
LA-UR-
Approved for public release;
distribution is unlimited.

~Alamos
NATIONAL LABORATORY

--- EST. 1943 ---

Title: Mahanaxar: Quality of Service Guarantees in
High-Bandwidth, Real-Time Streaming Data Storage

Author(s): David Bigelow, Scott Brandt,
University of California , Santa Cruz
{dbigelow, scott}@cs.ucsc.edu
John Bent, HB Chen
Los Alamos National Laboratory
{john bent, hbchen}@lanl.gov

Intended for: IEEE 2010 MSST Storage Conference
May 3-7,2010
Lake Tahoe, Nevada

Los Alamos National Laboratory, an aHirmative action/equal opportunity employer, is operated by the Los Alamos National Security, LLC
for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By acceptance
of this article, the publisher recognizes that the U.S. Government retains a nonexclusive , royalty -free license to publish or reproduce the
published form of this contribution , or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests
that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National
Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not
endorse the viewpoint of a publication or guarantee its techn ical correctness.

Form 836 (7/06)

Mahanaxar: Quality of Service Guarantees in
High-Bandwidth, Real-Time Streaming Data Storage

David Bigelow* t, Scott Brandt*, John Bentt, HB Chen t
*University of California, Santa Cruz

{dbigelow, scott }@cs.ucsc.edu
tLos Alamos National Laboratory

{johnbent, hbchen }@lanl.gov

Abstract

Large radio telescopes, cyber-security systems monitoring real-time network traffic, and others have specialized
data storage needs: guaranteed capture of an ultra-high-bandwidth data stream, retention of the data long enough
to determine what is "interesting," retention of interesting data indefinitely, and concurrent read/write access to
determine what data is interesting, without interrupting the ongoing capture of incoming data. Mahanaxar addresses
this problem. Mahanaxar guarantees streaming real-time data capture at (nearly) the full rate of the raw device,
allows concurrent read and write access to the device on a best-effort basis without interrupting the data capture,
and retains data as long as possible given the available storage. It has built in mechanisms for reliability and
indexing, can scale to meet arbitrary bandwidth requirements, and handles both small and large data elements
equally well. Results from our prototype implementation shows that Mahanaxar provides both better guarantees
and better performance than traditional file systems.

Mahanaxar: Quality of Service Guarantees In
High-Bandwidth, Real-Time StreamiI1g Data Storage

David Bigelow*t, Scott Brandt*, John Bentt , HB Chen t
*University of California, Santa Cruz

{dbigelow, scott }@cs.ucsc.edu
tLos Alamos National Laboratory

{johnbent, hbchen}@lanl.gov

Abstract-Large radio telescopes, cyber-security systems mon­
itoring real-time network traffic, and others have specialized data
storage needs: guaranteed capture of an ultra-high-bandwidth
data stream, retention of the data long enough to determine
what is "interesting," retention of interesting data indefinitely,
and concurrent read/write access to determine what data is
interesting, without interrupting the ongoing capture of incoming
data. Mahanaxar addresses this problem. Mahanaxar guarantees
streaming real-time data capture at (nearly) the full rate of the
raw device, allows concurrent read and write access to the device
on a best-effort basis without interrupting the data capture, and
retains data as long as possible given the available storage. It
has built in mechanisms for reliability and indexing, can scale
to meet arbitrary bandwidth requirements, and handles both
small and large data elements equally well. Results from our
prototype implementation shows that Mahanaxar provides both
better guarantees and better performance than traditional file
systems.

I. INTRODUCTION

From the mundane to the exotic, many applications require
real-time data capture and storage. Consumers wish to record
television programs for later viewing, and can do so with
digital video recorders. Security personnel monitor and record
from cameras and sensors when guarding secure areas. Sci­
entists must capture experimental and observational data on
their first and only attempt, from seismometers to telescopes
to test explosions. The base need is the same in all of these
case - guaranteed real-time capture of streaming data - but
with greatly differing parameters.

In television, a standard NTSC/ATSC signal provides data
at around 20 MB/s [I], a rate easily recorded by any standard
consumer grade hard drive. By contrast, the Large Hadron
Collider at CERN generates data on the order of 300 MB/s
after filtering [2] , utilizing a large backend system and global
network . The data rate of one-shot large scientific experiments
may be enormous, limited only by the ability of a specialized
data recording system to capture a burst of data all at once.

Sometimes this data is vitally important, at least for a time,
and cannot be safely discarded. However, a large subset of this
data has the curious property of being mostly "worthless" over
the long term. A security camera positioned to watch over a
door does not generate a steady stream of "useful" data. If
somebody has attempted a break-in, then the data is useful.
Otherwise, there is rarely any practical use in retaining a record
summarized by "nothing interesting happened." Many types

Fig. I Ring Buffer Diagram

of sensor data follow the same model, often summarized by
"nothing interesting here" with sporadic bursts of data worth
saving. Unfortunately for data storage purposes, it is often
impossible to determine which data is worth saving until well
after the fact.

The storage system for this model is best described
by "write-once, read-maybe," or perhaps "write-once, read­
rarely." All data needs to be captured and (temporarily) stored
in real time, but the odds are good that it will never actually
be needed, and can safely expire after a period of time. This
is easily conceptual ized as a ring bu ffer (figure 1): if the data
is not declared "interesting" within a set amount of time,it is
automatically discarded to make room for new data. This is not
a difficult problem on small scales, but presents a challenge
when dealing with large amounts of data.

We created a prototype system, Mahanaxar, to address this
problem. Our first priority is to provide quality of service
guarantees for incoming data streams, ensuring that the process
of saving and retrieving ol.d data does not interfere with the
real-time capture of new data . We also have mechanisms for
reliability and indexing, and discuss the problem of scalability.
We will first present our design for this class of problem, and
then provide results that show superior performance to other
methods of managing this type of data.

II. BACKGROUND

This project was first conceived as a storage system for
the Long Wavelength Array (LWA) project [3]. The LWA
is a distributed radio telescope currently under construction
in southwestern New Mexico. The initial plan is for 53

separate stations scattered widely over the desert. Each station
generates approximately 72.5 MB/s of data , for an overall
data rate of slightly over 3.75 GB/s. This data is generated
continuously and without letup over the lifetime of the project.

