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Vegetable Oils in Polymeric Materials

Arguably, vegetable oils have been the most useful of the 

renewable materials routinely used in coatings binders. 
• Since 1000AD, vegetable oils have been used extensively as binders or additives in 

coatings.

• Reports of their use occurred at least 30,000 years ago, going back to the days of cave 

paintings.

• The primary use of vegetable oil in coatings is as a drying oil. These are highly 

unsaturated oils that will oligomerize or polymerize when exposed to the oxygen in air, 

usually in the presence of a catalyst. 
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Film Formation/Crosslinking via Auto-oxidation
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• Free Radical Mechanism

• Ambient Conditions

• Network Develops over Time
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Derivatization of Vegetable Oils 

for other Cure Mechanisms
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Curing via auto-oxidation

Free radical UV-cure

Cationic UV-cure

Cure with isocyanates
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Oxidation to Produce Carboxylic Acids
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Dicarboxylic Acid Plant Oil Source

Adipic Acid, HO2C(CH2)4CO2H Carrot seed, parsley seed

Suberic Acid, HO2C(CH2)6CO2H Pot marigold

Azelaic Acid, HO2C(CH2)7CO2H Olive, peanut, sesame seed, 

sunflower, safflower, corn

Sebacic Acid, HO2C(CH2)8CO2H Castor seed

Brassylic Acid, 

HO2C(CH2)11CO2H

Crambe, rapeseed, wallflower

seed, mustard seed
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Current Uses for Long Chain 

Dicarboxylic Acids

Oleochemical-based dicarboxylic acids only make up about 0.5% of 

the total dicarboxylic acid market for polymers

K. Hill, Pure Appl. Chem., vol. 72, 1255-1264 (2000)

Properties imparted to polymers:
• elasticity
• flexibility
• impact strength
• hydrolytic stability
• hydrophobicity
• low glass transition temperature
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Polyamides Based on Plant Oil Derived 

Dicarboxylic Acids
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y = 7 = azelaic acid

y = 8 = sebacic acid

Y = 11 = erucic acid

x,y nylon ID Tm Tg

6,7 nylon 6,9 205 58

6,8 nylon 6,10 210 50

6,11 nylon 6,13 210 N/A

13,11 nylon 13,13 176 N/A

6,4 nylon 6,6 255 60

Aliphatic Polyamides Based on Plant-Oil-Derived Dicarboxylic 
Acids Have Relatively Low Melting Temperature and, Thus, 

Limited Utility 
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Typical Melting Point Depression Observed 

with Semi-crystalline Polymers
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Reproduced from H. Y. Yoo, Polymer, 35(1), 117-122 (1994).
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Example:  Poly(ethylene terephthalate-co-1,4-cyclohexylene dimethylene terephthalate)

Poly(ET-co-CT)
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Semi-Aromatic Polyamides Exhibiting 

Isomorphism (i.e. Cocrystallization)
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A. J. Yu and R. D. Evans, J. Polym. Sci., 42(139), 249-257 (1960).

Similar Size of Repeat Unit x and Repeat Unit y Enables 
Cocrystallization (i.e. isomorphism)
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Melting Temperature as a Function of 

Composition

A. J. Yu and R. D. Evans, J. Polym. Sci., 42(139), 249-257 (1960).
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Copolyamides Based on Renewable Diamines
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Melting point of Nylon 6,6 = 256 oC

Potential for the Production of High 

Temperature, Semicrystalline

Engineering Thermoplastics Based on 

Renewable Compounds
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Research Objective 

• Determine the utility of adipamide/terephthalamide

copolymers for use as high-value engineering 

thermoplastics

• Compare properties to nylon 6,6

• Begin with copolymers based on 1,9-nonane diamine

H
N

H
N

N
H

O O

O

N
H

O

9
9

x y



Department of Coatings & Polymeric Materials 13

Polymerization Process

Two-Step Polymerization Process

Dissolve

9,T and 9,6

Salts in H2O

Distill Off H2O

Against Slight 

Pressure

Heat to 

250oC-300oC

While Stirring

Reduce Pressure

While Stirring

Cool Under

Vacuum

OO

OO

H3N NH39

H2N NH29
OHHO

OO

+ EtOH

H3N NH39
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9,T salt

9,6 salt
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Initial Study
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• Prepare ~2 g. samples of polymers varying in x/y 

content using test-tube reactor

• Determine basic thermal properties
− melting temperature

− glass transition temperature

− thermal stability

− crystallization temperature

− isothermal crystallization kinetics

− crystal structure
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Melting Temperature
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• Similar sigmoidal relationship between Tm and composition as observed in literature

• Absolute Tms are lower than literature most likely due to measurement method

• Copolymer with 45 mole % 9T content has similar Tm to Nylon 6,6
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Linear Increase in Tg with 9T Content
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Non-Isothermal Crystallization
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• Tm – Tc convenient way to compare relative crystallization rates

• Copolymers with 9T content above 50 mole percent crystallize remarkable fast!

• Polymer chain segments with long runs of 9T units may enable rapid homogeneous nucleation

70% 9T          
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Crystal Structure

• Crystal Structure is Maintained over Entire Copolymer Compositional Range

• Diffraction Pattern Consistent with γ-form Crystalline Phase of Polyamides (Hexagonal Unit Cell)
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Thermal Stability

Thermal Stability Increased With Increasing 9T Content
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Polymer Tg(°C) Tm(°C) Tm-Tc(°C) T@5% 

wt. 

loss(°C) 

T@50% 

wt. 

loss(°C) 

Nylon 6 49.9 218.8 45.9 391.0 446.5 

Nylon 6,6 59.1 261.3 32.8 410.5 470.5 

0% 9T 68.0 231.5 35.5 372.5 441.0 

10% 9T 66.0 232.6 36.6 371.5 444.0 

20% 9T 71.0 233.8 36.7 366.5 451.0 

30% 9T 73.3 240.3 39.0 388.0 458.5 

40% 9T 78.9 247.5 42.3 391.7 463.5 

50% 9T 81.8 260.4 41.6 407.5 467.0 

60% 9T 88.5 270.7 24.5 413 473.0 

70% 9T 90.8 276.8 16.8 418.5 476.0 

 

Comparison to nylon 6 and nylon 6,6

Copolymer 60% 9T possesses higher Tm, Tg, and faster 

crystallization than nylon 6,6
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Conclusions 
• Confirmed Isomorphism

• Reproduced Sigmoidal Relationship Between Melting 

Temperature and Composition

• Tg Increased with Increasing 9T Content

• Thermal Stability Increased with Increasing 9T Content

• Crystallization Rate Increased Dramatically at 9T Contents 

Above 50 Mole %

• Copolymers Possessing a 9T Content Exceeding 50 Mole % 9T 

Possess Very Desirable Thermal Properties That Rival Nylon 6,6
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