf

φfKd
R

(δpc − δpf) −

(

1

Kφ
R

−
1

Kg
R

)

δpf = −
αR − φf

φfKd
R

(δpc − κfδpf) , (73)

where the main contribution to the effective stress coefficient for fracture permeability is:

κf = αR
(ξ − φf )

(αR − φf)
, (74)

where ξ was defined in (68). We cannot say much more than this in general, but in many

cases it will be true (for clean pores and only a single grain-type present) that the pore bulk

modulus Kφ
R ' Kg

R, i.e., it is well approximated in such cases by the unique solid grain

modulus. When this is true (i.e., for simple granular systems without soft grain coatings,

or fractures with clean surfaces), we can show explicitly that ξ − φf ' 1 − φf/αR. When

this holds true, we find from (73) or (74) that

κf ≡ 1. (75)

Thus, the fracture effective-stress coefficient κf for some simple systems may be approxi-

mately equal to unity, and that means the effect of fluid pressure for opening fractures is

about as strong as it can get.

The general statement (74) can also be rewritten as

κf = 1 +
φfK

d
R

αR − φf

(

1

Kg
R

−
1

Kφ
R

)

, (76)

since ξ − φf = 1− (φf/αR)[αR + (Kd
R/K

φ
R)]. The result (76) shows again that, if Kφ

R ' Kg
R,

then κf ' 1.

Furthermore, when Kφ
R < Kg

R, then κf < 1. When Kφ
R > Kg

R, then κf > 1. Thus, soft

fracture-surface coatings imply the permeability can be increased more easily by increasing

pf , while hard fracture-surface coatings imply the permeability cannot be increased so easily

by increasing pf , since the effective-stress coefficient κf is then less than unity.
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The language being used in the preceding discussion is intended to be intuitive rather

than rigorous. The rigorous interpretation should be based instead on the fact that pore

bulk modulus Kφ
R is a general concept, not limited to coatings on the surfaces of pores.

In particular, if the medium has heterogeneous grains, and the consolidated system is then

fractured, all the types of grains can potentially contribute to the behavior described here,

and the use of the “surface-coating” language is then certainly inappropriate. The formulas

for κf are nevertheless general, and do not depend on these various possible grain arrange-

ment scenarios. Choices of physical interpretations need to be model specific, whereas the

formulas presented are general within the limitations already set in the study (mainly or-

thotropy). While the values of the constants such as Kφ
R are indeed model dependent, the

formulas giving the effective stress coefficients do not change.

7. Summary and Conclusions

The thrust of the paper has focused on applications of layered porous meterials containing

fluids. The first results show how to model individual poroelastic layers consistently and

correctly when these layers are both poroelastic and anisotropic. As long as the anisotropy

is at least as symmetric as orthotropy (i.e., including isotropic, cubic, transversely isotropic

or hexagonal, tetragonal, and orthotropic, but not including less symmetric cases such as

trigonal, monoclinic, and triclinic crystal symmetries) the methods can be applied as long as

one of the axes of symmetry is aligned with the layering direction. (For the less symmetric

cases, these methods can also be generalized, but that work will appear elsewhere.) The

resulting method is very analogous to earlier work by Backus [20], Schoenberg and Muir [21],

and others. The assumed poroelastic boundary conditions were limited to either the drained

(fluid free to move) or the undrained (fluid trapped) conditions, as these are the ones most

easily handled in the proposed framework. These cases are also the only poroelastic cases

that are usually treated analytically.

We then presented a discussion of the permeability variation in such porous layers, and

in particular showed how the fluid permeability itself depends on changes in both confining

and pore pressure, leading to conclusions about poroelastic effective stress. Two main types

of permeability were considered: (1) intergranular or tubular pores, and (2) fractures. We

treated the intergranular/tubular pores as a simple network-style generalization of an earlier
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isotropic analysis of effective stress for permeability of such systems. We followed this

analysis by considering the case of more general anisotropic permeability, and especially

permeability due to oriented fractures. The permeability analysis for this case was actually

more general than the corresponding mechanical analysis for orthotropic systems, since

there are fewer degrees of freedom involved in the permeability analysis. Nevertheless, it

is clear that the two parts of the analysis can easily be brought into sync by limiting the

fracture orientations so that the two systems (mechanical and fluid flow) have at least one

of the symmetry directions of the permeability in common with that of the orthotropic

poromechanical system studied. Indeed the presence of the fractures clearly influences the

poroelastic mechanics, as well as the fluid flow properties, of these systems. So we would

naturally expect a fracture system having orthorhombic mechanical symmetry to result in

similar symmetries for the fluid flow as well as the poromechanical properties. The elastic

parts of this analysis have been studied by many researchers including Sayers and Kachanov

[47], and we will not pursue this aspect of the analysis further here.