Radio astronomy is one of several observational sciences
which generates large amounts of "useless" data: in this case,
apparently random radio noise. Since over a petabyte of new
data is generated in just over three days, it is fortunate that
we can safely throw most of it away. However, it may not be
immediately apparent whether the data is useful or not until
much later, and we are required to retain it for some time
until an outside observer has time to decide whether the data
is interesting, and whether it should be preserved.

As we explored this concept, we realized that there were
many other applications which generate lots of "useless" data,
but deem some of it interesting from time to time. Therefore
we decided to develop a generalized model to address all such
problems. Broadly speaking, we focused on two canonical
real-world problems at opposite ends of our spectrum of
possibilities, with other example problems being derivatives
and combinations of our two primes.

I) Fixed-size, non-indexed data:
Fixed-size, non-indexed data is generated by the LWA
project, and by many types of sensor systems in general.
It arrives at an absolutely fixed rate, never varying, and
is only indexed on a single variable: time of generation.
Oftentimes such data is generated at too high a rate to be
captured on a single storage device, and must be broken
into multiple streams. Such streams need to be correlated
with each other in order to regain the entire data picture.
Any command to preserve data will be given according
to timestamp only.

2) Variable-size, indexed data:
Variable-size, indexed data describes a data source where
the data elements arrive at variable rates and have
variable sizes. Such events may also be indexed by time,
but also by other attributes as determined by the exact
data type. Searching and preserving this data may be
done according to any of the indexed attributes. This is
a more difficult problem due to the non-fixed sizes and
data rates , in addition to the difficulties of a complex
index.

While no existing system yet addresses this specific prob­
lem, the use of a ring buffer to gather sensor data is not new:
both Antelope [4J and Data Turbine [5] use that approach.
However, neither system offers quality of service guarantees,
only best-effort data recording. Other systems like the network
traffic capturing "Time Machine" [6] deal with the problem
only by classifying and prioritizing data streams, and dropping
what they can't handle. Even then, there are no real time
guarantees in the system, and it promises only that it will
record data at best-effort capacity, arranged by priorities.

The COSS Storage System from Squid [7] utilizes a ring
buffer based model, but also functions solely on a best-effort
basis in terms of bandwidth. The mechanism for "preserving"
data is simply to rewrite it again at the top of the buffer, which

is suitable for cache purposes but not scientific data capture.
Larger storage systems such as Lustre do not make quality
of service guarantees from moment to moment [8] , which is
problematic in running a system where the data generation rate
is very close to the maximum sustainable bandwidth. Larger
systems also have no convenient and automatic mechanism to
expire old data when capacity is low.

There has been some quality of service work focused on
providing guarantees of a certain service level from the storage
system, as in RT-Mach [9] and Ceph [10], but only to the
degree of categorizing traffic for an appropriately "fair" level
of service. Data streams can be guaranteed to receive a certain
portion of system resources in both the short and long term,
but the guarantee is of the form "you will get X% of the time
every Y time units," rather than an explicit "you are guaranteed
a bandwidth of Z ."

The disk request scheduling system Fahradd [II] is capa­
ble of providing QoS guarantees within certain constraints.'
Fahradd allocates a certain amount of disk head time to
a requesting process, and lets each process spend the disk
head time as it sees fit. Unfortunately for the purposes of
this problem, that guarantee is not quite strong enough: a
percentage of disk head time does not necessarily translate
directly into bandwidth guarantees, and we need to guarantee
the latter rather than the former.

Because we need to make firm quality of service guarantees,
we cannot work with standard file systems or databases. These
systems have the benefit of simplicity, but are not designed to
work at near-full capacity, and suffer significant performance
degradation in such circumstances. A standard file system is
capable of handling this class of problem in certain rigidly
defined circumstances, but cannot do it well in the general
case, and can never offer explicit quality of service guarantees
without additional modification.

Since this problem involves constant and uninterrupted
writing, we assume that any solution will need to remain
based on conventional rotational disk drives for the foresee­
able future. Solid state storage devices promise to become
prominent in future years, but despite their potential bandwidth
improvements, we do not believe that it is wise to use a
device with a limited number of write cycles in this task.
Write endurance for one of the latest top-rated Intel SSDs
is rated at only 1-2 petabytes [12], an upper limit which
our system would exceed in months. The use of SSDs for
indexing purposes is viable in some circumstances, but we
anticipate that standard mechanical hard drives will continue
to be necessary for main data storage.

III. EXAMPLE USE CASES

Two example use cases were briefly described in the last
section, standing at opposite extremes of our problem space.
The first example use case is based on the type of data which
the LWA generates: continuously streaming fixed size sensor
data. It arrives at an unchanging bandwidth, needs no indexing,
and is uniformly "large." The second example lise case is
described by the problem of monitoring network traffic: each

element is fairly small (often several thousand bytes or less),
and non-fixed in size. Each data element must be indexed on
multiple variables other than time alone .

We can easily imagine other combinations of data size, size
variability, indexing requirements, and arrival rate variability.
However, in addressing the two extreme cases, we should be
able to handle anything in between.

A. Continuously Streaming Sensor Data

This type of data arrives at the same rate forever, never
varying. The size and layout of each data element is known
in advance, or perhaps we only treat it as a stream of bytes,
arranging it in whatever manner is most convenient. Interaction
with this type of data is extremely limited: we take it and store
it with a sequence number (timestamp) and need not worry
about it again until it comes time to overwrite it.

If an external process decides that the data is interesting
and should be saved , it only needs to tell the storage system
that "timestamps X through Y should be preserved" and it is
done. The data is marked as preserved on the storage medium,
the ring-buffer recording is logically rearranged to bypass the
newly-preserved region, and operation continues normally.

This model is relevant in a broad variety of scientific fields
because it may take some time to determine whether the data
is interesting. A radio telescope may be capture a sudden burst
of activity, registering some cosmic event, but scientists also
need to know what was happening in the time leading up to
that event.

This is perhaps the most basic use case possible in this
problem space, but covers a wide variety of systems.

B. Variable-Rate Indexed Network Traffic

In order to detect intrusion attempts into a system, we
may wish to monitor network traffic on a particular router.
The basic concept of the problem is the same: a firehose of
data, most of which is unimportant, but which may become
important based on future detection results. However, the
specifics of this problem are quite different from continuously
streaming sensor data. "Variable" best describes all the major
parameters.

