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Abstract

The mechanics of vertically layered porous media has some similarities to and some differences
from the more typical layered analysis for purely elastic media. Assuming welded solid contact at
the solid-solid interfaces implies the usual continuity conditions, which are continuity of the vertical
(layering direction) stress components and the horizontal strain components . These conditions are
valid for both elastic and poroelastic media. Differences arise through the conditions for the pore
pressure and the increment of fluid content in the context of fluid-saturated porous media. The
two distinct conditions most often considered between any pair of contiguous layers are: (1) an
undrained fluid condition at the interface, meaning that the increment of fluid content is zero (i.e.,
d¢ = 0), or (2) fluid pressure continuity at the interface, implying that the change in fluid pressure
is zero across the interface (i.e., dpy = 0). Depending on the types of measurements being made on
the system and the pertinent boundary conditions for these measurements, either (or neither) of
these two conditions might be directly pertinent. But these conditions are sufficient nevertheless to
be used as thought experiments to determine the expected values of all the poroelastic coeflicients.
For quasi-static mechanical changes over long time periods, we expect drained conditions to hold,
so the pressure must then be continuous. For high frequency wave propagation, the pore-fluid
typically acts as if it were undrained (or very nearly so), with vanishing of the fluid increment at
the boundaries being appropriate. Poroelastic analysis of both these end-member cases is discussed,
and the general equations for a variety of applications to heterogeneous porous media are developed.
In particular, effective stress for the fluid permeability of such poroelastic systems is considered;
fluid permeabilities characteristic of granular media or tubular pore shapes are treated in some

detail, as are permeabilities of some of the simpler types of fractured materials.
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1. Introduction

Studies of elastic systems containing holes, fractures, or pores possibly filled with fluids
typically employ a single step of upscaling, considering the otherwise homogeneous solid and
fluid constituents’ properties, volume fractions, and spatial arrangements, and subsequently
deducing an estimate of the likely macroscopic behavior of such systems [1-8]. In recent
work [9], the author has shown in some detail how the poroelastic coefficients are related to
the microstructural constants of the solid constituents when the overall behavior varies from
isotropic to orthotropic. The focus of the present effort is on layered poroelastic materials,
which clearly involves a second upscaling step needed to homogenize the macroscale system.
The resulting theory again is anisotropic, in part due to the anisotropy of individual layers,
and in part due to the layering procedure itself. The scale of interaction of the probes used
on such media is important, and can be either very large scale (as might happen with low
frequency seismic waves), or very fast (as might happen with ultrasonic waves). In this
study, each layer is assumed to satisfy the assumptions of the class of problems considered
in reference [9], and therefore the system is heterogeneous at the poroelastic mesoscale, as
we move from layer to layer. Then, the layer-averaging step takes us to a macroscale level
of analysis that simultaneously includes (via this effective-medium-style averaging) many of
these poroelastic layers whose local properties may differ substantially from one to another.

One main issue addressed here concerns how the interface boundary conditions between
anisotropic porous layers should be treated. For very low frequency (say quasi-static) anal-
ysis, this issue is clear since then the boundary conditions must be drained conditions and
therefore the fluid pressure is continuous across the boundary. However, for high frequency
wave propagation, it is expected to be more appropriate to treat the system as locally
undrained (pore-fluid is trapped), since the pressure of the pore-fluid does not have time
to equilibrate with the outside world via the drainage mechanism, and also since this can
take much longer than is appropriate to these quasi-static analyses. The most accurate way
to treat these situations in general is to consider the variables to be frequency dependent
and complex (therefore viscoelastic and including dissipation mechanisms). This approach
has been taken for example by Pride et al. [10-12] for some simple mixtures of isotropic
poroelastic materials. But these problems become harder for the anisotropic case because —

although there were simple exact results for the two-isotropic-component case — such simple



results are not generally available for the anisotropic problems. And, more importantly, the
interest in layered media is not just for two-component examples, but ultimately for multi-
component layered media. So it is necessary for many applications of current practical
interest to consider these cases separately, as is being done here.

This analysis is restricted to anisotropic systems composed of locally anisotropic poroe-
lastic layers. The nature of the grains themselves composing the solid frame material of the
porous medium will not be a focus of the present paper. This issue does matter too, but
(as will be shown) it is most important for determining the relationship between the grain
constants and the off-diagonal coefficients that are called the (’s in this formulation. These
issues have been fully addressed in an earlier contribution of the author [9], and will therefore
not be treated again in such detail here. Our focus instead is on heterogeneous poroelastic

media when the heterogeneity is well-represented via layered porous-medium modeling.

2. Basics of Anisotropic Poroelasticity
2.1 Orthotropic poroelasticity

If the overall porous medium is anisotropic — either due to some preferential alignment
of the constituent particles or due to externally imposed stress (such as a gravity field and
weight of overburden, for example) — we consider the orthorhombic anisotropic version of

the poroelastic equations:
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(Note: Throughout most of the paper, the §’s that are sometimes used to emphasize small-
ness of the stresses and strains will be suppressed, as this extra notation is truly redundant
when they are all being treated as small (and therefore resulting in linear effects) as we do
here, for small deviations from an initial rest state. Nevertheless, we will occasionally revert
to this notation when it seems important to emphasize smallness of certain variables, and/or
linearity of the system being studied.)

The e;; (no summation over repeated indices) are strains in the ¢ = 1,2, 3 directions. The
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oy are the corresponding stresses, assumed to be positive in tension. The fluid pressure is
ps, which is positive in compression. The increment of fluid content is ¢, and is often defined
via:

¢

(V) = 8Vy _ [(8Vy OV
M o (- ), )

where V' = Vy/¢ ~ Vi /¢ is the pertinent local volume (within a layer in present circum-
stances) of the initially fully fluid-saturated porous layer at the first instant of consideration,
Vs = ¢V is the corresponding pore volume, with ¢ being the fluid-saturated porosity of the
same volume. V} is the volume occupied by the pore-fluid, so that V; = ¢V before any
new deformations begin. (As mentioned already, §’s indicate small changes in the quantities
immediately following them.) For “drained” systems, there would ideally be a reservoir of
the same fluid just outside the volume V' that can either supply more fluid or absorb any
excreted fluid as needed during the nonstationary phase of the poroelastic process. The
amount of pore fluid (i.e., the number of fluid molecules) can therefore either increase or
decrease from that of the initial amount of pore fluid; at the same time, the pore volume
can also be changing, but — in general — not necessarily at exactly the same rate as the
pore fluid itself. The one exception to these statements is when the surface pores of the
layer volume V' are sealed, in which case the layer is “undrained” and ( = 0, identically. In
such circumstances, it is still possible that both V; and V,, = ¢V are changing; but, because

of the imposed undrained boundary conditions, they are necessarily changing at the same

rate. The drained compliances are s;; = sfj, with or without the d superscript.
Undrained compliances (not yet shown) are symbolized by si.
Coeflicients

Bi = si1 + Sia + Siz — 1/3K1%7 (3)

where KY, is again the Reuss average modulus of the grains. The drained Reuss average

bulk modulus is defined by
1 d
KL~ 2 s 4)

For the Reuss average [13] undrained bulk modulus K}, we have drained compliances re-
placed by undrained compliances in a formula analogous to (4). A similar definition of the

effective grain modulus K7 is:

1
KT~ > sk (5)



with grain compliances replacing drained compliances as discussed earlier by Berryman [9].
The alternative Voigt [14] average (also see [15]) of the stiffnesses plays no role in the present
work. And, finally, v = >, ,368:;/BK 4 where B is the second Skempton [16] coefficient,
which will be defined carefully later.

