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. SIMULATING LIVING ORGANISMS WITH
: POPULATIONS OF POINT VORTICES

ROBERT W. SCHMIEDER

Sandia National Laboratories
Livermore, CA 94551 USA
rwschmi@ca.sandia.gov

ABSTRACT

We have found that time-averaged images of small populations
of point vortices can exhibit motions suggestive of the behavior of
individual organisms. As an example, we show that collections of
point vortices confined in a box and subjected to heating can
generate patterns that are broadly similar to interspecies defense in
certain sea anemones. It is speculated that other simple dynamical
systems can be found to produce similar complex organism-like
behavior.
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INTRODUCTION

Complex collective emergent behavior of small populations of simple objects
is now a familiar theme in biology. Prime examples are flocking and schooling
[Kshatriya and Blake, 1992; Huth and Wissel, 1992], trail formation [Franks, 1989],
foraging [Millonas, 1992], synchronized flashing and hibernation, and colonial
nest construction. It is usual in such systems to consider time as the independent
parameter, and to observe the systen{ configuration evolve in time [Murray,
1993]. Simulation of such emergent behavior is often done using simple physical
objects that obey simple behavioral rules [Langton, 1992; Gilpin and Hanski,
1991]. Typically one searches for stable configurations, or configurations that
exhibit slow changes: migration, drift, precession, oscillation, and similar
patterns [May, 1975; Hoppensteadt, 1992]. Another goal is to attempt the
prediction of the emergent behavior from the properties of the individual objects
[Gutowitz, 1991]. One encounters in these pursuits the most fundamental
question about populations: the origins of order [Kampis, 1991; Kauffman, 1993].

In this paper I point out that under certain conditions, slow configuration
changes of small populations of point vortices can mimic the normal behavior
of individual living organisms. Point vortices are point-like objects that
experience purely transverse mutual forces [Aref, 1979; Aref and Pomphrey,
1982]. They are well-known in theoretical physics, and are useful for simulating
fluid dynamics, plasmas, superfluidify and superconductivity, and optics [Pointin
and Lundgren, 1976; Kunin, et al., 1992]. In order to generate the behavior we
seek, we will place a few (5 to 10) of these vortices inside a hard-wall box and heat
them gently, causing them to move chaoticalfy. The walls of the box provide
cooling so the system will eventually attain a quasi-steady state. Then we will
make time-integrated images of the population. These images sometimes show
quasi-stable structures (“organisms”) that move about the box, sometimes
interacting with the walls and with each other. By adjusting the numerical
parameters, these structures can be made to simulate rather complex behavior of

living organisms such as sea anemones.
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SYSTEMS OF POINT VORTICES

A collection of point vortices is defined by the Hamiltonian

H= 3 Kjj log(Dj)
i%]

Djj = \/ (xi‘xj)z + (Yi"y j)2

where (x;,y;} are the canonical coordinates and momenta (which may be

considered simply cartesian coordinates of the vortex), and K;; are arbitrary. From
H in we find the equations of motion of each vortex:

ickd JPSY 2 K
dt & U Dy

N Xi—X
T )
dt J;“-‘] DU

This system produces motions in which the vortices revolve forever around
themselves, a kind of complex multiple egg-beater pattern. Because H is constant,
the patterns remain confined within a finite region determined by the total
energy. If, however, we add energy to the vortices, their trajectories expand; the
circulating motions have larger and larger radii, and this can continue without
limit; the vortices spiral forever outward. ’

Vortex heating can be simulated numerically by taking finite step sizes in the
integration of the equations of motion. The reason for this is that an exact
solution would produce the exactly adiabatic circular motion, while finite-
difference solutions will produce linear path increments extending outside the
circular orbits, corresponding to higher energy. Physically, this process is
equivalent to a centrifugal force that heats the vortices. In numerically solving
the equations of motion we simply can’t avoid heating of the vortices, and they
automatically spiral outward.

We can, however, confine the vortices by introducing a hard wall around
them. When a vortex hits the wall, it is given a small inward kick, thereby
reducing its energy and keeping it confined within the box. The wall is therefore
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“cooling” the vortices, exactly balancing‘any amount of heating.

Vortex cooling can be simulated by simply repositioning an impinging vortex
slightly away from the wall, to the inside. Physically this is equivalent to giving
the vortex an impulse when it strikes the wall. Typically what happens is that
the vortex then slides to the side and strikes the wall again, and is again given an
impulse. Eventually the vortex may drift away from the wall. -

From these considerations we adopt the following finite difference equations

to represent the heated vortices confined in a rectangular box:

N ¥y, |
x;j(t + 1)=xi(t)+0ds 3, Kij(—l——'l) -0z h(xj—xw)

j?i Djj

N i Xj— X;
yi(t+1)=yi(t)—Ssz'Kij( ! J)-éiz h(y; = ¥y)
: j#i Dj;

where x,, and y,, represent the walls and 8s and 8z are arbitrary (but small). The
heaviside function h(x)=0,1/2,1 (x<,=,>0) ensures that so long as the vortex is
inside the box, no cooling occurs. The time t is assumed to be integral.