First, there is a natural ebb and flow of network traffic
depending on several factors, some of which can be predicted,
and some of which cannot. For example, we can predict traffic
amounts based on the time of day in certain regions of the
world. However, we cannot necessarily predict the state of
society at any given time, as many things lead to increased or
decreased activity: news, sports, disasters, etc. This changes
moment to moment, and we can only make rough guesses at
it.

The size of network traffic is also variable, as data elements
do not have a single fixed size. An IPv4 packet may range in
size from a few bytes to tens of thousands of bytes. The data
rate may hold steady at X MB/s, but the number of individual
elements to consider and index can differ by a few orders of
magnitude at extreme ends of the spectrum .

The number of indices per data element is also variable. In
the case of an IP packet, time alone is not a sufficient index. To
be useful, we must also be able to index and search on aspects
such as the source and destination addresses, the protocol, the
size, and similar characteristics . This extra indexing poses a
further complication when constructing the initial index and
when performing subsequent searches on the data.

There are several commercial products which provide net­
work traffic monitoring ability, but without the quality of
service guarantees that we desire (aside from the guarantees
provided by brute-force overprovisioning). The strategies we
need to solve this problem are also useful in many other types
of data collection where the rate or size is variable, or where
many indexes are required.

IV. DES1GN

We designed Mahanaxar to meet three primary goals:

I) Provide a quality of service guarantee
Our first priority is to provide a quality of service
guarantee for the incoming data stream, up to a declared
bandwidth. If the incoming data stream requires X MB/s
of write bandwidth, we need to make sure that it has X
MB/s no matter what. If it exceeds that amount, we'll
do the best we can, but make no guarantees. All other
activity on the disk must have lower priority, and be
carefully managed so that it does not interfere with the
recording. We must not lose a single byte; all other tasks,
including reading the data back off the drive, must wait.

2) Use commodity components
We want our system to run on commodity hardware in a
variety of locations. In the case of the LWA project, the
physical location may be a small outpost in the desert.
We cannot assume a high-end network infrastructure or
storage backend, or highly reliable (and expensive) disk
drives. Conversely, if we do have a dedicated machine
room available, it would be foolish not to take advantage.
In no case do we want to attempt to solve the problem
by " throwing more disks at it" until it works.

3) Never lose data
The data that we collect can never be regenerated .
If there is a hardware failure, and there are always
hardware failures, we need to be able to retrieve the data
on demand. However, any reliability mechanism we use
must not compromise the first goal, which is providing
a quality of service guarantee.

These goals guided our thinking when designing Ma­
hanaxar. We will now present the specifics of our design, along
with the rationale and subsidiary goals behind each of them.

A. Staying Close to the Hardware

One of our first design decisions was that we needed to
stay very close to the hardware. In order to assure quality of
service, we need to know what the underlying hardware is
capable of, and more importantly, what it is actually doing at
any given moment. This is particularly important in rotational
disk drives, as performance can differ by several orders of

magnitude based on the access pattern. We need to carefully
map out hardware capabilities before organizing our own
layout. It may be that we need to avoid certain regions of
the disk drive which cannot guarantee the data rate we need.

As an example of why we need this mapping of the hard­
ware, consider one of the hard drives we used for testing: a 1.5
TB drive from Western Digital (model number WDI SEARS).
The first quarter of the drive (measured from the outermost
track) provided a constant minimum write bandwidth of 68
MB/s or better. The last quarter of the drive (innermost tracks)
could manage a consistent minimum write bandwidth of only
52 MB/s. The graph of its performance is shown in figure
2. Other disk drives we tested showed similar patterns, with
higher capacity drives showing a sharper dropoff towards the
"end" of the disk.

This information differs from hard drive to hard drive, even
on those of the same make and model. In fact, an identical
hard drive to this one was approximately 2 MB/s faster over
most of the drive, and significantly slower near the end. Since
we want the best possible performance from our hardware, it is
critical to have this information for each drive. Continuing with
the hard drive above, we can safely advertise a bandwidth of
perhaps 50 MB/s over the entire drive (allowing a bit of slack
for other drive activity). However, if we use only 80% of the
drive in the uppermost region, we can advertise a bandwidth
of around 65 MB/s instead, a significant improvement.

To take advantage of this knowledge of hardware, we must
use the disk without any interface layers. We envision turning
our prototype system into a specialized file system in the
future, but for current purposes in our prototype, we treat the
disk as a raw device and manage our own specialized layout.

B. Chunk-Based Layout

In order to take maximum advantage of our hardware
knowledge, we must restrict the data layout. Modern filesys­
tems are generally good at data placement, but prone to
fragmentation over time. This fragmentation problem is dra­
matically worse when operating in a system at 99%+ capacity
at all times, as we intend. Unless file placement is rigidly
planned out in advance, fragmentation will quickly add up.
Bandwidth is very difficult to guarantee when related data is
scattered all over the surface of a disk rather than clustered
together.

To solve this problem of data layout, we take a cue from
the traditional Sl2-byte disk block, and declare that no data
may be written in a segment smaller than the chunk size.
Chunk size is customizable based on the exact sort of data
that the system is storing, but as a general rule of thumb,
the bigger the chunk, the better. The time required to write I
KB to a disk drive is most often dominated by the seek time
and rotational delay as the disk head moves to the correct
portion of the drive. These same factors are diminished into
near-insignificance when writing a single 50 MB chunk to a
sequential area of the drive, where the actual writing time
dominates .

if>

iii
2
.c
U
.~

'0
C

'" tIl

120

110
100

90
80
70

60

50

40

30

20
10

0
0

Avg Read Speed -­
Avg Wri te Speed -------

........ _--_ ----------------_ .. _-----

2500 5000 7500 10000 12500 15000
Position in Disk , GB

Fig. 2. Average read and write speeds on a particular disk

It is well known that data sequentiality has a very large
impact on overall bandwidth [13], and we attempt to exploit
this factor as much as possible. There are certain disadvantages
in dealing only with very large chunks, but what we lose
in flexibility and packing efficiency, we make up on raw
bandwidth. As long as we follow a basic "don't be stupid" nIle
(for example, we should not use a chunk size that is slightly
smaller than twice the data element size), there is minimal
inefficiency.

