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Abstract 

Large radio telescopes, cyber-security systems monitoring real-time network traffic, and others have specialized 
data storage needs: guaranteed capture of an ultra-high-bandwidth data stream, retention of the data long enough 
to determine what is "interesting," retention of interesting data indefinitely, and concurrent read/write access to 
determine what data is interesting, without interrupting the ongoing capture of incoming data. Mahanaxar addresses 
this problem. Mahanaxar guarantees streaming real-time data capture at (nearly) the full rate of the raw device, 
allows concurrent read and write access to the device on a best-effort basis without interrupting the data capture, 
and retains data as long as possible given the available storage. It has built in mechanisms for reliability and 
indexing, can scale to meet arbitrary bandwidth requirements, and handles both small and large data elements 
equally well. Results from our prototype implementation shows that Mahanaxar provides both better guarantees 
and better performance than traditional file systems. 
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Abstract-Large radio telescopes, cyber-security systems mon­
itoring real-time network traffic, and others have specialized data 
storage needs: guaranteed capture of an ultra-high-bandwidth 
data stream, retention of the data long enough to determine 
what is "interesting," retention of interesting data indefinitely, 
and concurrent read/write access to determine what data is 
interesting, without interrupting the ongoing capture of incoming 
data. Mahanaxar addresses this problem. Mahanaxar guarantees 
streaming real-time data capture at (nearly) the full rate of the 
raw device, allows concurrent read and write access to the device 
on a best-effort basis without interrupting the data capture, and 
retains data as long as possible given the available storage. It 
has built in mechanisms for reliability and indexing, can scale 
to meet arbitrary bandwidth requirements, and handles both 
small and large data elements equally well. Results from our 
prototype implementation shows that Mahanaxar provides both 
better guarantees and better performance than traditional file 
systems. 

I. INTRODUCTION 

From the mundane to the exotic, many applications require 
real-time data capture and storage. Consumers wish to record 
television programs for later viewing, and can do so with 
digital video recorders. Security personnel monitor and record 
from cameras and sensors when guarding secure areas. Sci­
entists must capture experimental and observational data on 
their first and only attempt, from seismometers to telescopes 
to test explosions. The base need is the same in all of these 
case - guaranteed real-time capture of streaming data - but 
with greatly differing parameters. 

In television, a standard NTSC/ATSC signal provides data 
at around 20 MB/s [I], a rate easily recorded by any standard 
consumer grade hard drive. By contrast, the Large Hadron 
Collider at CERN generates data on the order of 300 MB/s 
after filtering [2] , utilizing a large backend system and global 
network . The data rate of one-shot large scientific experiments 
may be enormous, limited only by the ability of a specialized 
data recording system to capture a burst of data all at once. 

Sometimes this data is vitally important, at least for a time, 
and cannot be safely discarded. However, a large subset of this 
data has the curious property of being mostly "worthless" over 
the long term. A security camera positioned to watch over a 
door does not generate a steady stream of "useful" data. If 
somebody has attempted a break-in, then the data is useful. 
Otherwise, there is rarely any practical use in retaining a record 
summarized by "nothing interesting happened." Many types 

Fig. I Ring Buffer Diagram 

of sensor data follow the same model, often summarized by 
"nothing interesting here" with sporadic bursts of data worth 
saving. Unfortunately for data storage purposes, it is often 
impossible to determine which data is worth saving until well 
after the fact. 

The storage system for this model is best described 
by "write-once, read-maybe," or perhaps "write-once, read­
rarely." All data needs to be captured and (temporarily) stored 
in real time, but the odds are good that it will never actually 
be needed, and can safely expire after a period of time. This 
is easily conceptual ized as a ring bu ffer (figure 1): if the data 
is not declared "interesting" within a set amount of time,it is 
automatically discarded to make room for new data. This is not 
a difficult problem on small scales, but presents a challenge 
when dealing with large amounts of data. 

We created a prototype system, Mahanaxar, to address this 
problem. Our first priority is to provide quality of service 
guarantees for incoming data streams, ensuring that the process 
of saving and retrieving ol.d data does not interfere with the 
real-time capture of new data . We also have mechanisms for 
reliability and indexing, and discuss the problem of scalability. 
We will first present our design for this class of problem, and 
then provide results that show superior performance to other 
methods of managing this type of data. 