The shear terms due to twisting motions (i.e., strains esg, €31, €12 and stresses oa3, 031, 012)
are excluded from this poroelastic discussion since they typically do not couple to the modes
of interest for anisotropic systems having orthotropic symmetry, or any more symmetric
system such as those being either transversely isotropic (i.e., hexagonal) or isotropic. We
have also assumed that we know the true axes of symmetry, and make use of them in
our formulation of the problem. Note that the s;;’s are the elements of the compliance
matrix S and are all independent of the fluid, and therefore would be the same if the
medium were treated as elastic (i.e., by ignoring the fluid pressure, or assuming that the
fluid saturant is air — or vacuum). In keeping with the earlier discussions, we typically
call these compliances the drained compliances and the corresponding matrix the drained
compliance matrix S¢. The fluids do not contribute to the stored mechanical energy if they
are free to drain into a surrounding reservoir containing the same type of fluid. In contrast,
the undrained compliance matrix S* presupposes that the fluid is trapped (unable to drain
from the system into an adjacent reservoir) and therefore contributes in a significant and
measurable way to the compliance and stiffness (C* = [S¥]™"), as well as to the stored
mechanical energy of the undrained system.

Although the significance of the formula is somewhat different now, we find again that

1 1 R
= — = — = — 6
B+ B2 + 3 Ki KT Ke (6)

if we also define (as we did for the isotropic case) a Reuss effective stress coefficient:

ar=1-K%/K%. (7)
Furthermore, we have
Bi+ P2+ P  ar 1 1
= - = — - 8
7 B Kl T\ K, K% (8)

since we have the rigorous result in this notation [3,16] that Skempton’s B coefficient is
given by
1 — Kg/Kp _ ar/Kj

b 1 - K&/KS  ap/Ké+o(1/Kp—1/K%)
r/Mr  ap/Ki+¢(1/Ky —1/Kp)

(9)
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Note that both (8) and (9) contain dependence on the distinct pore bulk modulus K§, that
comes into play when the pores are heterogeneous [3|, regardless of whether the system is
isotropic or anisotropic. We emphasize that all these formulas are rigorous statements based
on the earlier anisotropic analyses. The appearance of both the Reuss average quantities
K¢ and ap is not an approximation, but merely a choice of notation made to provide both

emphasis and some additional clarity.

2.2 Determining off-diagonal coefficients [;

We will now provide several results for the (3; coefficients, and then follow the results with
a general proof of their correctness.

In many useful and important cases, the coefficients (3; are determined by

d d d
Bi = sj + Sig + Sz —

. 1
37, (10)

Again, KY, is the Reuss average of the grain modulus, since the local grain modulus is not
necessarily assumed uniform here as discussed previously. Equation (10) holds as written
for homogeneous grains, such that K% = K9Y.

It also holds true for the case when K7, is determined instead [19] by an average over

isotropic grains such that

1 U,
K—% Z K—m’ (11)

m=1,..,n
where v, is the volume fraction (out of all the solid material present, so that ) v, =
1). However, when the grains themselves are anisotropic, we need to allow again for this
possibility, and this can be accomplished by defining three directional grain bulk moduli
determined by:

1
g7 = Sh b sh sl = st sy s (12)

for i = 1,2,3. The second equality follows because the compliance matrix is always symmet-
ric. We call these quantities in (12) the “partial grain-compliance sums,” and the F? are
the directional grain bulk moduli. Note that the factors of three have again been correctly
accounted for because
1 1
Z = 13)
7= o (
i=1,2,3 3K Kk

in agreement with (5).



We can further simplify and symmetrize our notation somewhat by introducing a similar
concept for the drained constants, so that

1
N = sh + s + sy = 81, + 55 + 55, (14)

for 1 = 1,2,3. Then, the formula for (10) is replaced by

1 1
’ 3K, 3K} )

2

If the three contributions represented by (12) for ¢ = 1,2, 3 happen to be equal, then clearly
each equals one-third of the sum (13).

The preceding results are for perfectly aligned grains. If the grains are instead perfectly
randomly oriented, then it is clear that the formulas in (10) hold as before, but now K% is
determined instead by (5).

All of these statements about the (3;’s are easily proven by considering the simple exper-
imental situation when oy = 099 = 033 = —p. = —py. Because then, from (1), we have (no

i summation convention):

e = 3%19 +0ipr) = 5+t )by = (16)
in the most general of the three cases discussed, and holding true for each value of i = 1,2, 3.
This result is a statement about the strain e; that would be observed in this situation, as
it must be the same if these anisotropic (or inhomogeneous) grains were immersed in the
fluid, while measurements were taken of the strains observed in each of the three directions
t = 1,2,3, during variations of the fluid pressure p;. We may consider this proof to be a
thought experiment for determining these coefficients, in the same spirit as those proposed

originally by Biot and Willis [2,17] for the isotropic and homogeneous case.

2.3 The j3; coefficients and effective stress

Making use of our previous definitions, it is easy to see that the coefficients 3; are closely
related to a different sort of effective stress coefficient, for the individual principal strain
coefficients:

€ii = —Td(pc - Dz'pf>> for 1=1,2,3, (17)



where
_ K
D;=3Kp=1- = o i=123, (18)

2

and —p. = 011 = 099 = 033 in the case of uniform applied confining pressure p.. Then

clearly, the D;’s are completely analogous to the usual Biot (or Biot-Willis [2,17]) coefficient

ar =1— K%/KY% commonly defined for isotropic poroelasticity.

2.4 Coefficient v

The relationship of coefficient + to the other coefficients is easily established because we
have already discussed the main issue, which involves determining the role of the various

other constants contained in Skempton’s coefficient B [16]. This result is
11 11 1o1\]"
B=(——— ) (= - = . 19
(%7 71) [(Kz 17) +¢<Kf m)] (19)
Again, from (1), we find that

—(=0=— (81 + By + B3) 0. — Yy, (20)

for undrained boundary conditions. Thus, we find that

ﬁszﬁl+6Q+63, (21)
Pe Y
where p. = —o, is the confining pressure. Therefore, the scalar coefficient v is determined

immediately and given by

_514"524‘53_063/}(%_ d 1 1
V= 5 =5 —QR/KR+¢<E_K—£)' (22)

Alternatively, we could say that
B — O‘_Rd’
K%

which gives a definition of Skempton B in terms of other constants.