By strictly maintaining this chunk size and forcing all
incoming data to conform to it, fragmentation problems are
practically non-existent. The worst case scenario possible is
this: there are only two "free" data chunks in the system, and
every other chunk is marked as preserved. These two chunks
are at exactly opposite ends of the disk, the outermost and
innermost tracks, and the disk head must constantly jump back
and forth between the two. Even in this scenario, since chunk
sizes are large and immutable, seek time between them is only
a tiny part: on the order of a few milliseconds, compared to
about a second for the chunk as a whole.

The worst case scenario for a less strictly controlled filesys­
tem might scatter the chunks over the entire surface of the disk,
anywhere there was spare room, in the 99%+ full system. This
behavior drastically increases the total writing time because of
the large number of seeks. We wish to avoid this scenario at
all costs.

This approach presents no problems with fixed-rate con­
tinuously streaming data, since we can easi Iy pick the ideal
chunk size based on the incoming data. If one "data element"
is the same size as one "data chunk," we have no indexing
difficulties and no packing inefficiency.

When data elements are small and variable III stze, we
must pack multiple elements into each chunk. This may create
packing inefficiency as portions of each chunk are left unfilled,
too small to hold an additional data element. If chunk sizes
are chosen particularly unwisely, up to 50% of the drive may
be unutilized. However, this is easily mitigated by carefully
choosing the chunk size, or by splitting elements into two
portions jf necessary. A greater problem is indexing, which

we address in a later section.

C. Disk Stnlclure and Consistency

Standard file systems store their indexing information on
the disk itself for two main reasons. First, holding the entire
disk index in memory is at best inconvenient, and at worst
impossible, depending on the amount of RAM. It also is not
necessary most of the time because large portions of the file
system are not accessed for large periods of time. The second
reason is far more important: in the event of a system crash, it
is far easier to recover file information from known portions
of the disk than it is to traverse the entire disk partition at
mount and reconstruct the entire file system anew each time.

We can take substantial advantage in this area by noting that
our chunk sizes are both uniformly large and deterministically
placed. The only information that Mahanaxar requires in order
to understand physical disk layout is the chunksize, the number
of chunks, and a possible list of skipped sections within the
disk. This information may be thought of as akin to the
superblock in a standard file system, and is the only disk
structure information which must be stored on the disk itself
- and even that may be skipped, if the information is provided
by an external source prior to mount.

The chunk index itself is only a list of sequence numbers
(timestamps) and a few state variables (for example, marking
whether the chunk is preserved), and must be kept in memory
at all times In order to know which data is the next to expire.
It might also be kept on disk in event of a crash, but that
approach would mean frequent seeks to an index area, a waste
of bandwidth.

The implications of these observations are that we can hold
the entire index structure in memory, and need never commit
it to disk. We gain measurable performance advantages by
only writing the data itself, rather than constantly updating an
Index or on-disk metadata. The only real disadvantage is in
reconstructing the index if it is ever necessary, due to a failure
of some sort.

However, we also observe that this is a system which is
never supposed to go offline. If it does go offline, there has
been a problem of some sort (perhaps through a power failure) ,
and there must be a backup plan available to ensure that data
IS not lost. Because of this, the startup time of a failed system
IS much less of an issue, even if it happens to take a few more
minutes than usual.

The greater reconstruction time for the index is a small price
to pay for Increased overall performance. This is particularly
true Since In the event of a system crash, the disk drive would
need to be rescanned for consistency anyway. We do not
anticipate this type of system ever shutting down in normal
conditions.

D. Reliability and Recovery

Storage systems fail from time to time, both from recov­
erable crashes and via outright hardware failures. When this
happens, we must take two things into account: the ongoing

data collection must not be disrupted , and we must be able to
recover lost data if the failed drive is entirely dead.

This problem is easily addressed by redundant drives in
a smaller system. For example, each LWA station generating
data at 72.5 MB/s may be best backed up by a redundant drive,
or a second computer entirely if funding is available. Since
each station is independent from the others and possibly not
connected to a network, the simplest solution is probably the
best, and we need not consider it further, other than ensuring
the drives are matched in their capabilities.

The far more interesting case is a large system, where a
total mirroring of drives is inefficient and uneconomical both
in terms of monetary cost and power consumed. A far more
elegant solution is available, and is an old familiar one: RAID.

A conventional RAID system provides fault-tolerance and
even certain performance advantages with the proper work­
load, but is disadvantaged when a drive has failed and the
system must operate in degraded mode. Read times often
increase dramatically since the data from an entire series of
drives must be reassembled for every s ingle read . Writing an
entirely new stripe of data into a degraded RAID system will
often not hurt performance, and ironically may even increase
it slightly due to one less disk being involved.

Recalling that our system can be characterized as "write
once, read maybe," it becomes apparent that the disadvantages
of a RAID system may never actually come into play. When
a disk fails, it is entirely possible that none of its data is
"interesting" and we never need to reconstruct it In fact
all data stored on that disk will expire within a ~atter of
hours unless the system is specifically instructed to preserve
a section. We may need to regenerate a portion of the data,
but almost never will there be a case in which we have to
regenerate an entire disk's worth of data.

This technique works best when the data chunks in a
RAID group are all related to each other. For example, an
"Ideal" RAID group might be a single 300 MB/s stream
broken up into five 60 MB/s streams going to five different
drives. In this case, an order to preserve data would be given
to all drives simultaneously, and there would be no need
to preserve unwanted data. Even reconstruction of data for
storage elsewhere would be easy, since the same chunks from
the working di sks would be read in either case.

Unfortunately, if the data chunks are not related to each
other, there is a potential downside. If there are five separate
streams of data, the preservation of any given chunk in a
stream would require that four other "unneeded" chunks be
saved for redundancy purposes . Collection of data would
never be impaired and quality of service guarantees would be
unaffected, but total capacity of the buffer would be reduced
unnecessarily. For this reason, it is preferable that chunks in
a RAID group be highly related .

We are not limited to standard RAID alone, as any erasure­
correcting code would work equally well. Reed-Solomon
codes (as an example) are not often used in high-performance
storage because of a high computational overhead for encodina
and decoding. Because of our coordinated chunks and write~

intensive workload, such codes have a lower performance
penalty, and may be worth considering in future work.