II. BACKGROUND 

This project was first conceived as a storage system for 
the Long Wavelength Array (LWA) project [3]. The LWA 
is a distributed radio telescope currently under construction 
in southwestern New Mexico. The initial plan is for 53 



separate stations scattered widely over the desert. Each station 
generates approximately 72.5 MB/s of data , for an overall 
data rate of slightly over 3.75 GB/s. This data is generated 
continuously and without letup over the lifetime of the project. 

Radio astronomy is one of several observational sciences 
which generates large amounts of "useless" data: in this case, 
apparently random radio noise. Since over a petabyte of new 
data is generated in just over three days, it is fortunate that 
we can safely throw most of it away. However, it may not be 
immediately apparent whether the data is useful or not until 
much later, and we are required to retain it for some time 
until an outside observer has time to decide whether the data 
is interesting, and whether it should be preserved. 

As we explored this concept, we realized that there were 
many other applications which generate lots of "useless" data, 
but deem some of it interesting from time to time. Therefore 
we decided to develop a generalized model to address all such 
problems. Broadly speaking, we focused on two canonical 
real-world problems at opposite ends of our spectrum of 
possibilities, with other example problems being derivatives 
and combinations of our two primes. 

I) Fixed-size, non-indexed data: 
Fixed-size, non-indexed data is generated by the LWA 
project, and by many types of sensor systems in general. 
It arrives at an absolutely fixed rate, never varying, and 
is only indexed on a single variable: time of generation. 
Oftentimes such data is generated at too high a rate to be 
captured on a single storage device, and must be broken 
into multiple streams. Such streams need to be correlated 
with each other in order to regain the entire data picture. 
Any command to preserve data will be given according 
to timestamp only. 

2) Variable-size, indexed data: 
Variable-size, indexed data describes a data source where 
the data elements arrive at variable rates and have 
variable sizes. Such events may also be indexed by time, 
but also by other attributes as determined by the exact 
data type. Searching and preserving this data may be 
done according to any of the indexed attributes. This is 
a more difficult problem due to the non-fixed sizes and 
data rates , in addition to the difficulties of a complex 
index. 

While no existing system yet addresses this specific prob­
lem, the use of a ring buffer to gather sensor data is not new: 
both Antelope [4J and Data Turbine [5] use that approach. 
However, neither system offers quality of service guarantees, 
only best-effort data recording. Other systems like the network 
traffic capturing "Time Machine" [6] deal with the problem 
only by classifying and prioritizing data streams, and dropping 
what they can't handle. Even then, there are no real time 
guarantees in the system, and it promises only that it will 
record data at best-effort capacity, arranged by priorities. 

The COSS Storage System from Squid [7] utilizes a ring 
buffer based model, but also functions solely on a best-effort 
basis in terms of bandwidth. The mechanism for "preserving" 
data is simply to rewrite it again at the top of the buffer, which 

is suitable for cache purposes but not scientific data capture. 
Larger storage systems such as Lustre do not make quality 
of service guarantees from moment to moment [8] , which is 
problematic in running a system where the data generation rate 
is very close to the maximum sustainable bandwidth. Larger 
systems also have no convenient and automatic mechanism to 
expire old data when capacity is low. 

There has been some quality of service work focused on 
providing guarantees of a certain service level from the storage 
system, as in RT-Mach [9] and Ceph [10], but only to the 
degree of categorizing traffic for an appropriately "fair" level 
of service. Data streams can be guaranteed to receive a certain 
portion of system resources in both the short and long term, 
but the guarantee is of the form "you will get X% of the time 
every Y time units," rather than an explicit "you are guaranteed 
a bandwidth of Z ." 

The disk request scheduling system Fahradd [II] is capa­
ble of providing QoS guarantees within certain constraints.' 
Fahradd allocates a certain amount of disk head time to 
a requesting process, and lets each process spend the disk 
head time as it sees fit. Unfortunately for the purposes of 
this problem, that guarantee is not quite strong enough: a 
percentage of disk head time does not necessarily translate 
directly into bandwidth guarantees, and we need to guarantee 
the latter rather than the former. 

Because we need to make firm quality of service guarantees, 
we cannot work with standard file systems or databases. These 
systems have the benefit of simplicity, but are not designed to 
work at near-full capacity, and suffer significant performance 
degradation in such circumstances. A standard file system is 
capable of handling this class of problem in certain rigidly 
defined circumstances, but cannot do it well in the general 
case, and can never offer explicit quality of service guarantees 
without additional modification. 