One point that should be emphasized however is that, while it is not necessarily easy to

infer directly and correctly the existence of oriented fractures from the observed mechanical

behavior of these systems, it is nevertheless true that — if fractures are known to be present

via the fluid-flow measurements — then it is certain that the mechanical behavior of the

system will depend in predictable ways on the orientations of those fractures through the

drained compliances introduced as the starting point of this paper.
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APPENDIX A: SCHOENBERG-MUIR METHOD

The quasi-static elasticity equations are often written in compliance form using the Voigt

6 × 6 matrix notation as:


























e11

e22

e33

e23

e31

e12



























=



























s11 s12 s13 s14 s15 s16

s21 s22 s23 s24 s25 s26

s31 s32 s33 s34 s35 s36

s41 s42 s43 s44 s45 s46

s51 s52 s53 s54 s55 s56

s61 s62 s63 s64 s65 s66





















































σ11

σ22

σ33

σ23

σ31

σ12



























≡ S



























σ11

σ22

σ33

σ23

σ31

σ12



























, (77)

where S is the symmetric 6 × 6 compliance matrix. The numbers 1,2,3 always indicate

Cartesian axes (say: x,y,z respectively). The z-direction is usually chosen as the layering

direction, which could be oriented any direction in the earth. But, in many geological and

geophysical applications, the 3-axis (or z-axis) is also taken to be the vertical direction,

and we conform to this convention here. The principal stresses are σ11, σ22, σ33, in the

directions 1,2,3, respectively. Similarly, the principal strains are e11, e22, e33. The stresses

σ23, σ31, σ12 are the torsional shear stresses, associated with rotation-based strains around

the 1, 2, or 3 axes, respectively. The corresponding torsional strains are e23, e31, and e12,

where the torsional motion is again a rotational straining motion around the 1, 2, or 3

axes. The compliance matrix is symmetric, so sij = sji, and this fact could have been

used when displaying the matrix. The axis pairs in the subscripts 11, 22, 33, 23, 31, and

12 for stresses and strains, are often labelled (again following the conventions of Voigt) as

1,2,3,4,5,6, respectively.

The important contribution made by Backus [20] (also see Postma [22]) is the observation

that, in a layered system, there are certain strains eij and stresses σij that are necessarily

continuous across boundaries between layers, while the others are not necessarily continuous.

We have been implicitly (and now explicitly by calling this fact out) assuming that the

interfaces between layers are in welded contact, which means practically that the in-plane

strains are always continuous: so if axis 3 (or z) is the symmetry axis (as is most often chosen

for the layering problem), we have e11, e12 = e21, and e22 are all continuous. Similarly, in

welded contact, we must have continuity of all the stresses involving the 3 (or z) direction:

therefore σ33, σ13 = σ31, and σ23 = σ32 must all be continuous.
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Then, following Backus [20] and/or Schoenberg and Muir [21], but — for present purposes

considering instead the compliance (inverse of stiffness) matrix — we have rearranged the

statement of the problem so that:



























e11

e22

e12

e33

e32

e31



























=



























s11 s12 s16 s13 s14 s15

s21 s22 s26 s23 s24 s25

s61 s62 s66 s63 s64 s65

s31 s32 s36 s33 s34 s35

s41 s42 s46 s43 s44 s45

s51 s52 s56 s35 s54 s55





















































σ11

σ22

σ12

σ33

σ32

σ31



























. (78)

Note that this equation, although similar to (77) is quite different because of the rearrange-

ment of the matrix elements and the reordering of the strains and stresses. The chosen

expression in (78) is general for all elastic media. In the main text we restrict our discussion

to orthotropic media. Assuming then that we are using the correct axes as the symme-

try axes in the presentation, all off-diagonal compliances having subscripts 4, 5, or 6 in

(77) vanish identically. The diagonal shear compliances s44, etc., generally do not vanish

however.

Expression of (78) can be made more compact by writing it as:





ET

EN



 =





STT STN

SNT SNN









ΠT

ΠN



 , (79)

where

STT ≡











s11 s12 s16

s21 s22 s26

s61 s62 s66











=











s11 s12

s21 s22

s66











, (80)

SNN ≡











s33 s34 s35

s43 s44 s45

s53 s54 s55











=











s33

s44

s55











, (81)

and

SNT ≡











s31 s32 s36

s41 s42 s46

s51 s52 s56











=











s31 s32

0

0











, (82)
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with STN = ST
NT (with T superscript indicating the matrix transpose). Also we have

ET ≡











e11

e22

e12











, and EN ≡











e33

e32

e31











, (83)

and

ΠT ≡











σ11

σ22

σ12











, and ΠN ≡











σ33

σ32

σ31











. (84)