E. Indexing

It is difficult to design a general solution for the problem of
indexing. Ifwe only need to index a timestamp for each (large)
data element, there are few problems. If we need to index four
different factors of a twenty byte data packet, indexing is a
problem no matter how we try to solve it. Nonetheless, we
must be able to index data at its arrival rate, and search it
efficiently upon request.

We address the simple problem first. If data elements are
large and indices are few, we can keep an entire searchable
index in main memory. This describes the type of searching
we must do with many types of continuously streaming sensor
data , including the LWA, where the only required index
is time. For an example calculation, assume that our data
elements are 50 megabytes in size, and indexed by an 8-
byte sequence number (timestamp). The entire index is only
a few hundred kilobytes in size when using an entire 1.5
terabyte drive. Reduce the data e lement size down to only
a few kilobytes and the size of the entire index is only a
few gigabytes in size, easily held in memory for standard
commodity systems of 20 I O.

It is a far more complex problem when data elements are
tiny and there are multiple factors which must be indexed.
Consider the problem of storing IP packets that are indexed
on source and destination addresses (4 bytes each), protocol
(J byte), and data length (4 bytes). Furthermore, assume that
each of these data packets are tiny for the worst-case scenario:
20 bytes each. The indexing in such a scenario would run to
hundreds of gigabytes. In fact, the indexing in such a case
would be 13/20 of the data itself. While this is an unlikely
scenario, a more reasonable scenario may still include an index
large enough such that it cannot be stored entirely in main
memory.

If there is no room in main memory for the index, we must
clearly divert at least a portion of it to secondary storage of
some sort. We have developed two ways of doing this, and
implemented the first into Mahanaxar while we consider how
to best implement the second.

Out first so lution is to attach an " index" segment to each
chunk and commit it to disk alongside that chunk. We maintain
a bird's-eye index in main memory, but details are stored on
disk. If nobody ever inquires about the data in that particular
chunk, the index segment expires at the same time as the data
segment. If a search is performed, we can narrow down the
potential chunks as much as possible with our bird's-eye view,
then read the necessary index segments for a more detailed
search.

Unfortunately, this search is necessarily quite slow because
our ability to read from the disk is limited by the quality of
service guarantees we make for incoming data. It is entirely
possible to miss the opportunity to preserve data because our
search is far slower than the speed at which incoming data
overwrites old data. We can mitigate this effect, partially, by

marking all chunks currently being searched as temporarily
preserved.

This problem cannot be solved so long as indexing infor­
mation resides on the same disk as the data itself, which led
us to a second solution: a secondary disk designed to store
indexing information only. Indexing information is (usually)
much smaller than the full data element, which would allow
a single indexing disk to hold the indexes from several data
disks at once. This is not a perfect solution since it depends
on a secondary disk being available, and creates potential new
reliability issues if the index is only stored on that one drive.
However, it allows a very large speedup in search speed, which
may be worth the extra cost in some situations.

We have considered using an SSD for the secondary index
drive. As previously discussed, SSDs are not suitable for data
drives in our model, but may be for the far smaller indexes.
The vastly superior read bandwidth available also contributes
to speedy searches on large datasets.

If we are only indexing a few well-ordered indices, we
have elected to handle the search within our own system.
If we need to search on multiple variables which are not
well ordered amongst each other, we detennined that it would
be best not to reinvent the wheel, and pass the problem to
another mechanism well suited to the task: a database. We
create a database anew with each search, using the indexing
information from whatever data chunks are needed. Following
the results of the search, the database is dropped entirely,
never being used for more time than it takes to complete the
search. This "lazy search" allows us to optimize data storage
according to our own bandwidth needs, but pass the search
problem to a mechanism better- sui ted to handling it.

V. SCALING

Our prototype system is mainly concerned with the problem
of guaranteeing quality of service from single data streams
onto single disks . We can take multiple data streams and route
them to different disks and create RA ID groups within the
same system, but have not yet addressed the larger scaling
problem involving multiple sites and systems. The LWA
project involves only 53 stations at the start, but what if it
were to expand to 500 stations with more interconnectivity?
We need to understand how to best scale upward.

Because our model is tied so closely to the hardware, we
can easily scale up the data capture portion. Each disk is
bound to a single data stream and need only concern itself
with putting that data stream on that disk, and reading other
sections as requested . An external process is responsible for
giving instructions to preserve or read data, and from the disk
point of view, the only logical connection it has with any other
data stream is when it happens to be in a RAID group.

From a control point of view, hundreds or thousands of
streams may be tied together, and a controller process may
need to preserve data over a thousand different disks at once.
We have treated this as a communications problem thus far
and not focused on it, but we intend to fully explore it at a

Sentinel Values

I
I I

I~ 11111 mill I I! 1IIIIIItlllili ~I
Metadata

I '\
Indexing

Data One Element

Fig. J. Data chunk layout

later time. For the moment, we prefer to focus on the quality
of service and individual indexing issues.

VI. PROTOTYPE ARCHITECTURE

Our long-range intention is to create a specialized filesystem
and interface layer, but for prototype and testing purposes, we
first created Mahanaxar. It is a multithreaded process which
runs in userspace and accesses disk drives as raw devices.
MUltiple processes may run on the same machine, one process
per disk, and an additional process may be configured to
accept multiple data streams and combine them for RAID
reliability purposes. All access to a given disk must be through
its associated process in order to manage the bandwidth. Each
process/disk is governed by a configuration file that specifies,
among other things, the chunk size, the element size range, and
the method of indexing. State can be restored from a shutdown
or crashed state by scanning and re-indexing the disk.

Each process runs several threads, of which the two most
important are data processing and I/O. The data processing
thread is responsible for arranging the data elements into
chunks and indexing it. An example data chunk layout can
be seen in figure 3. The components are:

I) Sentinel Values are intended to ensure that a chunk is
marked inconsistent if the system crashes in the middle
of a write.

2) Metadata is present for system restart purposes, and
describes the exact layout of the chunk index and set of
data elements.

3) lndexing is described in a previous section .
4) Data and Elements are where the actual data itself is

stored.

The second main thread is intended for I/O. Our I/O model
works on a simple priority scheme: if there is a chunk of data
ready to be put on disk , it gets first priority and is written as
soon as possible. Data is only read if there is no chunk which
currently needs to be written.