In order to reduce the number of free parameters, we arbitrarily adopt the
following constraint: The N vortices will be identified as either male (M) or
female (F). A population of n M and m F vortices will be written P={n,m}. We
assume that only 4 kinds of interactions take place: (M,M), (M,F), (F,.M), and (F,F).
The NxN matrix Kj; is therefore taken to have only 4 independent values:

Kij = Sl SiMSjM + 52 BLFS_]M + S3 SiMSjF + S4 61F61F

For instance, a population of P={2,3} vortices will have Kj; given by

\Y M M F F F
M S;T S, S, S,
M Sl : S.2 Sz Sz
F [S3 S35 ... S4 S4
F [S3 S3 Sy ... S
F S3 S3 ' S4 S4

The vectors P={n,m} and $={S,5,,53,54} are sufficient to define the system.
We emphasize that this is an arbitrary special case; K;; actually allows N2-N
different values. K;; is not relevant, since vortices have no self-interaction.
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SIMULATING ORGANISM BEHAVIOR

Populations of vortices as described above exhibit very complex, even chaotic,
motions. However, we have found that under certain conditions we can produce
motions that are quasi-periodic. We take advantage of this circumstance to make
- the transition from population behavior to organism behavior. This is done by
taking a “time-exposure” image of the population.

The position of each vortex in the box is represented as a dot. Motion of the
vortex is simulated by putting a dot at the new position and erasing the old dot.
If, however, we display dots at, say, the previous 100 positions, we see wormlike
patterns. To the extent that the step size is small, these patterns appear relatively
smooth, and they appear to move relatively smoothly. If the motion is smooth
but chaotic, the patterns appear as wandering wormlike curves. If, however, the
motion is quasi-periodic, the worms “chase their tails,” and the patterns appear
on the screen as ringlike figures that move relatively slowly, or not at all.
Sometimes the rings move freely within the box, and sometimes they are
stabilized on the wall, appearing much like a “flat tire.”

The representation of vortex trajectories as time-integrated images converts
the set of rapidly moving points into slowly moving geometric figures. These
metastable patterns exhibit behavior totally unlike the behaviors of the point
vortices themselves. The patterns appear on the screen as “organisms” that
move, interact, evolve, appear, and dissappear. Sometimes one pattern will
“ingest” another, sometimes “destroy” another. While the underlying reality is
the motion of the point vortices, it is the metastable patterns that we find |
interesting. We have found a few examples of such patterns that are suggestive
of actual biological organisms, which we now describe.

SIMULATED ORGANISMS

Figure 1 shows two frames of a population of 2 M and 3 F vortices, i.e.,
P={2,3}. The interactions are set to S={1,-.7,.7,-1}. Thus, {M,M} and {F,M} pairs
“rotate” around each other, while {M,F} and {F,F} pairs “antirotate.” The 5
vortices were initially randomly positioned in the square box, and then allowed
to move according to the finite-difference equations given above. After a very
long time, the vortices separated into two “organisms,” one (left) with 1 M and 1
F, ie., p={1,1}, the other with 1 M and 2 F, i.e, p={1,2}. These organisms were
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stabilized against the wall, sliding unpredictably to the left or right. Eventually
the right organism was stabilized in the corner, from which it did not escape. For
a very long time the left organism did an irregular, rather tentative back-and-
forth dance on the wall, staying beyond a critical distance. Suddenly, without any
warning, it moved closer, and extended a long filament toward the organism in
the corner. | ’

The behavior shown in Fig. 1, while not accurate in all details, is broadly
reminiscent of the behavior of certain living organisms. For instance, it is
known that certain cnidarians such as Corynactis californica have very agressive
defense mechanisms [Morris, et al., 1980, Chao, 1975]. When approached by
another anemone (Anthopleura elegantissima), Corynactis will extend a
mesentary filament that stings the victim, causing its death and complete
disintegration of the organism. |

By adjusting the interaction parameters S, a Varlety of interesting behaviors
can be produced. Figure 2 shows the same population P={2,3} using S={1,-.7,.7,-
1} and S={1,-.1,.1,-1}. In Fig. 2(a), the interaction results in the total
disintegration of both organisms. In Fig. 2(b), the organisms merge to form a
single combined organism. This is vaguely reminescent of fertilization, or
ingestion by protozoa. Note that because of the wall interaction, the equations are
not symmetric with respect to time-reversal; we cannot run the calculation
backward to simulate fission. | '

