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ABSTRACT

We present a new approach for modeling the dynamics of
collections of objects with internal structure. Based on the fact that
the behavior of an individual in a population is modified by its
: knowledge of other individuals, a procedure for accounting for

knowledge in a population of interacting objects is presented. It is
assumed that each object has partial (or complete) knowledge of
some (or all) other objects in the population. The dynamical
equations for the objects are then modified to include the effects of
this pairwise knowledge. This procedure has the effect of projecting
out what the population will do from the much larger space of what
it could do, i.e., filtering or smoothing the dynamics by replacing the
complex detailed physical model with an effective model that
produces the behavior of interest. The procedure therefore provides
a minimalist approach for obtaining emergent collective behavior.
The use of knowledge as a dynamical quantity, and its relationship
to statistical mechanics, thermodynamics, information theory, and
cognition microstructure are discussed.
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I. INTRODUCTION

A general problem that appears in many disciplines is that of modeling the
behavior of collections of objects. If the objects are nearly identical, the collection
is termed a population, and the challenge is to derive the emergent collective -
behavior of such populations from the dynamics of the individual objects. A

common approach in such systems is to specify the dynamics of the individuals,
* and track each individual forward in time, extracting population measures (such
as mean size of individuals) whenever desired (Lomnicki, 1988). The goal in such
investigations is to discover ordered states, regions of stability or instability,
critical parameter values, phase transitions, the effects of perturbations, and
similar phenomena.

This paper presents a new approach to populaticn dynamics based on the
idea that each individual has some knowledge of other individuals and that its
behavior is modified by that knowledge. We have a general concept of
“knowing,” and could say that each individual in a population in some sense
“knows” about other individuals. Clearly, individual behavior in a population
depends strongly on what (or who) that individual knows, and how that
knowledge is used. We quantify this idea by postulating a procedure for
modifying the normal dynamical equations of motion to include the amount and
distribution of pairwise knowledge among the individuals, and how that
knowledge is altered by individual interactions and other processes. Thus,
“knowledge” is regarded as a dynamical quantity, and its evolution in time can
be described by a set of equations. Introduction of these equations into the
dynamical system introduces dynamical constraints. These constraints allow
prediction of what will happen from the much larger range of what could happen.

There is currently considerable effort on this subject that appears under
several titles: individual-based ecosystems (DeAngelis and Gross, 1992), artificial
life (Langton, 1989, 1992), cellular automata (Gutowitz, 1991), and connectionism
(Farmer, 1990), among others. These problems are sometimes described as
information-driven: the size of a tractable problem and the speed of the
computation are determined by the amount of information that must be
processed (Brillouin, 1962). Usually concomitant to the approach to such
'problems is a search for ways to reduce the amount of information that must be

carried along.
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While knowledge and information are similar, they are distinct: information
is data in motion; knowledge is data at rest. Information is involved in the
construction of a data structure; knowledge is involved in the use of that data
structure. Information implies the ability to correctly establish a representation;
knowledge implies the ability to examine that representation. Information is used
in correctly storing the answer to a question; knowledge is used in correctly
recovering the answer to the question.

What we propose in this work is a hybrid dynamics specifically designed for
populations of objects that have sufficient internal complexity to have some
knowledge of other objects and to take actions based at least partially on that
knowledge. It is most appropriately applied to simple behavior such as schooling
or flocking, in which the full complexity of the real individual is not necessary to
produce the collective behavior. A perfect exemplary system is a population of
simple robots with communicating internal microprocessors: although the
devices themselves are complex, their actions are determined by a set of simple
rules modified by small data set (stored knowledge) that can be altered by
interactions among individuals. This approach should be useful for simple
animals, robots, globally coupled relaxation oscillators, arrays of point vortices,
computer networks, vehicular traffic, and a wide variety other individual-based
systems, including a massively parallel computer.

Although the dynamical principle presented here will have applications to
biological, chemical, sociological, and many other systems, our approach to the
subject is via physics: We seek consistent and useful ways to modify an existing
physical model to include the effects of pairwise knowledge. We will not track
the knowledge itself (e.g., the names of books); rather, we will track a quantity
giving the amount and distribution of that knowledge. This quantity, a matrix K,
describes what each individual “knows” about every other individual. K is
precisely defined in terms of physically determined probabilities, hence provides
a link to statistical mechanics, thermodynamics, and information theory. Because
the matrix K reasonably approximates the basic dynamics of knowledge in real
systems, it should be an extremely efficient means for generating very complex
emergent behavior that reasonably simulates reality.

In this paper, we define the terminology and describe general properties of
minimally cognitive population dynamics. Throughout this paper, K is assumed
to be constant in time. In a companion paper, we investigate some fundamental
effects that arise when K is not constant. '
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II. INCLUDING KNOWLEDGE IN INDIVIDUAL INTERACTIONS

We begin by postulating that individuals in the population can be
represented as carrying along with them a quantity of “knowledge,” and that this
knowledge influences the individuals' behavior. While we assume the
individuals are capable of storing and processing knowledge, we do not
necessarily require them to be sufficiently talented to use it in any manner
resembling humans might associate with intelligence. The individuals may be
nothing more than simple devices capable of only a small number of reflexive
actions, or they might be extremely complex organisms operating on a limited
number of alternatives. We will sometimes refer to these individuals as having
cognitive ability, and we will have most interest in populations of minimally
cognitive individuals.

The simplest kind of interaction between individuals is pairwise. If the objects
are simple, i.e., have no internal structure, they interact directly, and the
interaction obeys Newton's Third Law. If, however, the objects have internal
structure, the interaction is mediated by an agent, and the interaction need not
obey Newton's Third Law (cf., Figure 1). An example is pursuit-and-flight: one
object may experience an attraction to another object, while the second feels a
repulsion. Such dynamics are enabled by the agent, which acts break the
symmetry between the objects.

It is implied in this picture that there are two or more kinds of objects in the
population. Indeed, if all the objects are truly identical, there could be no
breaking of the symmetry, and Newton's Third Law must be satisfied. However,
we are interested in modeling populations of complex objects, and therefore we
can assume the individual objects have minor differences that enable the Agent
to distinguish them. In this sense, the set of individuals is not a true population
(precisely identical individuals). But of course, neither is a real population in
Nature: every ant, no matter how imperceptibly, is different from every other
ant. It is conventional to refer to a group of individuals that are alike in most (but
not all) respects as a “population.”