This method produces a jagged access pattern, especially
for reads, since nothing may be read for some time, and then
an entire chunk is read and delivered all at once. This is an
unfortunate but necessary effect of making quality of service
guarantees and maximizing bandwidth, since we do not wish
to fritter away disk head time seeking back and forth over the
disk in pursuit of a smoother curve on a bandwidth graph.

Long-tenn trends average out the bandwidth into smooth
curves, which we feel is acceptable when considering the sheer
amounts of data we are attempting to deal with. In the short­
term view, while a read request is never entirely starved, it
may be forced to wait some time.

As each data element arrives at Mahanaxar, it is immediately
indexed and placed into a chunk. If element sizes are large,
one element may be equal to one chunk. If sizes are small,
hundreds or thousands of data elements may be placed into
a single chunk. Default primary indexing is based entirely
around chunks, and is made up of a pair of timestamps. The
first marks the time at which the first element started arriving,
and the second marks the time at which the last element has
fully arrived. Other indexing schemes are possible, and we use
only a single sequence number for LWA-type data.

The chunk size may be configured according to system
requirements, but we have found that larger chunks provide
the best perfonnance. We prefer to use a rule-of-thumb that
one chunk should be approximately the amount that the disk
takes one second to write to disk. In order to minimize wasted
space, chunk size should be arranged to be a close multiple of
the typical element size, and including a margin for metadata
and indexing information. If elements are X MB each, a chunk
size of 2X - 1 MB would be a very poor choice.

If the main memory is of sufficient size and elements are
sufficiently large, each element can be individually indexed by
timestamp and possibly other "primary ids." Mahanaxar does
its best to store as much indexing infonnation as possible in
main memory, so that searches can be performed quickly, but
in certain scenarios, it may not be able to index anything more
than timestamp ranges in main memory.

Unfortunately, in order to maintain rig id chunk size and
available bandwidth, we must save an entire chunk at a time,
even if only a single small element of that chunk is actually
desired . We are currently working on a way to accumulate

individual elements on the fly as they pass under the disk
head for later storage in dedicated chunks.

VII. TESTING PROCEDURE

We designed our tests to focus on the raw bandwidth under
several different workloads. We used several different disks on
the same machine and achieved similar results for each disk,
adjusted for its available bandwidth. All the results presented

V>

ill
::;:
.<::
-0 .;:
"0
c

'" tn

(a) Mahanaxar

..................
70 -
60 .. ~--

50

40

30

20

10

0
0

Write Speed -
Read Speed ---e--­

Combined Bandwidth

.... --- -_ ... -_.-
~ ... ____ ---e ___ e- __ • __ • __ • __ • __ • __ • __

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Requested Read Speed, MB/s

V>

ill
::;:
£
-0
;:
"0
c

'" tn

80

70

60

50

40

30

20

10

(b) ext2 file system

Write Speed -e-­
Read Speed ---e- -­

Combined Bandwidth ---'"
Data Loss

.. c cc~_~~: -~--~ --:--~--~---:--:--:--:-_"3--:--
O~~~~~~~~~~~~~~~~~

o 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Requested Read Speed, MB/s

Fig. 4. Comparison of Mahanaxar and ext2 filesystem with an incoming data rate of 60 MB/s and increasing requested read speeds

here are based upon one particular disk (profiled in figure 2)
so that we make fair bandwidth comparisons between tests.

Our testing machine used an Intel Core 2 Quad processor
clocked at 2.83 GHz, with 8 GB of main memory, and an
operating system of Debian 5.0 ("lenny"). The particular disk
used for these results was a Western Digital Caviar Green
of 1.5 (decimal) TB advertised capacity. Our own reported
measurements shall be understood to use the binary convention
of KB, MB, etc.

The raw write bandwidth of this particular disk averaged
from 50 MB/s to 70 MB/s, and its read bandwidth from 57
MB/s to 115 MB/s. Upon profiling the drive, we determined
that the read bandwidth decreased in an approximately linear
fashion from its peak at the outermost tracks of the drive at
115 MB/s to about 70 MB/s at a point about 80% into the
drive. Bandwidth dropped sharply in the last 20% of the drive
to a low of around 50 MB/s. Meanwhile, the write bandwidth
only dropped from 70 MB/s to 65 MB/s in that same 80% of
the disk, and sharply decreased in the last 20%.

Due to this behavior, we elected not to use the
lower/innermost portion of the drive. This allows us to offer
a sustained write bandwidth of 60 MB/s with 5-10 MB/s left
available for reading. This gave us a usable disk size of about
one (binary) terabyte.

We disabled disk write caching for our testing so that we
could be (reasonably) sure that the data was on disk when
we thought it was, and we ensured that the disk was fully
synchronized with each chunk that was written. Interestingly,
disabling the write cache slightly improved overall write
bandwidth on our disks.

Our primary comparisons were made against the ext2 file
system utilizing flat files. We also tested against ext3 and
XFS, each of which had worse performance than ext2, which
we attribute to their joumaling nature. 10urnaling file systems
impose unnecessary bandwidth on the disk for problems of
this nature. In order to give the file system write caching an
opportunity to reorder its disk access patterns as necessary,
we refrained from explicitly sync'ing to disk after each chunk,
as we did with our own system. Instead, we only explicitly

synchronized to disk every few hundred megabytes, which
was several seconds worth of writing. We would prefer to
have tight sync'ing to disk to keep the same consistency as
Mahanaxar, but we discovered that ext2 performed much better
when explicit synchronization was rare.

We had also intended to compare against a pure database
model, but quickly discovered that performance was extremely
poor as we approached the limits of the disk. The initial
population of our database on the first cycle of data was of
comparable speed to our ext2 based system, but performance
quickly dropped to less than a third of ext2 when constantly
expiring old data in favor of new elements. We therefore
stopped testing against a database model and focused on our
comparisons against the regular filesystem.

Our primary testing procedure was to select various element
and chunk sizes, then measure the bandwidth in both writing
and reading. We partitioned the "uppermost" 80% of the drive
and ran tests utilizing the entire space for some of the results
here. For others, we created smaller partitions within that space
in order to gather data of a finer grain. All results are gathered
from an "aged" system which has been in operation for several
full cycles over the space of the disk, unless otherwise noted.