(23)

We have now determined the physical /mechanical significance of all the coefficients in the
poroelastic matrix (1). These results are as general as possible without considering poroe-
lastic symmetries that have less than orthotropic symmetry, while also taking advantage
of our assumption that we do typically know the three directions of the principal axes of

symmetry.



2.5 Inverting poroelastic compliance

Being in compliance form, the matrix in (1) has extremely simple poroelastic behavior
in the sense that all the fluid mechanical effects appear only in the single coefficient v. We
can simplify the notation a little more by lumping some coefficients together, combining the
3 x 3 submatrix in the upper left corner of the matrix in (1) as S, and defining the column

vector b by
b" = (B, B2, Bs). (24)

The resulting 4 x 4 matrix and its inverse are now related by:
-1
S —b _ A q | (25)
—b" q’ 2
where the elements of the inverse matrix can be shown to be written in terms of drained stiff-
ness matrix C* = C = S~! by introducing three components: (a) scalar z = [y — b Cb| -
(b) column vector q = zCb, and (¢) undrained 3 x 3 stiffness matrix (i.e., the pertinent
one connecting the principal strains to principal stresses) is given by A = C + 2Cbb”C =
Cl+ 27 1qq” = C¥, since C?is drained stiffness and A = C" is clearly undrained stiffness by
construction. This result is the same as that of Gassmann [1] for anisotropic porous media.
Note the important fact that the observed decoupling of the fluid effects occurs only in
the compliance form (1) of the equations, and never in the stiffness (inverse) form for the
poroelasticity equations.

From these results, it is not hard to show that
S? = S* 4+~ 'bb’. (26)

This result emphasizes the fact that the drained compliance matrix can be found directly
from knowledge of the inverse of undrained stiffness, and the still unknown, but sometimes
relatively easy to estimate, values of v, and the three distinct orthotropic [; coefficients, for
1=1,2,3.

There are clearly many measurements required to determine all these various poroelastic
coefficients. Furthermore, the strategy for finding the coefficients depends on available data
sets, and whether the porous media of interest are constructed from a homogeneous or

heterogeneous set of solid materials, and whether the individual grains are isotropic or



anisotropic. It also makes some difference if the pores are approximately round (for granular
media) or flat (for fractured media). All these issues have been discussed previously at some
length [9], and this discussion will not be repeated here.

The remainder of the paper will concentrate on making use of these general poroelastic
equations in situations where at least two and possibly many distinct layers of porous ma-
terials (individually obeying the equations of this type) are under stress (either quasi-static
or dynamic as would occur in a wave propagation scenario). As we shall see, the layered
poroelastic equations behave somewhat differently from layered elastic equations because
there are two distinct additional pore-fluid boundary conditions (drained and undrained)

that can occur depending on the details of the excitation itself.

3. Layer-Averaging Results for All Drained or All Undrained Boundaries

The two most common boundary conditions to consider in poroelastic media are the
drained and undrained conditions. Drained conditions imply that the fluid pressure change
is zero, while the increment of fluid content in the individual layers may be considered
arbitrary. Of course, the total amount of fluid present needs to be properly conserved in
the analysis we present, but the usual idea for drained conditions is that the poroelastic
system is immersed in an infinite reservoir of like-fluid so that pore fluid is free to move in
and out of the region of interest. For our present considerations, this situation implies that
the layer increments ¢ can take arbitrary (but typically small) values, but the fluid pressure
is constrained to be a constant value p; everywhere. So changes in p; always vanish for
drained conditions.

Undrained boundary conditions place the hard constraint on the fluid increment (, re-
quiring no flow at the boundaries, so ( = 0 at all boundaries. These conditions ensure that
the fluid pressure py does change, since as the boundaries move in or out the pressure on
the confined fluid is increasing or decreasing.

Both of these conditions must be approximations to conditions in a generally realistic
earth model. We can easily imagine situations where some boundaries between layers (the
vertical direction) are plugged, so undrained boundary conditions ¢, = 0 might be correct
while neighboring layers (horizontal direction) might be open to fluid flow (so perhaps ¢,
and/or ¢, # 0 at the z and y boundaries). We will neverthless limit the analysis to that for
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either all drained conditions or all undrained conditions. All undrained conditions are also
appropriate, as mentioned previously, regardless of the physical boundary conditions if the
probe changing the physical variables is a passing high frequency acoustic or seismic wave

train or pulse.

3.1 General analysis for layered poroelastic systems

We will now formulate the layered porelastic earth problem in a way so that both of
these standard boundary conditions can be imposed, as needed in any particular modeling
problem.

We assume throughout the remainder of the paper that the porous layers are stacked
vertically (along the 3- or z-axis), and for this geometry it is easy to see that the three
horizontal strains ej;, es, and e;o must be continuous if the layers are in solid-welded
contact. Furthermore, the vertical stress o33, and rotational stresses involving the vertical
direction 013 and 093 must also be continuous. These conditions follow from an assumption
of welded solid-solid contact between layers. If contact is not welded, then the system can
have much more complicated behaviors than we are considering here.

Appendix A summarizes the Backus [20] and/or Schoenberg-Muir [21] approach to elastic
layer averaging. The method we present here is a slight generalization of this approach,
taking the presence of the pore fluid into account. For the drained situation, the influence of
the fluid on the system mechanics is minimal (as we shall see). But we should nevertheless
have this result available to compare it with the more interesting case of the undrained
layers.

Although the shear moduli normally associated with the twisting shear components es3,
es1, and ejg usually do not interact with the pore-fluid itself in systems as symmetric or
more symmetric than orthotropic, we nevertheless need to carry these terms along in the
poroelastic formulation for layered systems because of possible boundary effects due to
welded contact at interfaces. To accomplish this goal, we will generalize the form of equation

(79) from Appendix A. In compliance form, the equations will relate the strains

€11 €33
ET = €29 s and EN = €32 s (27)
€12 €31
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and fluid increment ( to the stresses

011 033
HT = 099 s and HN = 039 s (28)
012 031

and the fluid pressure change py.

The required general relationship is:

Er Srr —gi2 Stn Iy
—C|=1-8h » —&f || -»|: (29)
Ex Snr —83 Snn Iy

where, for example, in the orthotropic media considered here we have

S11 S12 S16 511 S12

Str = | so1 S22 Sa6 | = | S21 522 ) (30)
S61 S62 S66 566
§33 S34 S35 533

SNN = | 543 Sa4 S5 | = S44 , (31)
S53 S54 S55 555

and

S31 S32 S36 531 532

SNT = S41 S42 S46 - 0 5 (32)
S51 S52 S56 0

with Syy = S, (the T superscript indicates the matrix transpose). Here all these ex-
pressions for elastic compliance refer specifically to drained compliances s;; = sgj, for all
1,7 = 1,...,6 within each poroelastic anisotropic layer.