The detailed nature of the agent is left unspecified: we only assume the
effective force law, or its equivalent, between any pair of objects. This is really the .
central approximation, and the source of advantage, in the approach taken here:
we ignore the details of the agent, and use only the effective interactions.
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III. EFFECTS OF KNOWLEDGE ON POPULATION DYNAMICS

Next we postulate that the collective emergent behavior of the population will
be determined, at least in part, by the individuals’ pairwise knowledge. We
emphasize that qualitatively new behavior results if the individuals have
cognitive ability [Kampis, 1991].

Figure 2 presents a graphical representation of the knowledge links in a
population of 10 individuals. The widths of the connecting lines are proportional
to the amount of knowledge each individual has of other individuals. While the
positions of the individuals are arbitrary, they can represent actual positions,
which would then vary according to the system dynamics.

As an example, consider flocking in birds. The detailed physics of bird flight
allows each individual bird to fly wherever it might want, and no flocking
results. In order to produce flocking, we introduce constraints and additional
dynamics. These additional factors serve to constrain the collective motion to a
subset of all possible motions, i.e., produce flocking. The conventional approach
to introducing these constraints (Kshatriya and Blake, 1992) is to attempt to
model all the elementary physical factors that determine individual dynamics:
two birds cannot approach closer than a minimum distance, the power needed to
maintain flight is minimum for a certain interbird distance, individual birds
experience a bias in flight direction according to migration pattern, etc.

What we propose here is that these factors can be more efficiently related to
knowledge within the individual: each bird has a representation of all other birds,
and takes its action accordingly. By phrasing these relations as pairwise
knowledge, we obtain the minimal set of constraints necessary to produce the
observed emergent collective behavior. We do not attempt to model all of the
detailed physical processes, but rather to capture their net result through a
paradigm of pairwise knowledge.

We emphasize the simplicity of the knowledge necessary for reasonable
precision. Consider a circling hawk that spots a small animal on the ground.
How much must the hawk know about its potential prey for it to decide to
attack? Surely the hawk must know the position and size of the animal, whether
it is alive, whether it is moving sufficiently slowly that there would be time to
capture it, etc. But it is quite unnecessary for the hawk to know the species, sex,
age, stomach contents, and state of parasitism of its victim. In fact, the amount of
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knowledge that the hawk must have is spectacularly small. We encounter this fact
in almost every social situation: in general, actions are taken based on an
extremely small amount of very specific knowledge, regardless of the complexity
of the real individual.

The major motivation for using knowledge in a dynamical model is therefore
its efficiency. Modeling all the elementary physical processes is not wrong—
ultimately it may even yield reasonable emergent behavior—but it becomes
extremely complicated and is not guaranteed to yield anything meaningful (the
list of physics effects may be inadequate, the system may be numerically
intractable, the introduction of many parameters may introduce unacceptable
uncertainties, the correct procedure for extracting meaningful emergent behavior
may not be clear, etc.). In contrast, lumping much of the detailed physics into a
few parameters resembling pairwise knowledge which we postulate from the
observed behavior of the population will easily produce the appropriate
emergent behavior—and nothing else. Of course, such lumped model
simulations will have less detailed predictive ability. The goal here is to find an
efficient way to produce the gross behavior we want and avoid having to
consider detail we don’t want. In fact, we seek the minimal description of the
system that produces the desired emergent behavior.

We will be most interested in systems in which the interactions between
individuals vanish if the pairwise knowledge is zero. When this happens, all
individuals act independently; there is no collective dynamics and the
population is nothing more than a collection of individuals behaving
independently. If the pairwise knowledge in such systems is low—most
individuals know little or nothing about other individuals—a change in one
individual will produce a small change in other individuals. If the pairwise
knowledge is high—most individuals know a great deal about most other
individuals—the population is strongly interacting, and exhibits collective
behavior. In the limit that the pairwise knowledge is total (everyone knows
everything about everyone else), the population is fully connected. In this case an
effect on one individual is fully felt by all members of the population. This is the
normal case of physics, in which the individual interactions are fully felt.
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IV. PHYSICAL DEFINITION OF KNOWLEDGE

In this section we define the knowledge matrix K in terms of physically well-
defined probabilities. This grounds the present development within physics, and
provides links to information theory, thermodynamics, and statistical mechanics.

Knowledge as probability
Knowledge, in the traditional use of the word, implies a test: we “know”
something if we can give the correct answer to a question about that something.
We imagine repeatedly asking individual {i} to identify the state of individual {j}.
Two extreme cases are immediately obvious:

(1) If {i} has complete knowledge of {j}, then {i} always
(probability=1) correctly identifies the state of {j};
(2) If {i} has no knowledge of {j}, {i} has random probability p, of

giving the correct answer).
We now interpolate between these extremes with the following definitions:

(3) If {i} has partial knowledge of {j}, {i} has some probability pjj in
the range p, <pjj <1 of correctly identifying the state of {j};

(4) If {i} has incorrect knowledge of {j}, {i} has some probability pjj in
the range 0 < p;; < p, of correctly identifying the state of {j}.

Thus, we can associate various common expressions about knowledge with
probabilities (cf., Figure 3).

In more modern phraseology, we “know” something if we have an internal
representation of that something. Thus, in order for us to “know” the number
3.141596, somewhere inside our brain must be a representation of this number.
The representation is similar to a reference: it can be consulted by the individual |
in order to determine appropriate action. This definition avoids having to model
the process of hearing and answering the question. We will assume in this paper
that the process of converting stored knowledge into an answer to a question is
perfect. Thus, the following statements will be taken as equivalent:
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{i} correctly identifies the state of {j}
p;; = the probability that {i} has a true representation of {j}
{i} “knows” the state of {j}

We postulate that the probability matrix p is derivable from physics. It is a
well-defined dynamical quantity that follows from the structure and evolution of
the individual. Whether we can do this in practice for an arbitrary system is
immaterial to the present discussion.

Definition of the knowledge matrix K

We now define the knowledge matrix K in terms of the probability matrix p.
The matrix element K will be taken to mean “how much {i} knows about {j}.”
Note that we are not going to track what {i} knows about {j}; we are going to
track how much {i} knows about {j}, suitably normalized.