We have also found patterns that spontaneously go into stable oscillation.
Figure 3 shows one such system, consisting of P={2,1}, S={1.4,-1.3,1.4,-1.3}. The
two sequences (a) and (b) are two independent frame sequences generated with
exactly the same population, starting from two different (random) initial
configurations. After a long transient, each configuration settled to the quasi-
periodic patterns shown in Fig. 3(a),(b). In both cases, one organism is stabilized
in the corner, and is repeatedly attacked by the other. The attacker waits a long
time at a safe distance, then suddenly attacks. It is completely destroyed by the
defender, but manages to reassemble at the safe distance, where it effects repairs
and prepares for the next attack. This periodic behavior appeared to persist
forever. The period was relatively well-defined.

As a final example, Figure 4 shows a classic pursuit and fhght relat1onsh1p
The linear wormlike organism crawls along the wall toward the large, circular
ringlike organism in the corner. When the worm reaches the ring, the latter is
temporarily disrupted and flees along the other wall into the opposite corner.
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The worm, however, pursues it, and the sequence repeats. The net result is that
the pair of organisms progress in this start-stop motion counterclockwise forever
around the inside of the box. The most immediate image evoked by this
simulation is of a cat Chasing a grasshopper, or perhaps of a grasshopper
pestering a sleepy cat.

DISCUSSION

We emphasize that these phenomena appear only when the vortex
populations are confined in the box and heated (and cooled at the walls). We
expect any collection of objects to expand when heated. Confining the collection
while maintaining heating is equivalent to cooling the objects at the walls. Thus,
we obtain a dynamic equilibrium between heating and cooling. In general we
expect to find equilibia in such systems that are very different from the equilibria
obtained in adiabatic systems. A very general response of systems under these
conditions is ordering: the system undergoes phase transitions that increase
internal order. Examples are domain formation, crystallization, and coherent
motion. Apparently what we see in the populations of point vortices is just this:
formation of “organisms” with their own simplified motions.

We also point out the relevance of connectivity to these simulations. There is
a growing understanding that connectivity in ecosystems is a crucial determinant
of complexity [Farmer, 1990; Green, 1993, 1994]. If the ecosystem is weakly
connected or if it is strongly connected, it is predictable, but near a critical value
of connectivity, it is inherently chaotic and unpredictable. The relevance to the
present work is through the couplings Kj;, which are a measure of the
connectivity. The stonger interaction in Fig. 2(a) resulted in chaotic disruption of
the organisms, while the weaker interaction in Fig. 2(b) resulted in their nearly
unperturbed fusion. Thus, we should not be surprised that the behavior of the
simulated organisms should depend sensitively on the couplings Kj;. In fact, we
have found cases in which the alteration of S, by as little as 0.1 percent
completely alters the gross emergent behavior of the population.

These simulations are not sufficiently accurate to suggest they would be
useful in understanding behavior, and we see no causative relationship between
these simulations and real organisms. However, they are sufficiently remarkable
that they probably are more than simply amusing. With the flexibility provided
by the interactions S;;, we would expect a wide variety of behaviors suggestive of

living organisms. Since these behaviors emerge from the simple behavior of
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more fundamental objects (the point vortices), they are manifestly linked to a
common origin. Exploration of this kind of system might bring insight into the
range of phenomena one might expect from populations of simple physical
objects.

Based on the results of this paper, we therefore expect to find a wide range of
new and interesting epi-phenomena associated with small populations of
confined objects subject to heating. Point vortices provide one interesting system
with which to study these phenomena. We might expect similar phenomena
from populations of oscillators, pendulums, dipoles, switches, hinges, chains,
and similar objects.
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Figure 1 - Simulated filament extension. The organism on the right
is confined to the corner, while the one on the left does a
slow, irregular dance on the wall in front of it. Without
warning, the left organism extends a long filament toward
the right one, suffering some disruption in the process.
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Figure 2 - (a) Simulated filament-induced disintegration. P={2,3},
S={1,-.7,.7,-1}; (b) Simulated fusion. P={2,3}, S={1,-.1,.1,-1}.
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Figure 3 - Simulated periodic attack and defense. The two sequences
(a) and (b) were generated independently with exactly the
same population, starting from- different random initial
configurations. P={2,2}, S={_1.4,-1.3,1"4,-1.3}.'
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Figure 4 - Simulated pursuit and flight. The small straight organism

chases the circular organism forever counterclockwise
around the box. Extra frames around the box show the
configuration at various times. The numbers indicate the
frame sequence. P={2,1}, S={1,.2,-1,-1}.
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