Since this problem involves constant and uninterrupted 
writing, we assume that any solution will need to remain 
based on conventional rotational disk drives for the foresee­
able future. Solid state storage devices promise to become 
prominent in future years, but despite their potential bandwidth 
improvements, we do not believe that it is wise to use a 
device with a limited number of write cycles in this task. 
Write endurance for one of the latest top-rated Intel SSDs 
is rated at only 1-2 petabytes [12], an upper limit which 
our system would exceed in months. The use of SSDs for 
indexing purposes is viable in some circumstances, but we 
anticipate that standard mechanical hard drives will continue 
to be necessary for main data storage. 

III. EXAMPLE USE CASES 

Two example use cases were briefly described in the last 
section, standing at opposite extremes of our problem space. 
The first example use case is based on the type of data which 
the LWA generates: continuously streaming fixed size sensor 
data. It arrives at an unchanging bandwidth, needs no indexing, 
and is uniformly "large." The second example lise case is 
described by the problem of monitoring network traffic: each 



element is fairly small (often several thousand bytes or less), 
and non-fixed in size. Each data element must be indexed on 
multiple variables other than time alone . 

We can easily imagine other combinations of data size, size 
variability, indexing requirements, and arrival rate variability. 
However, in addressing the two extreme cases, we should be 
able to handle anything in between. 

A. Continuously Streaming Sensor Data 

This type of data arrives at the same rate forever, never 
varying. The size and layout of each data element is known 
in advance, or perhaps we only treat it as a stream of bytes, 
arranging it in whatever manner is most convenient. Interaction 
with this type of data is extremely limited: we take it and store 
it with a sequence number (timestamp) and need not worry 
about it again until it comes time to overwrite it. 

If an external process decides that the data is interesting 
and should be saved , it only needs to tell the storage system 
that "timestamps X through Y should be preserved" and it is 
done. The data is marked as preserved on the storage medium, 
the ring-buffer recording is logically rearranged to bypass the 
newly-preserved region, and operation continues normally. 

This model is relevant in a broad variety of scientific fields 
because it may take some time to determine whether the data 
is interesting. A radio telescope may be capture a sudden burst 
of activity, registering some cosmic event, but scientists also 
need to know what was happening in the time leading up to 
that event. 

This is perhaps the most basic use case possible in this 
problem space, but covers a wide variety of systems. 

B. Variable-Rate Indexed Network Traffic 

In order to detect intrusion attempts into a system, we 
may wish to monitor network traffic on a particular router. 
The basic concept of the problem is the same: a firehose of 
data, most of which is unimportant, but which may become 
important based on future detection results. However, the 
specifics of this problem are quite different from continuously 
streaming sensor data. "Variable" best describes all the major 
parameters. 

First, there is a natural ebb and flow of network traffic 
depending on several factors, some of which can be predicted, 
and some of which cannot. For example, we can predict traffic 
amounts based on the time of day in certain regions of the 
world. However, we cannot necessarily predict the state of 
society at any given time, as many things lead to increased or 
decreased activity: news, sports, disasters, etc. This changes 
moment to moment, and we can only make rough guesses at 
it. 

The size of network traffic is also variable, as data elements 
do not have a single fixed size. An IPv4 packet may range in 
size from a few bytes to tens of thousands of bytes. The data 
rate may hold steady at X MB/s, but the number of individual 
elements to consider and index can differ by a few orders of 
magnitude at extreme ends of the spectrum . 

The number of indices per data element is also variable. In 
the case of an IP packet, time alone is not a sufficient index. To 
be useful, we must also be able to index and search on aspects 
such as the source and destination addresses, the protocol, the 
size, and similar characteristics . This extra indexing poses a 
further complication when constructing the initial index and 
when performing subsequent searches on the data. 

There are several commercial products which provide net­
work traffic monitoring ability, but without the quality of 
service guarantees that we desire (aside from the guarantees 
provided by brute-force overprovisioning). The strategies we 
need to solve this problem are also useful in many other types 
of data collection where the rate or size is variable, or where 
many indexes are required. 