It is important to distinguish between “slow” and “fast” variables in this analysis, since

this distinction makes it clear when and how averaging should be performed. The “slow”

variables, i.e., those that are continuous across the (here assumed horizontal) boundaries

and also essentially constant for (the present) quasi-static applications, are those contained

in ET and ΠN . So, after averaging 〈·〉 along the layering direction, we should have:





ET

〈EN〉



 =





S∗

TT S∗

TN

S∗

NT S∗

NN









〈ΠT 〉

ΠN



 , (85)

where S∗

TN = (S∗

NT )T , and all the starred quantities are the nontrivial average compliances

we seek. They are defined in terms of layer-average quantities where the symbol 〈·〉 indicates

a simple volume average of all the layers. By this notation we mean that a quantity Q that

takes on different values in different layers has the layer average 〈Q〉 ≡ xaQa+xbQb+. . .. The

definition is general and applies to an arbitrary number of different layers where the fraction

of the total volume occupied by layer a is xa, etc. Total fractional volume is xa+xb +. . . ≡ 1.

Of the three final results, the two easiest ones to compute are:

S∗

TT =
〈

S−1
TT

〉

−1
, (86)

S∗

TN = (S∗

NT )T =
〈

S−1
TT

〉

−1 〈
S−1

TTSTN

〉

= S∗

TT

〈

S−1
TTSTN

〉

, (87)

where 〈·〉 is the layer average of some quantity. These results follow from this equation:

〈

S−1
TT

〉

ET = 〈ΠT 〉 +
〈

S−1
TTSTN

〉

ΠN , (88)

which followed immediately from the formula

ET = STT ΠT + STNΠN , (89)
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multiplying through first by the inverse of STT , and then performing the layer average.

[Note that STT and SNN are both normally square and invertible matrices, whereas for most

systems the off-diagonal matrix SNT is not invertible. But, this fact does not cause problems

in the analysis, because we do not need to invert SNT in order to solve the averaging problem

at hand.] These averages are meaningful because when the matrix equations presented are

multiplied out, we never have any cross products of two quantities that are both unknown.

[From this view point, Eq. (88) is an equation for 〈ΠT 〉, just as the unaveraged version of (88)

is an equation for ΠT in each layer.] So simple layer averaging suffices (thereby providing

the main motivation and value of this method). Multiplying (88) through by
〈

S−1
TT

〉

−1
then

gives the results (86) and (87).

The remaining result is more tedious to compute, since it requires several intermediate

steps in its derivation. But the final result is given by the formula:

S∗

NN = 〈SNN 〉 −
〈

SNT S−1
TTSTN

〉

+ S∗

NT (S∗

TT )−1
S∗

TN . (90)

To provide some clues to the derivation, again consider:

ΠT = S−1
TTET − S−1

TTSTNΠN , (91)

which is just a rearrangement of (89). The point is that 〈ΠT 〉 is then given immediately in

terms of the quantities ET and ΠN , which are both “slow” variables and therefore essentially

constant. An intermediate result that helps to explain the form of this relation (90) is:

S∗

NT (S∗

TT )−1
S∗

TN =
〈

SNTS−1
TT

〉 〈

S−1
TT

〉

−1 〈
S−1

TT STN

〉

=
〈

SNT S−1
TT

〉

S∗

TN . (92)

Substituting for ΠT from (91) into

EN = SNT ΠT + SNNΠN , (93)

and then averaging, we find that

〈EN 〉 =
〈

SNTS−1
TT

〉

ET +
〈

SNN − SNTS−1
TTSTN

〉

ΠN . (94)

This expression completely determines all the remaining coefficients. After some more alge-

bra, the formula giving the final result is:

〈EN 〉 =
〈

SNT S−1
TT

〉 〈

S−1
TT

〉

−1 [
〈ΠT 〉 +

〈

S−1
TTSTN

〉

ΠN

]

+
[

〈SNN 〉 −
〈

SNT S−1
TTSTN

〉]

ΠN

= S∗

NT 〈ΠT 〉 + S∗

NNΠN .

(95)
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Equation (95) contains all the information needed to produce the third and final result found

in (90).

Another check on these formulas is to compare them directly to those found by Schoenberg

and Muir [21]. However, direct comparison is not so easy, since their analysis focuses on

the stiffness version of the equations. Our treatment makes use of the compliance version

instead. Since the symmetries of the two forms of the equations are nevertheless nearly

identical, cross-checks and comparisons will be left to the motivated reader.