The simplest convention is to define Ky=1 if {i} has complete knowledge if
{j}, and K;=0 if {i} has no knowledge of {j}. Assume that the population is
comprised of a set of identical individuals that can be in any one of G possible
discrete states. Assume next that {j} is in only one of the G states accessible to it,
and that {i} makes successive (randomly chosen) guesses of which state. If {i} has
complete knowledge of {j} (Kjj=1), then {i} would correctly identify the state of {j}
with probability p; = 1. If {i} has no knowledge of {j} (K;=0), then {i} would
correctly identify the state of {j} with the random probability p;;= p; = 1/G. These
limiting cases are most simply connected by the linear relation

pij=é+(1—é)Kij 0=Kj=1

With this definition, individual {i} knows between nothing and everything
(inclusive) about another individual {j}. Note that K;; = 1, which means every
individual always knows everything about itself.

For 0<p;;<1/G, {i} has less than a random probability of correctly identifying
the state of {j}, i.e., it is worse than a poor guesser. For p;=0, the guess is always
wrong. We would say that {i} has negative knowledge about {j}, and we can
extend the definition of Kj; to include this possibility:

Pij=é(1+Kij) -1<K;jj<0
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With this definition, individual {i} has incorrect knowledge of another
individual {j}. This situation arises for example when, as {i} attempts to establish
an internal representation of {j}, some process systematically causes it to be done
incorrectly. Such situations are well-known, e.g., dyslexia.

We can now invert the two equations above to obtain Kjj in terms of py;:

Gpy; -1

btV I 1/G<pi<l
K= G-1 1
ij=

Gplj—l OSPIJSI/G

which we take to be the formal definition of K.

Figure 4 shows the relation between p;; and K;;. The piecewise linear relation
is by no means unique; it is proposed as the simplest nontrivial relationship.

We emphasize again that we will not track knowledge itself, but only a
numerical quantity Kj; in the interval (-1,+1) that is a plausible measure of the
amount of knowledge. Rather than introduce a new term for K, we simply refer to it
as the knowledge.

Different kinds of knowledge

The property of individual {j} known by individual {i} quantified by the
matrix element Kjj is quite arbitrary. It can be location, size, age, sex, color,
condition, or any other property. For each property we wish to track, we specify
a separate matrix: K, K', ... Furthermore, we may have a different definition of
“interaction” for each property. For example, fluttering (behavior 1) of a butterfly
may attract (behavior 2) a distant predator, but at close range it is found from the
butterfly’s coloring (property 1) that it is distasteful (property 2). The different
matrices K, K' ... will in general enter the dynamical equations differently.
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V. LUMPED MEASURES OF THE KNOWLEDGE

Each matrix element K;; represents what one individual knows about one
other individual. Therefore, each row in the matrix K represents what one
individual knows about every other individual, and each column represents
what every other individual knows about one individual. The principal diagonal
represents what each individual knows about itself (always =1).

_ Matrix norms
The sum of elements in a row, called the row-submatrix norm, represents the
total knowledge of all other individuals held by individual {i}:

K, = % K;

J

The sum of elements in a column (called the column-submatrix norm)
represents the total knowledge of individual {i} held by all other individuals:

KTj = Zi Kij or KTi = ZJ KTij

The sum of all matrix elements, called the norm, is the total knowledge in the
population held by all individuals of all other individuals:

K=XiK;=Z4%K;
This quantity is conveniently normalized to unity:
k=K/N? .

Alternatively, we can remove the self-knowledge N (= number of individuals

in the population) and normalize the total pairwise knowledge to unity:
kp, = [K- NJ[NZ - N].

This quantity is zero if there is no pairwise knowledge (K;;=5;), and 1 if there
is complete pairwise knowledge (K;;=1).
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Eigenvalues and eigenvectors
If all the elements of K are all real and positive, the matrix can be
diagonalized by a similarity transformation

MK M!=X R =1%;9;;
Furthermore, if K is real and symmetric, all eigenvalues x; will be real (Horn
and Johnson, 1985). Therefore, to the extent that K is not symmetric, we might
expect to see imaginary components of the eigenvalues. Conversely, we might
take the presence of imaginary components of the eigenvalues as indication of
the asymmetry of K. We would say that the appearance of complex eigenvalues
indicates that {i} knows more (or less) about {j} than {j} knows about {i}.
Associated with each eigenvalue x; is an eigenvector S; that satisfies

Ke§i= K S;

If K is real and symmetric, all components of the eigenvectors will be real.
Again, to the extent that K is asymmetric, we will have imaginary components in
the eigenvectors. ‘

The eigenvectors S; represent pseudo-individuals that have the peculiar
property of knowing nothing about any other pseudo-individual. This is obvious
from the fact that the transformed matrix is diagonal, i.e., the off-diagonal
elements X j; are zero. The rather strange circumstance of being able to associate
individuals into noninteracting groups will be mentioned again when we discuss

dynamics of populations with knowledge.
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VI. INTRODUCING KNOWLEDGE INTO THE DYNAMICS

Having defined the matrix K, we are ready to use it to modify a dynamical
system described by a state vector X. We begin by enunciating a dynamical
principle that will have wide, albeit not universal, applicability:

Given a population described by a dynamical model in which
interactions between individuals are specified, the effects of
pairwise knowledge are included by weighting the strengths of the
interactions by the magnitudes of their pairwise knowledge.

By interactions, we mean potentials, forces, or any other quantity that
represents a strength of coupling between pairs of individuals. The choice of
simple weighting of the interactions is in the same spirit as the relationship we
defined between K and p: it is the simplest nontrivial such relationship we can
imagine. The introduction of K into the dynamics can be considered either a
weakening of existing interactions (Kj<l1), or the introduction of new interactions
(K;;>0).

The introduction of K into the dynamics will have two profound effects:

(1) K will break the symmetry between the interacting pairs;
(2) K will alter the relative strengths of the interactions.

Thus, {i} will experience an effect due to {j} that is not, in general, equal to
the effect on {j} due to {i}. Neither effect will be the same as in the original
dynamical system.