All the poroelastic contributions to (29) are determined by 7, g12, and g3. The scalar
within the 7 x 7 matrix in (29) was defined earlier in (8), and is the only term in the 7 x 7
matrix that includes fluid effects directly through fluid bulk modulus K;. The remaining

pair of vectors contained within the 7 x 7 matrix in (29) is defined by:

g1T2 = (61, 52, 0) (33)
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and
gg = (637 07 O)? (34)

where the [3’s were defined previously following (1).

We now consider two examples of special uses of the general equation (29) for different
choices of boundary conditions. These two physical circumstances being considered are
distinct end-members. For relatively high-frequency wave propagation, it is appropriate to
consider that the fluids do not have time to equilibrate during the time of wave passage.
Therefore fluid pressures can be different in distinct layers. The fluid particles do not have
time to move very far during wave passage time, so the fluid increment is also ( = 0
essentially everywhere. This situation is called the “undrained” condition. An alternative
condition considers the fully drained condition, in which the fluid particles have as much time
as they need to achieve fluid-pressure equilibration, so that p; = constant at longer times.
These two limiting situations may be connected physically via Darcy’s law, which provides
the mechanism to move fluid particles, and ultimately to guarantee that the fluid pressure
reaches an equilibrium state. Bringing Darcy’s law actively into play in the equations would
result in Biot-style equations which are beyond our current quasi-static scope. So we limit

further discussion to these end-member conditions.

3.2 Drained scenario (py = 0)

Now, recall that, in the drained scenario, changes in pore-fluid pressure are assumed to
be zero (or at least negligibly small), so py = 0 in these equations. Accounting for this
condition, the results should (and do) recover the Backus [20] and Schoenberg-Muir [21]
results for the elastic parts of the system (found in Appendix A) exactly. Also, we find the

additional (expected) result for the poroelastic case that the average fluid increment is:

(Q) = (Bro11) + (B2022) + (B3) 033, (35)

if o33 is nearly constant. The result shown in (35) is easy to reconcile with the definitions of
the (’s, and the meaning of averaging operator (-) across all layers. When p; vanishes ev-
erywhere, the final results for the averaging and the various stresses and strains are identical
to the results in Appendix A. For the drained scenario, the only difference is the addition

of equation (35).
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3.3 Undrained scenario ({ =0)

Now consider that the fluid pressure might vary across the stack of layers (as should be
expected to happen either because of hydrostatic overburden, or due to fluid injection or
extraction at certain chosen depths). Then we can treat this case as well, assuming undrained
circumstances, by averaging the fluid pressure itself via (pf). For this undrained scenario,
the fluid pressure in each undrained layer is free to vary compared to all the others; so there
is no constancy of py across layers. The averaging condition resulting from the formulation

for such a reservoir according to (29) is:

{py) =— <% (Bron + 52022)> + <63;733> : (36)

Proper choice of the range of depth for averaging will clearly depend on the details of each

reservoir, and the type of physical probe being used. For example, either quarter- or half-
wavelength for seismic waves (otherwise the average over a full cycle is always zero for wave
propagation problems), when used as the probe, would be typical choices of the averaging
depth in this case.

While the preceding part of the averaging for undrained boundary conditions was straight-
forward, we still need to check what happens when averaging the remainder of the equations.
We show the work in Appendix B leading to the general undrained result (98), and just quote

the final result here — being valid for each undrained layer in the overall system:

Er _ St St Iy ’ (37)
Ex Skr Siv J \ 1l
where
511 S12
St = | sb; s ’ (38)
Se6
533
NN = S44 , (39)
555
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and
531 539
NT = 0 ; (40)
0

while S%\ = (S%,)". Once these definitions are used for the undrained matrices, the layer
analysis for the system follows exactly the same steps as in Appendix A. Note that we
arrived at these results in another (step-by-step) way in Appendix B independently in order
to verify that this is the right answer for the undrained problem. Fortunately, the right

answer is also the same as the intuitive answer.

4. Application to Effective Stress for Fluid Permeability of Granular Systems or
Tubular Pores

Following Reference [24], Darcy’s constant k for the fluid permeability has dimensions of
length squared, so a uniform shrinking or swelling of an isotropic porous medium changes the
value of the isotropic permeability by a factor proportional to V%/3 (volume to the two-thirds
power, since volume has dimensions of length cubed). For anisotropic permeability of the
orthotropic porous media under consideration, we need to make some assumptions about
the strain dependence of the principal permeability components in three dimensions: ki1,
koo, and kss. First we assume that these three components are in fact the eigenvalues of the
permeability tensor, and that the axes are aligned with axes of the orthotropic system itself.
These assumptions can be modified as needed, but for first considerations, they should be
adequate for our purposes.

Many models of fluid permeability are in use, including those in References [24-27]. Here
we will emphasize the formula (together with analogous ones for directions 2 and 3):
o

=L 41
22F, (41)

kll

where ¢ is an apparent (averaged over the volume) porosity as seen in the x;-direction. That
is to say, the porous surface area per unit surface area may be found by viewing a cross-
section of the material that is orthogonal to the x;-direction. Similarly, s; is the apparent
surface area per unit volume (also averaged over the volume), again for pores when viewed

in cross sections. Both of these values can be determined to high accuracy by the use of
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digital image processing methods [28] on cross-sections of rocks. The remaining term is
the pertinent formation factor Fj for electrial conduction in brine-filled porous media. This
value is not so easy to determine from images, but can nevertheless be estimated using one

of the well-known forms of Archie’s law [29], such as
F = ¢1_m17 (42>

where m; is an appropriate Archie cementation exponent associated with electrical current
conduction in the z;-direction. Typical values of exponent m; [24] lie in the range 1 < m; <
2.

If the composite material model we wish to model contains several significantly different
types of poroelastic materials, then we may also need to consider additional formation
factors associated with the composite structure itself, as was done in Reference [24] for two-
component porous media. We will ignore this issue for now, as analysis of the layer structure
under consideration suggests that, for many cases of interest, the pertinent distributional
formation factors could be close unity. If this is not true in a particular application, then
the methods developed in [28] can be generalized fairly easily to account for such additional
complications. For now, we assume these particular effects are not of primary importance.

There is also potential for mismatching/offsetting of pores at the boundaries between
layers [46], and these effects can further reduce the effective overall permeabilities of these
systems. However, such effects are fairly easy to take into account whenever it is known
that they are present, so we shall not treat such issues specifically here.