APPENDIX B: POROELASTIC FORMULAS FOR UNDRAINED BOUNDARY

CONDITIONS IN LAYERED SYSTEMS

Using equation (29) as our starting point, we now consider the boundary condition ζ = 0

for undrained layers (meaning that the fluid is actually physically trapped in the layer, or the

physical process is so fast – such as high frequency wave propagation – that the fluid inertia

prevents rapid movement of fluid particles over non-infinitesimal distances). Depending on

the application scenario, this boundary condition might be applied to all layers, or only to

just one or a few layers at a time.

We consider first a single layer having the undrained boundary condition. For this case,

the condition from Eq. (29) becomes

0 = gT
12ΠT + γpf + gT

3 ΠN , (96)

within the layer. Next, the equation can be solved to express the fluid pressure pf strain

dependence in each undrained layer (the layer labels are suppressed here for simplicity) as

pf = −
1

γ

(

gT
12ΠT + gT

3 ΠN

)

. (97)

Then, substituting this condition back into the expressions for ET and EN from (29), we

find that




ET

EN



 =





STT − γ−1g12g
T
12 STN − γ−1g12g

T
3

SNT − γ−1g3g
T
12 SNN − γ−1g3g

T
3









ΠT

ΠN



 . (98)

To understand the significance of (98), we next find it is straightforward to show that each

of these composite matrix elements corresponds exactly to the undrained version of the

Schoenberg-Muir matrices. So that,

Su
TT ≡ STT − γ−1g12g

T
12, (99)
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Su
NN ≡ SNN − γ−1g3g

T
3 , (100)

and

Su
TN ≡ STN − γ−1g12g

T
3 = (Su

NT )T . (101)

All these expressions follow directly from the form of (98).

Thus, we arrive methodically at a result that might have been anticipated, which is that

the undrained layers respond according to the usual undrained conditions in each individual

layer. The part of the result that is new concerns the forms of the undrained matrices Su
TT ,

Su
NT = (Su

TN)T , and Su
NN , now in the modified Schoenberg-Muir formalism.

This analogy can be pushed somewhat further to include the effective values for the

undrained moduli Su∗
TT , Su∗

NT = (Su∗
TN)T , and Su∗

NN , with formulas entirely analogous to (86),

(87), and (90), and undrained constants replacing drained constants everywhere. Since there

is nothing subtle about this step, we leave these details again to the interested reader.

APPENDIX C: EFFECTIVE STRESS FOR PERMEABILITY OF ISOTROPIC

POROELASTIC SYSTEMS WITH GRANULAR STRUCTURE AND/OR TUBU-

LAR PORES

Berryman [24] shows that the effective stress response of fluid permeability k in isotropic

poroelastic systems, having either granular structure or tubular pores, is given by:

δk

k
= −

[

2

3
+ n

(

αR − φ

φ

)]

1

Kd
R

(δpc − κδpf) , (102)

where the pertinent effective stress coefficient is

κ = 1 −
2φ(1 − αR)

2φ+ 3n(αR − φ)
. (103)

The numerical constant n is model dependent, but often has a value n ' 4. The porosity

is φ. The poroelastic factor αR = 1 − Kd
R/K

g
R is the usual Biot or Biot-Willis coefficient

[2]. The subscripts R are redundant in these expressions, since Reuss and Voigt averages

are the same for isotropic systems; but we show them here nevertheless to emphasize their

connection to results in the anisotropic problem. Also note that (αR − φ) ≥ 0 in general.

The result (103) follows from the commonly used formula for isotropic permeability in this

class of systems in terms of porosity φ, specific surface area s, and formation factor F , which
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is given by

k '
φ2

2s2F
, (104)

and which formula is consistent with the work of many researchers, including Paterson [25]

and Walsh and Brace [26]. The formation factor is often estimated in the form F ' φ−m, in

which case the constant n ' 2 +m. Since k has the dimensions of length squared, it scales

with volume V like V 2/3.

A useful approximation [30-35] to Kd
R for isotropic systems composed of a single isotropic

grain-type having bulk modulus Kg
R and shear modulus µg is:

Kd
R '

(1 − φ)Kg
R

1 + 3Kg
Rφ/4µ

g
'

(1 − φ)Kg
R

1 + cφ
, (105)

where the dimensionless factor c ' 3Kg
R/4µ

g is sometimes called a consolidation parameter;

in the absence of definitive information concerning elastic frame constants, c can also be

used as a fitting parameter. A typical range of values for this parameter for sandstones is

2 ≤ c ≤ 20. Lower values of c correspond to stronger states of consolidation, while higher

values correspond to weaker states of consolidation.

Substituting this expression (105) into the formula for the effective stress coefficient κ,

we find:

κ ' 1 −
1 − φ

1 + c[(3n/2)(1 − φ) + φ]
. (106)
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