With the principle stated above, much of the body of analysis that stems from
classical dynamics is amenable to modification to include the effects of pairwise
knowledge. In the remainder of this section, we give several examples of the
application of this principle to general categories of systems. We will first show
the original model equations, and then modify them according to the principle.
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Hamiltonian systems
Many dynamical systems can be described with a Hamiltonian

N N N
H= T+ D, > Vy=T+V
i J#

i

N N N
H=3Ti+2 2 Vij=T+V
i ij#i

The term Vj represents the potential energy between {i} and {j}. The force
experienced by {i} due to {j} with this Hamiltonian is

Fyj = - ViVj;

In accordance with the principle stated above, we write the modified
Hamiltonian as

N N N
H= 2 T+ Z 2 KijVij=T+(K’V)

i
where K+V is the Hadamard product (KeV);; = K V;; . The modified force is
Fi=- KV Vy

For such systems, the simple prescription is to replace the potential matrix V by
(KeV). In the limit of full knowledge, K;=1, the dynamical equations return to
their unmodified forms. Clearly, K provides a constraint on the evolution of the
system; once the dynamical equation for K is specified, the collective behavior of

the population can be determined.
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Phase transitions and stability

The interesting possibility of phase transitions in cognitive populations can be
investigated by looking for singularities in the equation of state. Normally this is
done in the limit Q—>c. The “phases” are behavioral patterns, seen in the
collective dynamics, so to distinguish them from conventional phase space,
which is defined on the configuration (e.g., coordinates and momenta), we refer
to them as “behaviors.” We might therefore encounter populations that suddenly
shift from one behavior to another. A very good example is that of fish schooling
[Huth and Wissel, 1992]. At rest, fish mill about with uncorrelated random
orientation. When a weak threat is perceived, the fish move away in a highly
ordered, oriented structure. If the threat becomes strong, the school will split into
two or more smaller schools. If the threat is very strong, the school will
disintegrate, and the motion of individuals is again uncorrelated. Because these
behaviors are triggered by the introduction of new knowledge in the population,
these transitions might be called “knowledge-driven behavioral transitions.”
While the existence of these transitions in familiar populations is common
knowledge, what we have presented in this paper is a procedure for
quantitatively predicting them by modifying an existing dynamical model.

Instability and chaotic behavior of complex systems are well-known [May,
1975], and it is well-known that it takes very little complexity to produce the
possibility of instability. We therefore expect to commonly see reversible and
irreversible switching between emergent behaviors in cognitive populations,
triggered by a change in the knowledge. For strong coupling, i.e., rapid
knowledge exchange, we might expect to see chaotic behavior switching. An
unstable system might become stable after introduction of small K, and then
become unstable again for large K. In general, we éxpect to be able to map
regions of stability and instability, or any other general descriptor of behavior, as
a function of K. For a population in which we track several types of knowledge,
(K .. Kp), a plot of the regions of stability in the (K, K,,) plane will provide a
phase portrait of the emergent behavior as a function of these two quantities.
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Multibody interactions

While K relates pairs of individuals, it should be noted that the dynamics of
complex objects can be far richer and more complex than allowed by pairwise
forces. For instance, we might have a system in which no action is taken unless
there is an overlap (“collision”) of four or more individuals. For example [Huth
and Wissel, 1992], individual fish in schools are thought to interact strongly with
4 to 6 nearest neighbors and negligibly with others. Such multibody effects are
generally negligible in the physics of simple objects. Here, however, the objects
are potentially complex, and we seek a simplified or effective description of their
behavior. One class of dynamical equations that captures such multibody effects
is that of polynomials:

B-3 arxe

n

The ith component of the nth term in this series is
P

(An°Xn)i = 2 Z (An)i' ij qu
j k

which may be considered to represent an n-body collision. By suitably defining
the knowledge matrix K and inserting it multiplicatively, we can modify this
term to weaken the effect of the collision:

(An‘Xn)i = Z Z Kij (An)ij ij qu
] k

When the dynamical equation for K is specified, the complete system evolution

can be determined.
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Eigen-individuals
The significance of eigenvectors of K was described above: they represent
pseudo-individuals constructed from the individuals in such a way that the
pseudo-individuals do not interact. This is only possible is the dynamical
equations are linear in K. Let ®(d/dt) be an arbitrary differential operator. The
knowledge-modified dynamical equations are

O(d/dt) X=K£(X.1)
Now apply a constant matrix transformation M that diagonalizes K:
®(d/dt) MeX =MeKeM-1eMof(X 1)
Using S=Mef(X,t) and X=Me*K*M-! (which is diagonal), we have
d(d/dt)S=K-S
of which the ith component is
O(d/d)S;=K>S;

Thus, the equations separate; the eigen-individuals behave as if they had no
knowledge of any other eigen-individual.

We reiterate that this analysis is valid only for constant K. However, if the
pseudo-individuals experience infrequent pairwise collisions (that change K), we
can use this formalism, updating K at every collision, and computing its new
eigen-individuals after each collision. The obvious advantage is that the
separated equations will be simpler to solve, and may yield to analytic solution.
Extrapolation to collision times could then be done analytically, resulting in great
savings over numerical integration of the full coupled equations.
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VII. NUMERICAL EXAMPLES

In this section, we present several numerical experiments that illustrate the
principles developed above for including the knowledge in a dynamical system.
These examples are not meant to simulate real ecosystems. We examine several
systems described by 2N variables {x;,y;}, i=1...N. These variable can be
considered Cartesian coordinates, which are conveniently plotted as trajectories
on the (x,y) plane, thus exhibiting directly the emergent behavior, and its
modification when the knowledge K is introduced. The fact that these point
particles do not have sufficient internal structure to maintain and use a memory

or perform cognition in anthropomorphic terms is immaterial to these examples.

Complete Knowledge
We first examine a population with complete knowledge. A generic system
that serves this purpose is a population of point chasers described by the
following equations of motion:

dt jéi Djj
dt  j=  Dj

where

Djj= \} (Xi—xj)2 + (yi—yj)z '

These equations produce the generic action of pursuit and flight. Typically, the
motion is unbounded; the individuals rush off to infinity, singly or in groups.
We will arbitrarily enclose the individuals in a square or rectangular box and
specify that individuals bounce elastically from the flat walls (we will find that
clusters of individuals bounce inelastically with the wall).

The equations of motion contain only pairwise interaction terms: there are no
terms that resemble a single particle in an external potential, or terms that
represent kinetic energy. Therefore, by the simple dynamical principle given
above, we can introduce the mutual knowledge by simply multiplying the
interactions by the knowledge matrix element Kj:
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= Y Ky
dt & " Dy
d N Yi—V;
o b
dt J#1 ij

Individual {i} may be given complete correct knowledge of {j} by setting
Kj;=+1. This condition causes individual {i} to be repelled by individual {j}. Any
initial population with all matrix elements Ky =+1 will quickly fly apart to
infinity. In the confining box, the individuals rush to the corners and stay pinned
there.

Individual {i} may also be given complete incorrect knowledge of {j} by
setting Kj;=-1. This condition causes individual {i} to be attracted to individual
{j}. Any initial population with all matrix elements Ky =-1 will quickly collapse
to a compact cluster. In the limit of infinitesimal step size, this cluster has
vanishing size, and is stationary. If the step size is finite, the cluster appears to
“swarm,” and wanders randomly within the box.