Now it is clear that the pertinent porosities and formation factors (also closely related to
the same porosity values) are unitless measures of areas perpendicular to the three main flow
directions. That means the strains that need to be considered are also the ones perpendicular

to those directions. So for example, we must have

¢2+m1

kll ~ W (]_ + 622) (]. + 633) s
(1 +e33) (1+en), (43)

¢2+m2
20512
¢2+M3

k?33 ~ IS (]. + 611) (]. + 622) s

2[s35 ]2

]{322 ~

for the diagonal permeabilities of such porous systems. Motivation for such statements comes
from an equivalent result for the orthotropic/anisotropic system of the form s=2 oc V3 for

the specific surface area dependence on volume in the isotropic case [24].
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Our permeability result then takes the form:

0k1

) )
_— = (2+m1)—¢+(5622+5633 = (2+m1)—¢+56—5611. (44)
kll QZS ¢

The d0’s are shown explicitly to emphasize that these are all presumed to be relatively small
changes in each of these respective quantities. The second equality follows from the definition
of total strain e = eq; + e + €33, and provides emphasis to a general symmetry of the
dependencies: the permeability changes depend explicitly on strains in those directions
perpendicular to the flow. So changes in ky; depend on the total strain minus the strain in
the x;-direction of flow, and analogously for the other two permeability eigenvalues.

The author has shown in earlier work [24] that the porosity for an isotropic system satisfies

the following effective stress rule:

o9 (OéR — ¢)

- = Ope — X0ps), 45

where the effective stress coefficient is x is given by

w—¢
= 46
* (OéR - ¢) e (46)
where, for isotropic systems, we have:

1 K,
== - —. 47
D=5 R (47)

Again, B is Skempton’s second coefficient from (19), and K, = ¢K%/ap is the bulk modulus
of pore volume.
Another result for the effective stress coefficient for these types of porous materials is

discussed in Appendix C.

5. Quasi-statics and Layer-Averaged Permeability

Our treatment has purposely concentrated on the parts of the analysis that are quasi-
static. This choice is not as limiting as it might seem at first sight, because it includes both
drained and undrained behavior, and also higher frequency wave propagation problems that
can be treated as undrained whenever we want to analyze only the wave speeds, but not
the wave attenuation aspects of these problems. (For field applications, attenuation is also

harder to measure reliably than wave speeds.) Modelling wave attenuation in poroelastic
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media necessarily requires knowledge of fluid permeability, and therefore spatial gradients
of fluid pressure as well as time derivatives of the increments of fluid content. The results
presented here are nevertheless of direct interest in those more complicated problems, as we
also need to know these quasi-static results, especially in the low frequency limit of the full
frequency-dependent problems.

It is useful to note that Schoenberg [42] studies the problem of layered permeable systems,
using analysis methods very similar to the ones used here. However, Schoenberg’s paper does
not address the issues of poroelasticity and effective stress for changes in the permeability,
but only the effects of the layering itself on the overall fluid-flow behavior and effective
permeability.

The averaging scheme used by Schoenberg [42] for permeability is completely analogous
to the one described here in Appendices A and B for elasticity and poroelasticity. If the

permeability in each layer can be written in the form:
ki1 ki ks
k=1 K kog ka3 | (48)
k13 kog k33
and, if w is the flow rate of the moving fluid particles while p is the fluid density such that

pw is the local fluid momentum per unit volume, then

1
=——k- 49
v Vpy, (49)
or equivalently
Wy ) ki1 1o Kig Pfa
wy | = ~ov k1g Koo ko3 Pty (50)
Wy kis ko3 k33 Py 2

is Darcy’s law for the local behavior in any one layer, with v being the uniform viscosity of
the pore fluid.

Now (again following Schoenberg), we define

ki1 k
Ry — 11 K12 (51>
k1o koo
k
r'ry = v = T%T, (52)
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and

TNN — k}33. (53)

Then, we can rewrite the permeability k for one layer of the overall layered systems as:

Rrrr
K T T'TN 7 (54)

T TNN

in terms of 2 x 2 matrix R, vector r, and scalar r. Next, averaging the results for the

permeability, we find:

run = (ran) s (55)
e = Iy (TvntNT) = Iy (56)

and
Ry = (Rrr) — (tonryhenr) + Py (Fon) ™ Thor (57)

So finally, the averaged permeability is given by:

R 15
K — 7T TN (58)
Ny TNN
Schoenberg [42] also describes how to do the analogous layered calculations for the in-
verse of permeability (i.e., the impermeability). Defining the form of the impermeability
analogously via
Xrr X
kl= [T (59)

XNT TNN

then the corresponding result for the averaged impermeability is

(k*)_l _ XTr XN 7 (60)
XNr TNN
where
Xir = (Xg1) (61)
xry = Xopr <X:F%XTN> = (X*NT)T> (62)
and
Ty = Xnr (X:}T)_l XTN- (63)
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[Note that there is an obvious typographical error in Schoenberg’s equation (9) since his
term corresponding to % is not dimensionally correct. ]

When these formulas are compared to the ones obtained here (and also by others) for
the average compliances, we see a close formal similarity between averaged compliance and
averaged impermeability results. So it is not surprising that there must also be a formal
similarity between the averaged stiffness and the averaged permeability results for such
layered materials. This simple fact is useful nevertheless, as it provides another means of

checking that results have been correctly derived.

6. Analysis of Fracture Permeability: Formulation and Effective Stress Behavior
6.1 Horizontal fractures

Chen and Bai [43] and Chen et al. [44] present a careful and clear analysis of the
permeability tensor for fractured systems, including some discussion of stress dependence,
which we will carry forward in our current applications. Two key parameters for simple,
flat fractures (which was the focus of [43] and [44] and will also be our focus in this section)
are the aperture b and the spacing between fractures d. If these values are not uniform in
the material, then these values should be replaced by their average values. When the only
porosity present is the fracture porosity ¢y, it is easy to see then that ¢; = b/d — assuming
only that the individual fractures are connected across the entire region of study, and that
they do not intersect or overlap. Now, writing permeability k as a matrix for horizontal

fractures, we have

¢?}d2(1 + 2633) L0
k= D 10| (64)
000

In xyz-coordinates, this formula says that the anisotropic permeability is exactly zero in the
vertical or z-direction, and has equal values of kg = ¢7}d?/12 in both the z- and y-directions,
with a small correction due to strain ess in the z-direction, whenever this effect might be
significant enough to consider. Permeability k has dimensions of length squared, and these
dimensions are supplied by the d? factor for the squared-spacing, and this factor can change

due to changes in strain along the z-axis. Thus, the factor due to strain changes in the
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z-direction is (1 + es3)? =~ (1 + 2e33), and this determines the magnitude of any extension or
contraction occurring along the z-axis. The factor gzﬁ?} also provides one means of emphasizing
the experimentally well-known cube-law for fluid flow in fractured media [45]. This choice of
representation also provides an efficient means of determining the effect of pressure on the
fracture permeability, since (as will next be argued) the only quantity to change significantly
when the fluid pressure changes will be the fracture porosity itself.