IV. DES1GN 

We designed Mahanaxar to meet three primary goals: 

I) Provide a quality of service guarantee 
Our first priority is to provide a quality of service 
guarantee for the incoming data stream, up to a declared 
bandwidth. If the incoming data stream requires X MB/s 
of write bandwidth, we need to make sure that it has X 
MB/s no matter what. If it exceeds that amount, we'll 
do the best we can, but make no guarantees. All other 
activity on the disk must have lower priority, and be 
carefully managed so that it does not interfere with the 
recording. We must not lose a single byte; all other tasks, 
including reading the data back off the drive, must wait. 

2) Use commodity components 
We want our system to run on commodity hardware in a 
variety of locations. In the case of the LWA project, the 
physical location may be a small outpost in the desert. 
We cannot assume a high-end network infrastructure or 
storage backend, or highly reliable (and expensive) disk 
drives. Conversely, if we do have a dedicated machine 
room available, it would be foolish not to take advantage. 
In no case do we want to attempt to solve the problem 
by " throwing more disks at it" until it works. 

3) Never lose data 
The data that we collect can never be regenerated . 
If there is a hardware failure, and there are always 
hardware failures, we need to be able to retrieve the data 
on demand. However, any reliability mechanism we use 
must not compromise the first goal, which is providing 
a quality of service guarantee. 

These goals guided our thinking when designing Ma­
hanaxar. We will now present the specifics of our design, along 
with the rationale and subsidiary goals behind each of them. 

A. Staying Close to the Hardware 

One of our first design decisions was that we needed to 
stay very close to the hardware. In order to assure quality of 
service, we need to know what the underlying hardware is 
capable of, and more importantly, what it is actually doing at 
any given moment. This is particularly important in rotational 
disk drives, as performance can differ by several orders of 



magnitude based on the access pattern. We need to carefully 
map out hardware capabilities before organizing our own 
layout. It may be that we need to avoid certain regions of 
the disk drive which cannot guarantee the data rate we need. 

As an example of why we need this mapping of the hard­
ware, consider one of the hard drives we used for testing: a 1.5 
TB drive from Western Digital (model number WDI SEARS). 
The first quarter of the drive (measured from the outermost 
track) provided a constant minimum write bandwidth of 68 
MB/s or better. The last quarter of the drive (innermost tracks) 
could manage a consistent minimum write bandwidth of only 
52 MB/s. The graph of its performance is shown in figure 
2. Other disk drives we tested showed similar patterns, with 
higher capacity drives showing a sharper dropoff towards the 
"end" of the disk. 

This information differs from hard drive to hard drive, even 
on those of the same make and model. In fact, an identical 
hard drive to this one was approximately 2 MB/s faster over 
most of the drive, and significantly slower near the end. Since 
we want the best possible performance from our hardware, it is 
critical to have this information for each drive. Continuing with 
the hard drive above, we can safely advertise a bandwidth of 
perhaps 50 MB/s over the entire drive (allowing a bit of slack 
for other drive activity). However, if we use only 80% of the 
drive in the uppermost region, we can advertise a bandwidth 
of around 65 MB/s instead, a significant improvement. 

To take advantage of this knowledge of hardware, we must 
use the disk without any interface layers. We envision turning 
our prototype system into a specialized file system in the 
future, but for current purposes in our prototype, we treat the 
disk as a raw device and manage our own specialized layout. 

B. Chunk-Based Layout 

In order to take maximum advantage of our hardware 
knowledge, we must restrict the data layout. Modern filesys­
tems are generally good at data placement, but prone to 
fragmentation over time. This fragmentation problem is dra­
matically worse when operating in a system at 99%+ capacity 
at all times, as we intend. Unless file placement is rigidly 
planned out in advance, fragmentation will quickly add up. 
Bandwidth is very difficult to guarantee when related data is 
scattered all over the surface of a disk rather than clustered 
together. 

To solve this problem of data layout, we take a cue from 
the traditional Sl2-byte disk block, and declare that no data 
may be written in a segment smaller than the chunk size. 
Chunk size is customizable based on the exact sort of data 
that the system is storing, but as a general rule of thumb, 
the bigger the chunk, the better. The time required to write I 
KB to a disk drive is most often dominated by the seek time 
and rotational delay as the disk head moves to the correct 
portion of the drive. These same factors are diminished into 
near-insignificance when writing a single 50 MB chunk to a 
sequential area of the drive, where the actual writing time 
dominates . 
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Fig. 2. Average read and write speeds on a particular disk 

It is well known that data sequentiality has a very large 
impact on overall bandwidth [13], and we attempt to exploit 
this factor as much as possible. There are certain disadvantages 
in dealing only with very large chunks, but what we lose 
in flexibility and packing efficiency, we make up on raw 
bandwidth. As long as we follow a basic "don't be stupid" nIle 
(for example, we should not use a chunk size that is slightly 
smaller than twice the data element size), there is minimal 
inefficiency. 