More interesting behavior of the population occurs by having some pairs with
Kjj=t+1 and others with Kj=-1, which produces competition between attraction
and avoidance. With two possible values of Kj;, there will be two species of
individuals in the population, and we arbitrarily define these as male (M) and
female (F). Thus, every individual {i} will be either M or F, and the values of K;;
will be limited to Ky=%1 (i#j) assigned arbitrarily for the four pairs (M,M), (M,F),
(F.M), and (FF). As always, K;=1.

We now examine a specific population for which we define K as follows:

Kj=tl MM
Kj=1  MP).EM), (FF)

Thus, males will be repelled by other males but will be attracted to females,
while females will be attracted to both males and females. We would expect these
relations to produce chase patterns of emergent behavior, and this is what we
find. In a population of 1 male and 1 female (1M+1F), the male pursues the
female (who flees) (M,M and F,F interactions are not present). Since their speeds

are identical, the pair races around the available space, bouncing from the walls,
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dashing off in new directions. The motion is precisely straight-line, except for the
wall collisions. This behavior is shown in Figure 5(a), which is a time-exposure of
the trajectory over a limited time interval. Note that although the (M,F) pair races
around the box like a single compact object, its internal structure causes wall
collisions violate Snell’s Law; the pair emerges from the wall at a different angle
from which it approached.

Populations with more individuals but having the values of Kj; given above
behave similarly. Figures 5(b)-(f) show the behavior of populations of 2M+2F,
IM+3F, 2M+4F, 3M+3F, and 3M+5F. In each of these, the entire population forms
a compact cluster that chases around the box. But now the wall collisions are

more disruptive to the cluster, and the cluster can spontaneously curve, kink, and
form temporary local swarms. All this behavior is consistent with the fact that the
individuals now feel forces from several individuals in (inverse) proportion to
their separations, introducing enormous complexity into the motion. Although
the motion is completely deterministic (there are no random elements anywhere),
it is chaotic.

Interestingly, all the systems shown in Fig. 5 have an even number of
individuals. Experimentally we found that populations with odd numbers of
individuals very quickly froze into a static configuration. Even after disruption
by heating, the population immediately refroze. The cause of this is unknown.
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Incomplete Knowledge (Randomly Distributed)
We now ask how this system would behave if the pairwise knowledge were
less than complete, i.e., IK;;I<1. We do this by replacing the off-diagonal 1's in Kj;
by random numbers:

Kij =+0<random<1 (M, M)
Kij =-1<random=<0 M,F), (F.M), (F.F).

This situation can be thought of as reducing the pairwise knowledge, i.e.,
weakening the pairwise interactions, while maintaining its sense. Both correct
and incorrect knowledge are reduced, but we do not change incorrect knowledge
into correct knowledge, and vice versa.

Figure 6 shows a set of such experiments with the population of 2 males and 4
females (2M+4F). Each panel records a short interval of the trajectories in a
separate experiment. Each panel continues to evolve in similar patterns forever.

Although the order of these panels in Fig. 6 is immaterial (they were all
separate independent experiments), we have ordered the panels roughly
according to similar behavior:

Fig. 6(a) Same conditions as Fig. 5(d): full knowledge K =t1)

Fig. 6(b) Increased cluster order, reduction of wall collision violence
Fig. 6(c)-(d) A single individual chasing a cluster, and vice-versa

Fig. 6(e)-(j) Quasi-random walking of clusters

Fig. 6(j)-() Asymptotically stable patterns

Clearly, this system shows a wide range of behavior. It was impossible to
predict what kind of behavior a given panel would exhibit; we simply set the K
matrix elements and ran the experiment. Overall, there appears to be a reduction
of the straight parts of the trajectories and enhanced local random curving and
swarming in comparison with the case of full knowledge (Fig. 5). This is
consistent with the notion that straight patterns are generated by individuals
moving together along the same line, clearly an activity that requires the
individuals to know a lot about each other. When that knowledge is less than
complete, the correlations in their motions are lower, and their trajectories
become more chaotic.
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Incomplete Knowledge (Nonrandom)

What is the effect of individuals with less than full and correct knowledge in
an otherwise fully knowledgeable population? To investigate this, we use the
same system as in the previous two sections, but with the matrix elements Kj;

(i#j) selected as follows:

Kij =+1 (M,M)
Klj =‘]. (M’F)9 (FvM)
Kij =-1<variable<+1 (F.F).

Thus, we will only vary the amount of attraction or repulsion of females for
other females.

Figure 7 shows typical behaviors of a population of 2 males and 4 females. As
in Figs. 5 and 6, each panel is a short time-exposure taken from a separate
experiment. Now, however, each panel is associated with a specific value of
Kji(F.F), hence the sequence is relevant.

In general, we found that the population forms a more-or-less compact cluster
that moves around the box with characteristic behavior. We describe these
behaviors first in some detail, then in more general terms, attempting to discern
patterns and sensitivities. (Arbitrarily we extended the range of K;;(F,F)<-1.0.
While this violates the definition of IKj;I<1, all it means in this case is that there
could have been a multiplicative constant in the equations of motion. Only the
product of Kj; and that constant enters the equations.).

-1.27 Chaotic wandering within the box. Infrequently, the
cluster moved coherently in a circular pattern, but
eventually broke away and continued chaotic wandering.

-1.2 All individuals spinning in a circle as a rigid body.

-1.10 Metastable rigid circular rotating pattern, which
eventually broke away, just as it did for the -1.27 case.

-1.05..-1.03  Arcing chains, attempting to form limit circles but never

succeeding.
-1.01 Nearly linear trainlike motion. The legs have kinks.
-1.00 Nearly linear trainlike motion, bouncing violently against

the wall. Bounces resulted in temporary disruption.
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-0.98...-0.95
-09
-0.8...-0.6
05

-0.4
-0.3...+40.1
+0.2...+0.4
+0.6
+0.8...+40.97
+1.0

Thus, we find several general asymptotic emergent behaviors, in rough order

Kinked straight trainlike motion. Infrequently stops to
form a long-lived linear pattern.

Fixed stable linear pattern, achieved quickly.

Chaotic wandering. After very long times, these
sometimes formed fixed, stable linear patterns.

Fixed stable linear pattern.

Chaotic wandering. This pattern also probably ended in a
fixed stable linear pattern. |

Stable compact rotating circular pattern.

Chaotic wandering.

Spontaneously separated into subclusters that wandered
chaotically. The composition (e.g., 2 males +1 female) of
these clusters changed intermittently.