Porosity is defined as the ratio of pore volume over total volume, so ¢ = V,,/V and

o0Vy VgV oV, oV
0p=— — = — - — . 65
¢ V V2 ( Vo V ) (65)
From our earlier analysis, we have:
oV opa  Opy 1
S0 0P OB (6pe — andpy)
and
(5V¢ 5pd 5pf 1
——— = — 4+ — = — (0p. — &opy) , 67
where
Kd
K, = ¢a B and ¢=1-K,/KY, (68)
R

where (67) may be treated as the defining equation for K5, and ap = 1 — K%/K?Y is the
usual Biot-Willis [2] parameter. The pertinent equation for the strain component ess is
determined by (1) and (3). When the confining pressure and fluid pressure have comparable
values, this strain component depends mostly on the compliance factor 1/K%,, which will
normally be one of the smallest compliances in the system since it depends only on the solid
grain behavior. This fact suggests that it should be a good approximation in many cases to
neglect the contribution to the effective stress coming from this term in (64).

Thus, we conclude that the effective stress behavior for permeability due to horizontal

fractures is determined largely by the changes in fracture porosity ¢; itself, and therefore

we have:
00
¢2 d2
ok = oo~ 010 |, (69)
000

where d¢; was determined by (65) through (68).
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6.2 Nonhorizontal fractures

While we generally expect fractures to be more or less planar, there is no reason to think
that they will always be horizontal. We can treat the more general problem of nonhorizontal
fractures by considering rotations of the matrix equation for k given in (64).

We will consider the three choices of rotation matrices:

1 cosy  siny cosf sinf
R, = costp sinv | Ry = 1 R, =1 —sinf cosf . (70)

—sin Y cos —siny cosy 1

which are, respectively, appropriate rotation matrices for rotations about the x-axis, y-axis,
and z-axis.

Since rotations about the z-axis if performed first actually do not change the permeability
matrix in (64), and since rotations about the z-axis after rotations in x and y only produce
an effective change in the definitions of x and y, we will ignore the z-rotations, and only

consider the possibility of doing first z-rotations, and then y-rotations. The result is:

1 —sin? y cos?1) —sinycosesiny — siny cos? 1 cos
RnykaRZ =ko | —sinycostysiney 1 — sin?) —sintcostpcosy |- (71)

—sin y cos? 9 cos y —sincosipcosy 1 — cos?cos?y

Checks on the correctness of this rotation matrix include: (7) the sum of the diagonal should
be 2kg, (i) the matrix should be symmetric, and (i) the determinant should equal zero.
All three of these necessary constraints are satisfied, as is easily checked.

To conform with the results of Chen et al. [43, 44], we should also note that, if the
direction cosines are given by ¢,, ¢,, and ¢, (where ¢ + ¢ + ¢ = 1), this matrix should have

the general form:

1—c2 —cy0y —C,Cyp

ko —CyCy 1—¢ —cyc, : (72)
— — 1—c2
C.Co CyCs c?

Equation (71) differs from (72) only because we did not allow for any rotations about the
z-axis in the previous case. Note that the rotated permeability matrix in (72) also has zero

determinant and trace equal to 2k, as expected.
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6.3 Effective stress for fracture permeability

The preceding results show that the effective stress for changes in permeability depends
only the scalar factor ky. This factor also depends principally on the pressure dependence
of the cube of fracture porosity ¢. Recall that, as a general rule, we also expect K% <
(1 —¢s)KY, (for example, from Hashin-Shtrikman bounds [24, 31]), which then implies that

¢5 < ag. So we find that magnitude of the permeability k, varies as:

(Sk‘o §¢f . aR—gbf

1 1 aRp — qb f
— X =— 0pe —0ps) — | — — —= | Opf = —————=— (0p. — KsOps), (73
where the main contribution to the effective stress coefficient for fracture permeability is:

ki = an (€ —¢y)
! (ar — ¢y)’

where £ was defined in (68). We cannot say much more than this in general, but in many

(74)

cases it will be true (for clean pores and only a single grain-type present) that the pore bulk
modulus Kj% ~ K%, i.e., it is well approximated in such cases by the unique solid grain
modulus. When this is true (i.e., for simple granular systems without soft grain coatings,
or fractures with clean surfaces), we can show explicitly that £ — ¢r ~ 1 — ¢s/ar. When

this holds true, we find from (73) or (74) that

Thus, the fracture effective-stress coefficient x; for some simple systems may be approxi-
mately equal to unity, and that means the effect of fluid pressure for opening fractures is
about as strong as it can get.

The general statement (74) can also be rewritten as

K¢ 1 1
Ef:1+M<F__>7 (76)

since &€ — ¢y = 1 — (¢7/ag)ar + (K&/K$)]. The result (76) shows again that, if K ~ K%,
then Ky ~ 1.

Furthermore, when Kfl < K%, then ky < 1. When Kfl > K%, then k¢ > 1. Thus, soft
fracture-surface coatings imply the permeability can be increased more easily by increasing
py, while hard fracture-surface coatings imply the permeability cannot be increased so easily

by increasing py, since the effective-stress coefficient x is then less than unity.
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The language being used in the preceding discussion is intended to be intuitive rather
than rigorous. The rigorous interpretation should be based instead on the fact that pore
bulk modulus Kfl is a general concept, not limited to coatings on the surfaces of pores.
In particular, if the medium has heterogeneous grains, and the consolidated system is then
fractured, all the types of grains can potentially contribute to the behavior described here,
and the use of the “surface-coating” language is then certainly inappropriate. The formulas
for ky are nevertheless general, and do not depend on these various possible grain arrange-
ment scenarios. Choices of physical interpretations need to be model specific, whereas the
formulas presented are general within the limitations already set in the study (mainly or-
thotropy). While the values of the constants such as K ?z are indeed model dependent, the

formulas giving the effective stress coefficients do not change.

7. Summary and Conclusions

The thrust of the paper has focused on applications of layered porous meterials containing
fluids. The first results show how to model individual poroelastic layers consistently and
correctly when these layers are both poroelastic and anisotropic. As long as the anisotropy
is at least as symmetric as orthotropy (i.e., including isotropic, cubic, transversely isotropic
or hexagonal, tetragonal, and orthotropic, but not including less symmetric cases such as
trigonal, monoclinic, and triclinic crystal symmetries) the methods can be applied as long as
one of the axes of symmetry is aligned with the layering direction. (For the less symmetric
cases, these methods can also be generalized, but that work will appear elsewhere.) The
resulting method is very analogous to earlier work by Backus [20], Schoenberg and Muir [21],
and others. The assumed poroelastic boundary conditions were limited to either the drained
(fluid free to move) or the undrained (fluid trapped) conditions, as these are the ones most
easily handled in the proposed framework. These cases are also the only poroelastic cases
that are usually treated analytically.