We present here only those results for which our comparison
ext2 filesystem achieved stable performance. Certain of our
tests led to an ever-decreasing performance over time as the
entire system continued to age, and continued that decrease
over many full disk cycles. For example, when dealing with
highly variable element sizes, the standard filesystem had to
constantly delete a variable number of elements and create
new elements of different size. Because the file system was
operating at 99%+ of capacity (as intended), fragmentation
problems built up very quickly and data locality was destroyed.

Because of this characteristic, we hypothesize that fragmen­
tation would continue until blocks belonging to the same ele­
ment would only be physically consecutive by happenstance.
Therefore, we discontinued these tests and instead used a
constant element size which we overwrote in-place on the
standard file system in order to give it as much of an advantage
as possible.

70

60

'" m 50

::;
40 £

'6
.~ 30 u
c

'" en 20

10

a
a

(a) Comparison of read bandwidth on firs t cycle

2000 4000

Wri te Speed (Both) -­
Mahanaxar Read Speed -------

ext2 Read Speed

6000 8000 10000 12000

Position in disk, in GB

~
en
::;
.c'
'6
. ~

u
c

'" en

14

12

10

8

6

4

2

(b) Closeup of read bandwidth aHer several cycles

Mahanaxar Read Speed -­
ext2 Read Speed -------

a ~~~_L~~~~~~_L~~~~~~~
a 200 400 600 800 1000 1200 1400 1600 1800 2000

Position in a particular partition, in MB

Fig. 5. Performance of Mahanaxar versus a regular filesyslem with strict priorities , overall view on first cycle (a), and closcup vicw of a singlc partition
aftcr multiple cyclcs (b)

Our own system, Mahanaxar, is designed to deal with this
variable element size without changing its mode of operation

. and thus its performance never declined over time . Because
its design packs variable element sizes into fixed chunk sizes,
the graphs presented in the next section are identical to those
from our variable element size testing, except in "packing
efficiency."

VIfI. RESULTS

Figure 4 is a basic comparison of Mahanaxar versus a
normal ext2 filesystem with no modifications. The incoming
data stream has a bandwidth of 60 MB/s. The element size is
also set to be 60 MB . An external process is attempting to read
data from the disk at increasing speeds along the x-axis. The
total available bandwidth of the disk drive in this region of the
disk has ample capacity to write at 60 MB/s, and read at up to
12 MB/s if the writing and reading are properly coordinated.

The values shown on the graph are the average read and
write bandwidths of Mahanaxar and the ext2 filesystem over an
entire partition. The partition is already populated with existing
data (for several cycles) at the start of the test. Mahanaxar
maintains a constant write bandwidth of 60 MB/s no matter
how much bandwidth the external reading process requests .
Up to the physical limitations of the disk drive, Mahanaxar
can also provide the requested read speed.

By contrast, the ext2 based filesystem starts falling behind
the required 60 MB/s write bandwidth, even when the read
process is only attempting to read at 2 MB/s. By the time
the read process is attempting to read at 10 MB/s (which the
disk can easily handle if managed correctly), over 5% of the
incoming data is lost due to insufficient bandwidth. Even at
that point, the reading process still can't reach the requested
10 MB/s read speed, being held to about 8.5 MB/s.

The reason for this disparity is that a standard ext2 filesys­
tern manages its bandwidth "fairly" rather than managing it
in a way to provide quality of service. Mahanaxar is able
to throttle the read requests and prioritizes writes entirely.
Because of this disparity, we decided to introduce a similar

mechanism for the standard filesystem which ensures writing
always has priority .

Figure 5 shows two different views of the comparison
against a filesystem with strict priorities introduced , mimicking
Mahanaxar. The element size remains at 60 MB/s for this test.
Part (a) shows the initial populating of the disk. In other words,
this is a "fresh" system on its first round. Both systems are able
to maintain a 60 MB/s write speed here. Although Mahanaxar
has a slightly higher bandwidth on reading, the two systems
are largely equivalent for the first "cycle" through.

Part (b) shows what happens after several cycles, and
focuses on the read performance only (write performance
remains at 60 MB/s for both systems). This test takes place
within a single partition in order to limit the region of the disk
which is used . Here, Mahanaxar maintains a read performance
of 10-12 MB/s, while the ext2 system drops down to about 2-4
MB/s before it stabilizes. As mentioned before, all elements
in this test are overwritten in place. We also wish to note
that we used the same in-memory index for the ext2 system
as we did for Mahanaxar. If we let the ext2 system rely on
filesystem metadata only, in determining which data elements
expire, performance continues to decrease steadily over time .

For both the graphs in figure 5, the x-axis has a slightly
different interpretation for each system. For Mahanaxar, the
x-axis represents the literal position of the data within the
disk or partition. In the ext2 file system approach, the x-axis
only represents the position in the cycle for that particular set
of data . The literal position within the disk is determined by
the filesystem's data placement techniques, though the units
are identical. We focused on a smaller partition for part (b)
mainly to ensure that the ext2 approach stayed in the same
small region of the disk for a more limited test.

Figures 4 and 5 were both carried out with a 60 MB
element size, which is what a regular filesystem can handle
best: large contiguous files written and read as one unit. Figure
6 shows the results when we reduce the element size to 1MB,
but leave in the other enhancements to the regular filesystem
with regards to indexing and priorities. This results of this test

80

70

VJ 60
in
::;;

50
£
15 40 ;:
1:l
C 30
'" <D

20

10

0
0

(a) Mahanaxar

Mahanaxar Write Speed -­
Mahanaxar Read Speed ------ ­

Mahanaxar Combined Bandwidth

-- - - ... - - _ ~ - --- - .. _--_ - --.- - .. ---..- -_ -----.- - ---

2000 4000 6000 8000 10000 12000

80

70

VJ 60
in
::;;
.c'

50

15 40 ;:
'0
C 30
'" <D

20

10

0
0 2000

(b) ext2

ext2 Write Speed -­
ext2 Read Speed -------

ext2 Combined Bandwidth

4000 6000 8000 10000 12000

Progress through parti tion, in MB Progress through partition, in MB

Fig. 6. Comparison of Mahanaxar and a regular filesystem with strict priorities, MB clement size. The lines in (b) arc extremely close to th e lines at 35
and 0, respectively.

are shown on a single partition for detail, rather than over the
whole drive.