Clusters increasingly maintained fixed compositions, and
followed independent trajectories.

Population was divided into 3 (male female) pairs that
wandered chaoticallyb and independently.

of increasing Kj;(female,female):

< -1.20
-1.2...-1.0
-1.0...-0.8
-0.8...+0.2
+0.2...0.95
> +0.95

A very striking aspect of these experiments is the great sensitivity of the
behaviors to small changes in K;j;(F,F) (note especially the region around -1.00).
We have done other experiments in which a change of 0.001 in this quantity was

Rotation Circular limit cycles

Pursuit Arcing, segmented, and linear trains
Stasis Fixed linear patterns

Stasis Fixed circular patterns

Branching Separate M,F branched patterns
Snaking Separate M,F sinuous trains

enough to produce qualitatively different behavior.

It is interesting that the inventory of emergent behaviors obtained by
systematically varying K;;(F,F) is richer than that obtained by selecting all K
randomly (Fig. 6). We conjecture that unusual emergent behavior is produced by
a matrix K that is far from some “equilibrium” or “balance,” and that random

matrices are closer to that equilibrium or balance.
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Intermittancy due to Incorrect Knowledge
Populations evolving with complicated dynamics have the potential for
undergoing “phase,” i.e., behavioral, transitions. To investigate this possibility in
the context of mutual knowledge, consider a population of point wvortices
described by a Hamiltonian (Kunin, et al., 1992):

H= 2 log(Dj
1#]

Djj = \/(Xi“xj)z + (Yi_yj)z

where {x;,y;} are the canonical coordinates and momenta, respectively. From H

we find the Hamiltonian equations of motion:

dxj _ N (yi - yj)

— 2

dt  jzi  Djj
ay; Y (ximxy
dt i Dj

Each term in H represents the interaction of one vortex with other vortices. H
produces circulating motions in which the vortices orbit around each other.
We now introduce the knowledge K into the dynamics. We can easily write

the modified Hamiltonian as

H =3 Kij log(Dj))
1#]

which leads to the modified equations of motion (we use the same symbols x;.y;)

axi g Kij—(Yi _ yj)

dt =i Dj;
dy; N Xi ~ X;j
dt j#i Djj

For Kj; =1, the vortices have full and correct knowledge of each other. Typical
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behavior of such a population is shown in Figure 8(a), in which 5 vortices are
confined within a square box. After a rather lengthy transient, the system
achieves a rather steady pattern that rotates like a solid body. Anticipating the
next paragraph, we say that the vortices are interacting with .

For IKj;<1, we have “less than full knowledge,” and the emergent behavior of
the population will be different. If K <0 for some pairs {i,j}, we would say that
those pairs have “incorrect knowledge” of each other.

Figure 8(b) shows what happens if we modify Kj; to introduce some incorrect
knowledge. As in previous cases, we assume the population has some males (M)
and some females (F). For these experiments, we assumed a population of
(BM+2F). The matrix elements were set to:

Kj=+1 (M,M), (F,M), (F,F)
Kj=-1 MF)

Thus, males have fully correct knowledge of all other individuals, and
females have fully correct knowledge of other females, but females have fully
incorrect knowledge of males. The motion of males in this population will
therefore tend to be as expected (rotating around as a rigid body), but females
will tend to move oppositely when interacting with these males. In some sense
this is similar to the population of chasers described above: the females run from
the males, while the males chase the females.

The result is a surprisingly rich variety of new emergent behavior (Fig. 8(b)).
We find that the population switches irregularly between chaotic wandering,
jumbled piling against the wall, counter-rotating roughly concentric rings, and
stable well-separated counter-circulating loops. The intermittancy of this system
and the slow switching between attractors is a familiar expression of a system
that is driven into a nonlinear regime, but not so far that it is completely chaotic.

Of course, this example is so simple that it is unnecessary to invoke cognitive
ability to produce the modified emergent behavior. The point here was merely to
illustrate the process of introducing knowledge into the dynamics. In a more
complicated system, for instance a population of small robots, the advantage of
introducing K is that it lumps considerable complexity into a few simple
parameters which reasonably simulate reality. On the other hand, for more
complicated individuals, the dynamical equations themselves may be very
difficult to write.
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Metaindividuals and metapopulations
A collection of individuals that in some way acts as a unit can be called a

metaindividual. So long as the collection maintains some integrity and relative
constancy of structure, it can exhibit its own characteristic behavior. Other
individuals in the population may form into metaindividuals and behave in
similar, or different, ways. The collection of metaindividuals constitutes a
metapopulation. [Gilpin and Hanski, 1991]. In population biology,
metapopulation dynamics is vigorously developed and debated, driven by the
fact that many ecosystems in Nature appear to function as metapopulations.

Within the present paradigm of knowledge-modified dynamics, we have
found numerous examples of systems that behave like metapopulations. An
example is the population of male and female point vortices. Under certain
conditions, the {M} and {F} subpopulations separate for long periods and move
about the available space relatively autonomously, i.e., as metaindividuals..
Infrequently there is a collision of the metaindividuals, perhaps resulting in total
disruption of the population.

Figure 9 shows a time sequence observed with a population of 2M and 2F
vortices. The equations of motion are the same as in the previous section. The K

matrix elements were set to:

Kj= +13 (M,M)
Kij= -03 (M,F)
Kj= +13 (FM)
Kj= -14 (MF)

The population spontaneously separated in to two ring-like metaindividuals,
one containing the 2M vortices, the other containing the 2F vortices. In each ring,
the vortices circulated continuously, 2M clockwise, 2F counterclockwise. The 2F
ring advanced very slowly on the 2M ring in the corner. Suddenly, the 2F ring
extended a filament toward the 2M ring, initiating a major disruption of both
rings. The 2M ring threw the 2F individuals backward, arching them high and
back toward the wall, where eventually they reformed the 2F ring. Then the
process repeated.
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Knowledge-Induced Chaos
In some systems, the increase of knowledge between individuals has the

effect of more tightly coupling their relative motion, hence increasing the order of
the emergent behavior. Can the reverse occur, namely the reduction of order by
knowledge increase? We would expect this to be possible, since increasing the
number of degrees of freedom often leads to greater complexity, and even chaos.
To investigate this process, we examine a population of predators and prey.