We then presented a discussion of the permeability variation in such porous layers, and
in particular showed how the fluid permeability itself depends on changes in both confining
and pore pressure, leading to conclusions about poroelastic effective stress. Two main types
of permeability were considered: (1) intergranular or tubular pores, and (2) fractures. We

treated the intergranular/tubular pores as a simple network-style generalization of an earlier
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isotropic analysis of effective stress for permeability of such systems. We followed this
analysis by considering the case of more general anisotropic permeability, and especially
permeability due to oriented fractures. The permeability analysis for this case was actually
more general than the corresponding mechanical analysis for orthotropic systems, since
there are fewer degrees of freedom involved in the permeability analysis. Nevertheless, it
is clear that the two parts of the analysis can easily be brought into sync by limiting the
fracture orientations so that the two systems (mechanical and fluid flow) have at least one
of the symmetry directions of the permeability in common with that of the orthotropic
poromechanical system studied. Indeed the presence of the fractures clearly influences the
poroelastic mechanics, as well as the fluid flow properties, of these systems. So we would
naturally expect a fracture system having orthorhombic mechanical symmetry to result in
similar symmetries for the fluid flow as well as the poromechanical properties. The elastic
parts of this analysis have been studied by many researchers including Sayers and Kachanov
[47], and we will not pursue this aspect of the analysis further here.

One point that should be emphasized however is that, while it is not necessarily easy to
infer directly and correctly the existence of oriented fractures from the observed mechanical
behavior of these systems, it is nevertheless true that — if fractures are known to be present
via the fluid-flow measurements — then it is certain that the mechanical behavior of the
system will depend in predictable ways on the orientations of those fractures through the

drained compliances introduced as the starting point of this paper.
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APPENDIX A: SCHOENBERG-MUIR METHOD

The quasi-static elasticity equations are often written in compliance form using the Voigt

6 x 6 matrix notation as:

€11 511 S12 S13 S14 S15 S16 o1 011
€22 S21 S22 523 S24 S25 526 022 022
€33 _ 531 532 S33 S34 S35 S36 033 —g 033 ’ (77>
€23 541 S42 543 S44 S45 S46 023 023
€31 851 S52 S53 S54 S55 S56 031 031
€12 561 S62 S63 S64 S65 S66 012 012

where S is the symmetric 6 x 6 compliance matrix. The numbers 1,2,3 always indicate
Cartesian axes (say: z,y,z respectively). The z-direction is usually chosen as the layering
direction, which could be oriented any direction in the earth. But, in many geological and
geophysical applications, the 3-axis (or z-axis) is also taken to be the vertical direction,
and we conform to this convention here. The principal stresses are oi1, 099, 033, in the
directions 1,2,3, respectively. Similarly, the principal strains are ej;, g9, e33. The stresses
093, 031, 012 are the torsional shear stresses, associated with rotation-based strains around
the 1, 2, or 3 axes, respectively. The corresponding torsional strains are es3, €31, and ejo,
where the torsional motion is again a rotational straining motion around the 1, 2, or 3
axes. The compliance matrix is symmetric, so s;; = s;;, and this fact could have been
used when displaying the matrix. The axis pairs in the subscripts 11, 22, 33, 23, 31, and
12 for stresses and strains, are often labelled (again following the conventions of Voigt) as
1,2,3,4,5,6, respectively.

The important contribution made by Backus [20] (also see Postma [22]) is the observation
that, in a layered system, there are certain strains e;; and stresses o;; that are necessarily
continuous across boundaries between layers, while the others are not necessarily continuous.
We have been implicitly (and now explicitly by calling this fact out) assuming that the
interfaces between layers are in welded contact, which means practically that the in-plane
strains are always continuous: so if axis 3 (or z) is the symmetry axis (as is most often chosen
for the layering problem), we have eq1, €13 = ey, and egy are all continuous. Similarly, in
welded contact, we must have continuity of all the stresses involving the 3 (or z) direction:

therefore o33, 013 = 031, and 093 = 030 must all be continuous.
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Then, following Backus [20] and/or Schoenberg and Muir [21], but — for present purposes
considering instead the compliance (inverse of stiffness) matrix — we have rearranged the

statement of the problem so that:

€11 511 S12 S16 S13 S14 S15 011
€22 521 S22 S26 S23 S24 S25 022
€12 S61 S62 S66 S63 S64 S65 012
= (78)
€33 531 532 536 S33 S34 S35 033
€32 S41 S42 S46 S43 S44 S45 032
€31 S51 S52 S56 S35 S54 S55 031

Note that this equation, although similar to (77) is quite different because of the rearrange-
ment of the matrix elements and the reordering of the strains and stresses. The chosen
expression in (78) is general for all elastic media. In the main text we restrict our discussion
to orthotropic media. Assuming then that we are using the correct axes as the symme-
try axes in the presentation, all off-diagonal compliances having subscripts 4, 5, or 6 in
(77) vanish identically. The diagonal shear compliances sy4, etc., generally do not vanish
however.

Expression of (78) can be made more compact by writing it as:

Er Srr SN Ip
= ) (79)
En SnT Snn Iy
where
S11 S12 S16 511 S12
Str = | so1 S22 Sa6 | = | S21 522 ) (80)
S61 S62 Se6 566
533 S34 S35
SNN = 843 S44 S45 5 (81)
S53 S54 S55
and

S51 S52 S56

533
= S44
555
831 S32 S36 531 832
SNT = S41 S42 S46 - 0 5 (82)
0
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with Syy = S%, (with T superscript indicating the matrix transpose). Also we have

€11 €33
ET = €29 s and EN = €32 s (83)
€12 €31
and
011 033
HT = 099 , and HN = 032 . (84)
012 031

It is important to distinguish between “slow” and “fast” variables in this analysis, since
this distinction makes it clear when and how averaging should be performed. The “slow”
variables, i.e., those that are continuous across the (here assumed horizontal) boundaries
and also essentially constant for (the present) quasi-static applications, are those contained

in Fr and Iy. So, after averaging (-) along the layering direction, we should have:

Er | _ Str St (Il7) (85)

<EN ) }kVT 7VN Iy

where Sk = (S%7)", and all the starred quantities are the nontrivial average compliances
we seek. They are defined in terms of layer-average quantities where the symbol (-) indicates
a simple volume average of all the layers. By this notation we mean that a quantity () that
takes on different values in different layers has the layer average (Q) = x,Q,+xpQp+. ... The
definition is general and applies to an arbitrary number of different layers where the fraction
of the total volume occupied by layer a is z,, etc. Total fractional volume is x,+x,+... = 1.