By strictly maintaining this chunk size and forcing all 
incoming data to conform to it, fragmentation problems are 
practically non-existent. The worst case scenario possible is 
this: there are only two "free" data chunks in the system, and 
every other chunk is marked as preserved. These two chunks 
are at exactly opposite ends of the disk, the outermost and 
innermost tracks, and the disk head must constantly jump back 
and forth between the two. Even in this scenario, since chunk 
sizes are large and immutable, seek time between them is only 
a tiny part: on the order of a few milliseconds, compared to 
about a second for the chunk as a whole. 

The worst case scenario for a less strictly controlled filesys­
tem might scatter the chunks over the entire surface of the disk, 
anywhere there was spare room, in the 99%+ full system. This 
behavior drastically increases the total writing time because of 
the large number of seeks. We wish to avoid this scenario at 
all costs. 

This approach presents no problems with fixed-rate con­
tinuously streaming data, since we can easi Iy pick the ideal 
chunk size based on the incoming data. If one "data element" 
is the same size as one "data chunk," we have no indexing 
difficulties and no packing inefficiency. 

When data elements are small and variable III stze, we 
must pack multiple elements into each chunk. This may create 
packing inefficiency as portions of each chunk are left unfilled, 
too small to hold an additional data element. If chunk sizes 
are chosen particularly unwisely, up to 50% of the drive may 
be unutilized. However, this is easily mitigated by carefully 
choosing the chunk size, or by splitting elements into two 
portions jf necessary. A greater problem is indexing, which 



we address in a later section. 

C. Disk Stnlclure and Consistency 

Standard file systems store their indexing information on 
the disk itself for two main reasons. First, holding the entire 
disk index in memory is at best inconvenient, and at worst 
impossible, depending on the amount of RAM. It also is not 
necessary most of the time because large portions of the file 
system are not accessed for large periods of time. The second 
reason is far more important: in the event of a system crash, it 
is far easier to recover file information from known portions 
of the disk than it is to traverse the entire disk partition at 
mount and reconstruct the entire file system anew each time. 

We can take substantial advantage in this area by noting that 
our chunk sizes are both uniformly large and deterministically 
placed. The only information that Mahanaxar requires in order 
to understand physical disk layout is the chunksize, the number 
of chunks, and a possible list of skipped sections within the 
disk. This information may be thought of as akin to the 
superblock in a standard file system, and is the only disk 
structure information which must be stored on the disk itself 
- and even that may be skipped, if the information is provided 
by an external source prior to mount. 

The chunk index itself is only a list of sequence numbers 
(timestamps) and a few state variables (for example, marking 
whether the chunk is preserved), and must be kept in memory 
at all times In order to know which data is the next to expire. 
It might also be kept on disk in event of a crash, but that 
approach would mean frequent seeks to an index area, a waste 
of bandwidth. 

The implications of these observations are that we can hold 
the entire index structure in memory, and need never commit 
it to disk. We gain measurable performance advantages by 
only writing the data itself, rather than constantly updating an 
Index or on-disk metadata. The only real disadvantage is in 
reconstructing the index if it is ever necessary, due to a failure 
of some sort. 

However, we also observe that this is a system which is 
never supposed to go offline. If it does go offline, there has 
been a problem of some sort (perhaps through a power failure) , 
and there must be a backup plan available to ensure that data 
IS not lost. Because of this, the startup time of a failed system 
IS much less of an issue, even if it happens to take a few more 
minutes than usual. 

The greater reconstruction time for the index is a small price 
to pay for Increased overall performance. This is particularly 
true Since In the event of a system crash, the disk drive would 
need to be rescanned for consistency anyway. We do not 
anticipate this type of system ever shutting down in normal 
conditions. 

D. Reliability and Recovery 

Storage systems fail from time to time, both from recov­
erable crashes and via outright hardware failures. When this 
happens, we must take two things into account: the ongoing 

data collection must not be disrupted , and we must be able to 
recover lost data if the failed drive is entirely dead. 