The Lotka-Volterra equations for a population of N prey species and M
predator species are (Murray, 1993; Goel; et al., 1971):

dx; N
Si=aix - ), byxiy;
de i

dy;j Y
Brala cyi+ Y, djyix
j=1

where (x;,y;) are the number of (prey,predator) individuals, respectively. The
coefficient g represents prey growth rate, ¢; represents predator death rate, and
bjj and dj; describe the predation severity. In principle, these coefficients could be
derived from a detailed microscopic model. These equations do not derive from a
Hamiltonian.

In accordance with the general principle for introducing the effects of
knowledge into the model equations, we modify those parts of the dynamical
equations that represent interactions:

dxi

N
g - A X - Kby xiy;

j=1

dy; 3
—R=—Ciyi + z‘]’ Kij dijinj

Note that K, K' represent two different kinds of knowledge. The matrices K.K'
might evolve in time according to some externally specified rule or dynamics, or
they might be strictly function of the populations (x;,y;). In general, K#K'. For
numerical simplicity we will set a;=b;=c;=d;;=1, and K=K' Furthermore, we will
take N=M, so that we have a population of N pseudo-individuals, each
represented by the coordinates (x;,y;).
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We examine a population of N=4 pseudo-individuals, divided into two
subpopulations:

i=1  x=mouse y=hawk
i=2  x=rabbit y=fox
i=3  x=antelope  y=tiger
i=4  x=giraffe y=lion

We also adopt the following knowledge matrix K:

mouse/ rabbit/ antelope/  giraffe/

hawk fox tiger - lion
mouse/hawk +1 -1 +k +k
rabbit/fox -1 +1 +k +k
antelope/tiger X X +1 +1
giraffe/lion X X +1 +1

These relations mean that the mouse/hawk and rabbit/fox tend to be found
together (-1), and the antelope/tiger and giraffe /lion tend to stay apart (+1). For
k=0, the subpopulations do not interact. That is, the tiger and lion would not
prey on the mouse and rabbit, and the hawk and fox would not prey on the
antelope and giraffe. The cross relation K=k will simulate the effect of cross
predation (e.g., a fox preying on giraffe). The corresponding cross relation Kj=+k
will simulate the effect of protection (e.g., the lion protecting the mouse). We take
the magnitudes of these various effects to be the same (k) purely for simplicity in
this example; we want to lump all these processes into a single parameter.

The behavior of this system is shown in Figure 10. It is well-known that the
Lottka-Volterra equations are unstable (Hoppensteadt, 1982). We find this
immediately for k=0 as shown in Fig. 10(a)-(d). In Fig. 10(a), all 4 predator-prey
pairs very quickly approach the same familiar limit cycle that appears to be
stable. However, at very long time, the 4 cycles separate, 3 shrinking toward the
origin (which is in the upper left-hand corner), while the fourth grows away from
the origin. In an unbounded domain, this cycle would grow without limit. In the
present simulation, the system is confined within a box, and the cycle jams into

the corner, eventually approaching a limit cycle (Fig. 10(d)). This system is
stabilized by the box.
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Now we change k from 0 to 0.1 (Fig. 10(e)). The stability is disrupted, and the
limit cycles are broadened into chaotic attractors. Figures 10(f)-(h) show how
increasing k to 0.2, 0.4, and 0.6, respectively, increases the disruption of the
attractors. The attractors grow in size and become asymmetric as k increases. The
motion of the individuals, representing numbers of each species, vary more and
more chaotically as k increases. Finally, at k=0.7, the entire system collapses into
two points at opposite corners. This represents populations that are essentially all
predators or all prey, but not both.

Apparently what happened in this example was that the increased predation
of the (hawk,fox) subpopulatioh on the (antelope,giraffe) subpopulation drove
the latter to small numbers. Similarly, the increased protection of the (tiger,lion)
subpopulation of the (mouse,rabbit) subpopulation drove the latter to high
numbers. Independent of the initial numbers of various species, the final
population (with k=0.7) is mostly (mouse,rabbit,tiger,lion), with practically no
(hawk, fox,antelope,giraffe).

The point of this experiment was to show that increasing a quantity
associated with knowledge can drive a stable system into instability and chaos. It
is not suggested that this example is in-any way a reasonable model for a real
ecosystem. The point of this example is to illustrate the kinds of processes that
arise by including a quantity associated with knowledge into a population.

In previous examples (vortices, pursuit and flight), the knowledge K entered
the dynamical equations multiplicatively. This allowed us to use IK;;121, which
just implies a scaling of an overall coupling. In this example, the functional form
is more complicated. Hence, the behavior is nontrivially sensitive to the special
cases a;=bj=c;=d;;=1 and K=K’ To do this properly, we would first specify the
physical model without the knowledge K, then insert K into the terms
representing interactions, maintaining the requirement that IKj;I<1.

Page 30




VIII. RELATION TO OTHER WORK

In knowledge engineering (Harmon and King, 1985), a piece of knowledge is
accompanied by a confidence factor that is the probability that the knowledge is
correct. The matrix element Kj; can be identified as essentially this confidence
factor. What we have added in this work is the postulate that the matrix K has a
dynamics of its own, and can therefore be considered a dynamical quantity.

Many workers are producing surprisingly realistic simulations of collective
behavior of real animals. Typical is the work of Huth and Wissel (1992) on fish
schools and Millonas (1992) on ant colonies. Phrasing such simulations in terms
of pairwise knowledge could be useful. However, this approach is relevant only
if the individuals actually interact, which is not always the case in these
simulations.

This work is also closely related to “agent-oriented programming” [Shoham,
1993]. Shoham defines an agent as an “entity whose state is viewed as consisting
of mental components such as beliefs, capabilities, choices, and commitments.”
Multiple agents in a population interact to produce emergent behavior. Although
these words sound far more general than the kind of object we imagine in this
work, Shoham in fact describes them as being precisely defined, hence these
words are merely symbols for relatively simple mathematical relationships.

