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Vegetable Qils in Polymeric Materials
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Arguably, vegetable oils have been the most useful of the

renewable materials routinely used in coatings binders.

» Since 1000AD, vegetable oils have been used extensively as binders or additives in
coatings.

» Reports of their use occurred at least 30,000 years ago, going back to the days of cave
paintings.

» The primary use of vegetable oil in coatings is as a drying oil. These are highly
unsaturated oils that will oligomerize or polymerize when exposed to the oxygen in air,
usually in the presence of a catalyst.
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Film Formation/Crosslinking via Auto-oxidation
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Derivatization of Vegetable Oils
for other Cure Mechanisms
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Oxidation to Produce Carboxylic Acids
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Dicarboxylic Acid Plant Oil Source

Adipic Acid, HO,C(CH,),CO,H  Carrot seed, parsley seed
Suberic Acid, HO,C(CH,),CO,H  Pot marigold

Azelaic Acid, HO,C(CH,),CO,H  Olive, peanut, sesame seed,
sunflower, safflower, corn

Sebacic Acid, HO,C(CH,)sCO,H Castor seed

Brassylic Acid, Crambe, rapeseed, wallflower
HO,C(CH,),,CO,H seed, mustard seed
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Current Uses for Long Chain
Dicarboxylic Acids
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K. Hill, Pure Appl. Chem., vol. 72, 1255-1264 (2000)

Oleochemical-based dicarboxylic acids only make up about 0.5% of
the total dicarboxylic acid market for polymers
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Polyamides Based on Plant Oil Derived
Dicarboxylic Acids
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X,y nylon ID Tm Tg
y =7 = azelaic acid 6,7 nylon 6,9 205 58
y = 8 = sebacic acid 6,8 nylon 6,10 210 50

6,11 nylon 6,13 210 N/A
¥ =11 = erucic acid 13,11 nylon 13,13 176 N/A

6,4 nylon 6,6 255 60

Aliphatic Polyamides Based on Plant-Qil-Derived Dicarboxylic
Acids Have Relatively Low Melting Temperature and, Thus,
Limited Utility
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Typical Melting Point Depression Observed
with Semi-crystalline Polymers

Example: Poly(ethylene terephthalate-co-1,4-cyclohexylene dimethylene terephthalate)
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Reproduced from H. Y. Yoo, Polymer, 35(1), 117-122 (1994).
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Semi-Aromatic Polyamides Exhibiting
Isomorphism (i.e. Cocrystallization)
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_

Similar Size of Repeat Unit x and Repeat Unit y Enables
Cocrystallization (i.e. isomorphism)
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Melting Temperature as a Function of
Composition
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A.J. Yu and R. D. Evans, J. Polym. Sci., 42(139), 249-257 (1960).
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Copolyamides Based on Renewable Diamines
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Research Objective

* Determine the utility of adipamide/terephthalamide
copolymers for use as high-value engineering
thermoplastics

» Compare properties to nylon 6,6

 Begin with copolymers based on 1,9-nonane diamine
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Polymerization Process
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Two-Step Polymerization Process
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Initial Study
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* Prepare ~2 g. samples of polymers varying in x/y
content using test-tube reactor

- Determine basic thermal properties
- melting temperature
- glass transition temperature
- thermal stability
- crystallization temperature
- isothermal crystallization kinetics
- crystal structure
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Melting Behavior
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Melting Temperature

Tm (°C)

Our experimental data Data from Yu and Evans
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 Similar sigmoidal relationship between Tm and composition as observed in literature
» Absolute Tms are lower than literature most likely due to measurement method
» Copolymer with 45 mole % 9T content has similar Tm to Nylon 6,6
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Glass Transition Temperature
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Linear Increase in Tg with 9T Content
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Non-Isothermal Crystallization

Heat Flow (W/g)
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* Tm - Tc convenient way to compare relative crystallization rates
» Copolymers with 9T content above 50 mole percent crystallize remarkable fast!
» Polymer chain segments with long runs of 9T units may enable rapid homogeneous nucleation
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Crystal Structure
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* Crystal Structure is Maintained over Entire Copolymer Compositional Range
» Diffraction Pattern Consistent with y-form Crystalline Phase of Polyamides (Hexagonal Unit Cell)
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Thermal Stability
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Thermal Stability Increased With Increasing 9T Content
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Comparison to nylon 6 and nylon 6,6

Polymer Tg(°C) | Tm(°C) | Tm-Tc(°C) T@5% T@50%
Wt. Wt.
loss(°C) loss(°C)
Nylon 6 49.9 218.8 45.9 391.0 446.5
Nylon 6,6 59.1 261.3 32.8 410.5 470.5
0% 9T 68.0 231.5 35.5 372.5 441.0
10% 9T 66.0 232.6 36.6 371.5 444.0
20% 9T 71.0 233.8 36.7 366.5 451.0
30% 9T 73.3 240.3 39.0 388.0 458.5
40% 9T 78.9 247.5 42.3 391.7 463.5
50% 9T 81.8 260.4 41.6 407.5 467.0
60% 9T 88.5 270.7 24.5 413 473.0
70% 9T 90.8 276.8 16.8 418.5 476.0

Copolymer 60% 9T possesses higher Tm, Tg, and faster

crystallization than nylon 6,6
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Conclusions

* Confirmed Isomorphism

* Reproduced Sigmoidal Relationship Between Melting
Temperature and Composition

* Tg Increased with Increasing 9T Content
* Thermal Stability Increased with Increasing 9T Content

 Crystallization Rate Increased Dramatically at 9T Contents
Above 50 Mole %

» Copolymers Possessing a 9T Content Exceeding 50 Mole % 9T
Possess Very Desirable Thermal Properties That Rival Nylon 6,6
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