This problem is easily addressed by redundant drives in 
a smaller system. For example, each LWA station generating 
data at 72.5 MB/s may be best backed up by a redundant drive, 
or a second computer entirely if funding is available. Since 
each station is independent from the others and possibly not 
connected to a network, the simplest solution is probably the 
best, and we need not consider it further, other than ensuring 
the drives are matched in their capabilities. 

The far more interesting case is a large system, where a 
total mirroring of drives is inefficient and uneconomical both 
in terms of monetary cost and power consumed. A far more 
elegant solution is available, and is an old familiar one: RAID. 

A conventional RAID system provides fault-tolerance and 
even certain performance advantages with the proper work­
load, but is disadvantaged when a drive has failed and the 
system must operate in degraded mode. Read times often 
increase dramatically since the data from an entire series of 
drives must be reassembled for every s ingle read . Writing an 
entirely new stripe of data into a degraded RAID system will 
often not hurt performance, and ironically may even increase 
it slightly due to one less disk being involved. 

Recalling that our system can be characterized as "write 
once, read maybe," it becomes apparent that the disadvantages 
of a RAID system may never actually come into play. When 
a disk fails, it is entirely possible that none of its data is 
"interesting" and we never need to reconstruct it In fact 
all data stored on that disk will expire within a ~atter of 
hours unless the system is specifically instructed to preserve 
a section. We may need to regenerate a portion of the data, 
but almost never will there be a case in which we have to 
regenerate an entire disk's worth of data. 

This technique works best when the data chunks in a 
RAID group are all related to each other. For example, an 
"Ideal" RAID group might be a single 300 MB/s stream 
broken up into five 60 MB/s streams going to five different 
drives. In this case, an order to preserve data would be given 
to all drives simultaneously, and there would be no need 
to preserve unwanted data. Even reconstruction of data for 
storage elsewhere would be easy, since the same chunks from 
the working di sks would be read in either case. 

Unfortunately, if the data chunks are not related to each 
other, there is a potential downside. If there are five separate 
streams of data, the preservation of any given chunk in a 
stream would require that four other "unneeded" chunks be 
saved for redundancy purposes . Collection of data would 
never be impaired and quality of service guarantees would be 
unaffected, but total capacity of the buffer would be reduced 
unnecessarily. For this reason, it is preferable that chunks in 
a RAID group be highly related . 

We are not limited to standard RAID alone, as any erasure­
correcting code would work equally well. Reed-Solomon 
codes (as an example) are not often used in high-performance 
storage because of a high computational overhead for encodina 
and decoding. Because of our coordinated chunks and write~ 



intensive workload, such codes have a lower performance 
penalty, and may be worth considering in future work. 

E. Indexing 

It is difficult to design a general solution for the problem of 
indexing. Ifwe only need to index a timestamp for each (large) 
data element, there are few problems. If we need to index four 
different factors of a twenty byte data packet, indexing is a 
problem no matter how we try to solve it. Nonetheless, we 
must be able to index data at its arrival rate, and search it 
efficiently upon request. 

We address the simple problem first. If data elements are 
large and indices are few, we can keep an entire searchable 
index in main memory. This describes the type of searching 
we must do with many types of continuously streaming sensor 
data , including the LWA, where the only required index 
is time. For an example calculation, assume that our data 
elements are 50 megabytes in size, and indexed by an 8-
byte sequence number (timestamp). The entire index is only 
a few hundred kilobytes in size when using an entire 1.5 
terabyte drive. Reduce the data e lement size down to only 
a few kilobytes and the size of the entire index is only a 
few gigabytes in size, easily held in memory for standard 
commodity systems of 20 I O. 

It is a far more complex problem when data elements are 
tiny and there are multiple factors which must be indexed. 
Consider the problem of storing IP packets that are indexed 
on source and destination addresses (4 bytes each), protocol 
(J byte), and data length (4 bytes). Furthermore, assume that 
each of these data packets are tiny for the worst-case scenario: 
20 bytes each. The indexing in such a scenario would run to 
hundreds of gigabytes. In fact, the indexing in such a case 
would be 13/20 of the data itself. While this is an unlikely 
scenario, a more reasonable scenario may still include an index 
large enough such that it cannot be stored entirely in main 
memory. 