Mahanaxar retains a write bandwidth of 60 MB/s, and has
an available read bandwidth of nearly 20 MB/s in this partition,
for a total JlO bandwidth of around 80 MB/s. This performance
is practically identical to when it was working with 60 MB
elements because it combines those elements together into 60
MB chunks. This same pattern holds for any element size, as
we tested in going down to a mere 20 byte element size.

However, the performance of the ext2 filesystem is drasti­
calJy reduced with I MB elements. If we do not explicitly syn­
chronize the write cache to disk, the filesystem can "pretend"
to keep up for quite some time, but it eventually coll.apses
under its own weight. Synchronizing after every element is
unrealistic, however, and we only forced a sync to disk every
few hundred elements (megabytes) to keep it honest.

We found that the maximum sustainable write bandwidth
for the ext2 filesystem was about 35 MB/s. At 38 MB/s and
above, it slowly starts falling behind over time and eventually
loses data as it runs out of buffer space. At 35 MB/s it loses no
data over the course of many cycles, having stabilized, and it
can read off data at around I MB/s. This combined bandwidth
of less than 36 MB/s compares very poorly with Mahanaxar's
performance of nearly 80 MB/s combined bandwidth. The
performance difference between Mahanaxar and fiat files only
increases as the element size shrinks even further.

When we tested variable element sizes on the ext2 filesys­
tem, performance decreased steadily over time without ap­
pearing to stabilize at any point, and thus we do not have
a proper comparison to make against the steady performance
of Mahanaxar under the same circumstances. However, the
performance graph of Mahanaxar when run with variable
element sizes is identical to that of 6 (a).

IX. CONCLUSION

The perfonnance of Mahanaxar shows that is has a clear
edge over standard filesystems in the high-bandwidth "write
once, read rarely" workload. By staying very close to the
physical hardware and aligning our workload to match, we are

able to provide real quality of service guarantees to meet a set
of hard real-time deadlines in a high-turnover, high-bandwidth
environment. We are able to reach performance levels on par
with the tested maximum of individual hard drives, though
this depends on generating disk profiles on a per-drive basis
in order to maximally exploit the hardware.

Even when standard filesystems are adapted to prioritize
data streams and enhanced with a more appropriate indexing
capacity, they cannot maintain as high an overall bandwidth
as Mahanaxar. Even with the ideal large element sizes,
standard filesystems can only come "close" to Mahanaxar's
performance. When element sizes are smaller or variable,
performance of standard filesystems drops drastically, and they
cannot handle variable element sizes in a 99%+ full. system
sizes at all.

Our future intentions are to tum this project into a full
specialized file system, develop an API to interact with it,
and develop an interface allowing an arbitrary number of such
systems to operate in concert to capture arbitrarily large data
streams. We also need to run performance tests on various
types of rebuilding after hardware failure, and experiment with
using separate " index" drives to improve search performance.
Lastly, we need to address the problem of preserving individ­
ual data elements within a chunk , and develop a system for
scalability.

However, we feel that the raw performance numbers are
sound , and promise a substantial improvement over the current
systems which cannot offer any quality of service guarantees
for this type of problem.

REFERENCES

[I] A/53 ' ATSC DigilO/ Television Standard, Parts 1-6, 2007, Advanced
Telcvision Systems Committee, Inc., 3 January 2007.

[2] L. C Grid, "Gridbriefings: Grid computing in five minutes," August
2008.

[3 1 .. http://www.phys.unrn.cdurIwaiindex. html ...
[4] Antelope: ARTS configuration and opera/ions manual, Boulder Real

Time Technologies, Inc., 3 November 1998.

[5] S. Tilak, P. Hubbard, M. Miller, and T. Fountain, "The ring buffer
network bus (rbnb) dataturbine streaming data middleware for environ­
mental observing systems," in e-Science, Bangalore, India, 10112/2007
2007.

[6] S. Kornexl, V. Paxson, H. Dreger, A. Feldmann, and R. Sommer,
"Building a time machine for efficient recording and retrieval of high­
volume network traffic," in IMC '05: Proceedings of the 5th ACM
SIGCOMJvI conference on Internet Measurement. Bcrkeley, CA, USA:
USENIX Association, 2005, pp. 23-23.

[7] A. Chadd, ''http://devel.squid-eaehe.orgicoss/coss-notes.txt,'' 2005.
[8] DataDireet Nctworks, "Best praeticcs for architceting a lustre-based

storage environment," DataDireet Networks, Tech. Rep" 2008.
[9] A. Molano, K. Juvva, and R. Rajkumar, "Real-time filesystems. guaran­

teeing timing constraints for disk accesses in It-mach," in The 18th IEEE
Real-Time Systems Symposium, December 2-5,19971997, pp. 155-165.

[10] 1. Wu and S. Brandt, "Providing quality of service support in objeet­
based file system," in 24th IEEE Conference 011 Mass Storage Systems
and Technologies, 24-27 Sept. 2007 2007, pp. 157-170.

[11] A. Povzner, T. Kaldewey, S. Brandt, R. Golding, T. M. Wong, and
C. Maltzahn, "Efficient guaranteed disk request scheduling with famrad,"
in Eurosys '08.' Proceedings of the 3rd ACM SIGOPSIEuroSys European
Conference on Computer Systems 2008. New York, NY, USA: ACM,
2008, pp. 13-25.

[12] Intel X25-E SATA Solid State Drive Product Reference Sheel, 2009.
[13] W. W. Hsu, A. J. Smith, and H. C. Young, "Thc automatic improvemcnt

of locality in storage systems," ACM Trans. Comput. Syst., vol. 23, no. 4,
pp. 424-473, 2005.

[14] 1. Bruno, 1. Brustoloni, E. Gabber, B. Ozden, and A. Silbersehatz, "Disk
scheduling with quality of service guarantees," in IEEE International
Conference 011 Multimedia Computing and Systems, 7-11 June 1999
1999, pp. 400-405 vol 2.

[15] R. Rangaswami, Z. Dimitrijevic, E. Chang, and K. Sehauser, "Building
mems-based storage systems for streaming media," Trans. Storage,
vol. 3, no. 2, p. 6, 2007.