Of the three final results, the two easiest ones to compute are:
rr=(Srp) " (86)
v = (Sr)" = (Sz1) " (S7rSrn) = Sir (S7rSrw) (87)
where (-) is the layer average of some quantity. These results follow from this equation:
(St1) Er = (r) + (Sz1pSra) Ty, (88)
which followed immediately from the formula
Ep = Sppllpy + Spnylly, (89)

28



multiplying through first by the inverse of S;7, and then performing the layer average.
[Note that Sy and Sy are both normally square and invertible matrices, whereas for most
systems the off-diagonal matrix Sy is not invertible. But, this fact does not cause problems
in the analysis, because we do not need to invert Sz in order to solve the averaging problem
at hand.] These averages are meaningful because when the matrix equations presented are
multiplied out, we never have any cross products of two quantities that are both unknown.
[From this view point, Eq. (88) is an equation for (IIr), just as the unaveraged version of (88)
is an equation for Ily in each layer.] So simple layer averaging suffices (thereby providing
the main motivation and value of this method). Multiplying (88) through by <S}:1p>_l then
gives the results (86) and (87).

The remaining result is more tedious to compute, since it requires several intermediate

steps in its derivation. But the final result is given by the formula:
7VN = <SNN> - <SNTS:;:1FSTN> + S?VT( ;“T)_l :}N' (90)
To provide some clues to the derivation, again consider:
Iy = Sy Er — S7pSrally, (91)

which is just a rearrangement of (89). The point is that (II7) is then given immediately in
terms of the quantities Fr and Ily, which are both “slow” variables and therefore essentially

constant. An intermediate result that helps to explain the form of this relation (90) is:
vr (7)™ Shw = (SxrSri) (Sir) (SpiSrw) = (SvrSpr) Spw- (92)
Substituting for IIy from (91) into
Ex = Syrllr + SynIly, (93)
and then averaging, we find that
(Ex) = (SxrSph) Er + (Sny — SnrSpiSoa) Tly. (94)

This expression completely determines all the remaining coefficients. After some more alge-

bra, the formula giving the final result is:

(En) = (SnrS7r) (Srr) " [(Ir) + (SpSew ) T]
+ [(Swn) — (SnrS7rSrw) ] iy (95)
= Siyp (Ilr) + SiynIly.
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Equation (95) contains all the information needed to produce the third and final result found
in (90).

Another check on these formulas is to compare them directly to those found by Schoenberg
and Muir [21]. However, direct comparison is not so easy, since their analysis focuses on
the stiffness version of the equations. Our treatment makes use of the compliance version
instead. Since the symmetries of the two forms of the equations are nevertheless nearly

identical, cross-checks and comparisons will be left to the motivated reader.

APPENDIX B: POROELASTIC FORMULAS FOR UNDRAINED BOUNDARY
CONDITIONS IN LAYERED SYSTEMS

Using equation (29) as our starting point, we now consider the boundary condition ¢ = 0
for undrained layers (meaning that the fluid is actually physically trapped in the layer, or the
physical process is so fast — such as high frequency wave propagation — that the fluid inertia
prevents rapid movement of fluid particles over non-infinitesimal distances). Depending on
the application scenario, this boundary condition might be applied to all layers, or only to
just one or a few layers at a time.

We consider first a single layer having the undrained boundary condition. For this case,

the condition from Eq. (29) becomes
0= gpllr +ps + g3 Iy, (96)

within the layer. Next, the equation can be solved to express the fluid pressure p; strain

dependence in each undrained layer (the layer labels are suppressed here for simplicity) as

1
Pr=-7 (glollr + g5 Tly) . (97)

Then, substituting this condition back into the expressions for Er and Ey from (29), we

find that

Er\ [ Srr— v lgogl Stn — v lgagl I1r (98)
En Snt — 7 'g3gly Snn — 7 'gagl Iy

To understand the significance of (98), we next find it is straightforward to show that each
of these composite matrix elements corresponds exactly to the undrained version of the

Schoenberg-Muir matrices. So that,
Str = Srr — 77 81281, (99)
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Ny =Swnv—7 'gsgs, (100)
and
v =Sty — 7 'ggs = (Skr) - (101)
All these expressions follow directly from the form of (98).

Thus, we arrive methodically at a result that might have been anticipated, which is that
the undrained layers respond according to the usual undrained conditions in each individual
layer. The part of the result that is new concerns the forms of the undrained matrices S¥.,,

ur=(S%y)", and 8%, now in the modified Schoenberg-Muir formalism.

This analogy can be pushed somewhat further to include the effective values for the
undrained moduli S%5, S%, = (Siy)", and S%, with formulas entirely analogous to (86),
(87), and (90), and undrained constants replacing drained constants everywhere. Since there

is nothing subtle about this step, we leave these details again to the interested reader.

APPENDIX C: EFFECTIVE STRESS FOR PERMEABILITY OF ISOTROPIC
POROELASTIC SYSTEMS WITH GRANULAR STRUCTURE AND/OR TUBU-
LAR PORES

Berryman [24] shows that the effective stress response of fluid permeability k in isotropic

poroelastic systems, having either granular structure or tubular pores, is given by:

ok 2 aR — ¢ 1
_— = — — ey 5 c 6 9 102
where the pertinent effective stress coefficient is
20(1 —

20+ 3n(ag — @)
The numerical constant n is model dependent, but often has a value n ~ 4. The porosity
is ¢. The poroelastic factor ag = 1 — K%/K% is the usual Biot or Biot-Willis coefficient
[2]. The subscripts R are redundant in these expressions, since Reuss and Voigt averages
are the same for isotropic systems; but we show them here nevertheless to emphasize their
connection to results in the anisotropic problem. Also note that (g — ¢) > 0 in general.
The result (103) follows from the commonly used formula for isotropic permeability in this

class of systems in terms of porosity ¢, specific surface area s, and formation factor F', which
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is given by
¢2
252F

and which formula is consistent with the work of many researchers, including Paterson [25]

~

(104)

and Walsh and Brace [26]. The formation factor is often estimated in the form F' ~ ¢~™, in
which case the constant n ~ 2 + m. Since k has the dimensions of length squared, it scales
with volume V like V2/3.

A useful approximation [30-35] to K¢ for isotropic systems composed of a single isotropic
grain-type having bulk modulus K¢ and shear modulus 9 is:

i (A-9)Kp (1-¢)Kg
B 14 3K%p/4p9 —  1+co

, (105)

where the dimensionless factor ¢ ~ 3K%/4u9 is sometimes called a consolidation parameter;
in the absence of definitive information concerning elastic frame constants, ¢ can also be
used as a fitting parameter. A typical range of values for this parameter for sandstones is
2 < ¢ < 20. Lower values of ¢ correspond to stronger states of consolidation, while higher
values correspond to weaker states of consolidation.

Substituting this expression (105) into the formula for the effective stress coefficient &,

we find:
_ 1-¢
L+c[(3n/2)(1 - ¢) + 4]
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