This work is very closely related to parallel distributed processing (PDP)
models of cognition (McClelland and Rumelhart, 1989), which are built on a -
paradigm of activation of knowledge atoms and their assembly into context-
sensitive schemata. The evolution of such systems forward in time is described
by relations such as

aj(t+1)=F[X;W;T(a;(1)] = 2;Wjja;(0)

in which 3(t) represents the state of the jth knowledge atom, F is a transfer
function, T is a threshold function, and W is a matrix of weights that are the
strengths of connections between different atoms. The linear limit of this relation
(on the right) emphasizes that the internal knowledge in the system is entirely
contained in the weight matrix W. Our knowledge matrix K corresponds to W.
Additional similarity to the PDP paradigm is found in harmony theory
(Smolensky, 1989). A function H (“harmony”) is defined that is a quantitative
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measure of the self-consistency of a possible state of the system. The probability
p that the system is actually in a particular state described by H is

p o< H/T

where T is a “computational temperature” that must be obtained from more
fundamental theory, or else treated as a phenomenological parameter. Thus, we
find similarity between the PDP expression pj(t) = pj(0) exp(HyT) for the
probability of {j} being in a particular state, and our expression pjj(t) = pj;j(0)
exp(ljj/c) for the probability of {i} knowing which state it is.
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IX. CONCLUSIONS

In this work we have proposed a dynamical principle for determining the
behavior of a collection of objects that have internal structure. The principle
derives from an analogy with biological populations in which each individual
has partial knowledge of every other individual. The individual dynamics is then
altered according to this knowledge, and the emergent collective behavior is
likewise altered.

In its simplest form, the prescription is to start from an existing dynamical
model, and weight the strength of pairwise interactions by the relative amount of
knowledge (normalized to the interval (-1,1)). The pairwise knowledge itself
evolves according to a postulated dynamics, which may or may not depend on
the system configuration. The formalism provides a means for exactly calculating
the emergent collective behavior of the population.

The principle is sufficiently broad that it provides a wide latitude of
generalizations, some of which have analogs in Nature. The principle was
deliberately constructed to provide a minimalist description of the emergent
behavior. It will enable vastly larger systems to be modeled than would be
possible by attempting to include all physical effects from first principles. It is
most appropriate for relatively small populations of minimally cognitive
individuals, e.g., a collection of interacting microprocessors or robots, but it can
be applied to large populations as well. Because even a minute amount of
knowledge is sufficient to produce extremely complex and interesting emergent
behavior of the population, the procedure will easily simulate very complex
collective behavior. The main motivation for this approach is calculational
efficiency: a fast algorithm that produces approximately correct gross collective
behavior could allow study of perturbations that will be useful. While the fast
algorithm may miss on details, the differential effects of perturbations might be
insensitive to such details.

It is emphasized that the principle presented here is not so much a means to
account for reality in Nature. Rather, it is a means to mathematically generate
emergent behavior based on a physically reasonable model of the individual
interaction, namely mutual knowledge. The approach should, however, be useful
in the same sense of any model: to predict behavior and then look to see how
well it did. In that regard, it may properly be called a model.
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Figure 1 - Agent-mediated effective pairwise interactions.
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Figure 2 - A connection diagram representation of the mutual
knowledge in a population of 10 individuals. The
thickness of the lines represents how much each
individual knows about other individuals. The agents
that produce this knowledge are not specified. The
positions of the individuals are arbitrary, but they can
easily represent real spatial positions of the individuals.
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Figure 3 - Correspondence of categories of knowledge with the
probability of correctly identifying the state of an
individual. The quantity p, is the random probability. For

individuals that can be in any of G discrete states, p, =
1/G.
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Figure 4 - Functional relationship between the probability p;; that {i}
can correctly identify the state of {j}, and the pairwise
knowledge Kj.. G is the number of states accessible to {j}.
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Figure 5 - Behavior of several populations for fully correct
knowledge between pairs of males and fully incorrect
knowledge for all other pairs. (a) IM+1F; (b) 2M+2F; (c)
1M+3F; (d) 2M+4F; (e) 3M+3F; (f) 3M+5F. The behavior is
essentially chasing around the box, with inelastic wall
collisions.
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Figure 6 - Motions of 2 male and 4 female individuals in a box.
(a) Complete knowledge.
(b)-(1) Randomly incomplete knowledge.
For each panel, the mutual knowledge K;; was set .
randomly within (0,1). The motion in eacil panel
continued in the same pattern forever; unlike the vortex
- system of Fig. 4, it did not switch between several quasi-
stationary states. In (c) a single individual pursued the
cluster of 5, whereas in (d), the cluster of 5 pursues a
single individual.
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Figure 6 (con’t) - In (j) the pattern achieved complete stability; the
pattern shows the approach to that final state. In (k) all 6
individuals rotated stably around a single point,
presenting an unchanging time-integrated pattern. In (1) .
the 6 individuals immediately formed a fixed cluster.
When dispersed, the cluster immediately reformed into a
new fixed pattern.
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Figure 7 - Motions of 2M and 4F point chasers in a box. For each
panel, the mutual knowledge was K;;=1 for (M,M) pairs,
Kjj=-1 for (M,F) and (F,M) pairs. For the 9 panels above,
the values of K for (F,F) pairs were:
-1.27 -1.05 -1.00
-1.20 -1.08 -0.98
-1.10 -1.01 -0.95
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Figure 7 - (con’t) For the 9 panels above, the values of Kj; for (F,F)
pairs were:
-0.90 -0.60 -0.30
-0.80 -0.50 -0.10
-0.70 -040 0.00
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Figure 7 - (cont) For the 9 panels above, the values of Kj; for (F,F)
pairs were:
+0.10 +0.60 +0.95
+0.20 +0.80 +0.97
+0.40 +0.90 +1.0
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ROl 1

Incorrect Knowledge

Figure 8 - Motions of 3M+2F vortices confined in a box.

(a) Correct knowledge, using the unmodified
Hamiltonian: The vortices rotate uniformly continuously
counterclockwise within the box.

(b) Incorrect knowledge, using the modified
Hamiltonian. The motion switches intermitantly between
chaotic wandering, jumbled piling, counter-rotating
rings, and well-separated counter-spinning rings.
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Figure 9 - Cyclic motion of 2M +2F vortices confined in a box (top to bottom). The 2M
vortices are in the right ring stabilized in the corner, and the 2F vortices are in the left
one. The 2F ring advances slowly on the 2M ring, extends a filament that disrupts both
rings, and then reforms again to repeat the process.
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(a) k=0 (initial) (b) k=0 (later) (c) k=0 (later)

(d) k=0 (final) (e) k=0.1 (f) k=0.2

(g) k=04 (h) k=0.6 (i) k=0.7

L A—

Figure 10 - Effect of knowledge on a community of 4 predator and 4 prey species.
The number of predators is plotted vertically (down) against the number of prey,
with the origin in the upper left-hand corner.

(a)-(c) k=0. Transient population limit cycles.

(d) k=0. Wall-stabilized limit cycles.

(e)-(g) k=0.1, 0.2, 0.4. Knowledge-induced chaos.

(h) k=0.6. Instability induced by high knowledge.

(i) k=0.7. Collapse to fixed points.
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