If there is no room in main memory for the index, we must 
clearly divert at least a portion of it to secondary storage of 
some sort. We have developed two ways of doing this, and 
implemented the first into Mahanaxar while we consider how 
to best implement the second. 

Out first so lution is to attach an " index" segment to each 
chunk and commit it to disk alongside that chunk. We maintain 
a bird's-eye index in main memory, but details are stored on 
disk. If nobody ever inquires about the data in that particular 
chunk, the index segment expires at the same time as the data 
segment. If a search is performed, we can narrow down the 
potential chunks as much as possible with our bird's-eye view, 
then read the necessary index segments for a more detailed 
search. 

Unfortunately, this search is necessarily quite slow because 
our ability to read from the disk is limited by the quality of 
service guarantees we make for incoming data. It is entirely 
possible to miss the opportunity to preserve data because our 
search is far slower than the speed at which incoming data 
overwrites old data. We can mitigate this effect, partially, by 

marking all chunks currently being searched as temporarily 
preserved. 

This problem cannot be solved so long as indexing infor­
mation resides on the same disk as the data itself, which led 
us to a second solution: a secondary disk designed to store 
indexing information only. Indexing information is (usually) 
much smaller than the full data element, which would allow 
a single indexing disk to hold the indexes from several data 
disks at once. This is not a perfect solution since it depends 
on a secondary disk being available, and creates potential new 
reliability issues if the index is only stored on that one drive. 
However, it allows a very large speedup in search speed, which 
may be worth the extra cost in some situations. 

We have considered using an SSD for the secondary index 
drive. As previously discussed, SSDs are not suitable for data 
drives in our model, but may be for the far smaller indexes. 
The vastly superior read bandwidth available also contributes 
to speedy searches on large datasets. 

If we are only indexing a few well-ordered indices, we 
have elected to handle the search within our own system. 
If we need to search on multiple variables which are not 
well ordered amongst each other, we detennined that it would 
be best not to reinvent the wheel, and pass the problem to 
another mechanism well suited to the task: a database. We 
create a database anew with each search, using the indexing 
information from whatever data chunks are needed. Following 
the results of the search, the database is dropped entirely, 
never being used for more time than it takes to complete the 
search. This "lazy search" allows us to optimize data storage 
according to our own bandwidth needs, but pass the search 
problem to a mechanism better- sui ted to handling it. 

V. SCALING 

Our prototype system is mainly concerned with the problem 
of guaranteeing quality of service from single data streams 
onto single disks . We can take multiple data streams and route 
them to different disks and create RA ID groups within the 
same system, but have not yet addressed the larger scaling 
problem involving multiple sites and systems. The LWA 
project involves only 53 stations at the start, but what if it 
were to expand to 500 stations with more interconnectivity? 
We need to understand how to best scale upward. 

Because our model is tied so closely to the hardware, we 
can easily scale up the data capture portion. Each disk is 
bound to a single data stream and need only concern itself 
with putting that data stream on that disk, and reading other 
sections as requested . An external process is responsible for 
giving instructions to preserve or read data, and from the disk 
point of view, the only logical connection it has with any other 
data stream is when it happens to be in a RAID group. 

From a control point of view, hundreds or thousands of 
streams may be tied together, and a controller process may 
need to preserve data over a thousand different disks at once. 
We have treated this as a communications problem thus far 
and not focused on it, but we intend to fully explore it at a 
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later time. For the moment, we prefer to focus on the quality 
of service and individual indexing issues. 

VI. PROTOTYPE ARCHITECTURE 

Our long-range intention is to create a specialized filesystem 
and interface layer, but for prototype and testing purposes, we 
first created Mahanaxar. It is a multithreaded process which 
runs in userspace and accesses disk drives as raw devices. 
MUltiple processes may run on the same machine, one process 
per disk, and an additional process may be configured to 
accept multiple data streams and combine them for RAID 
reliability purposes. All access to a given disk must be through 
its associated process in order to manage the bandwidth. Each 
process/disk is governed by a configuration file that specifies, 
among other things, the chunk size, the element size range, and 
the method of indexing. State can be restored from a shutdown 
or crashed state by scanning and re-indexing the disk. 

Each process runs several threads, of which the two most 
important are data processing and I/O. The data processing 
thread is responsible for arranging the data elements into 
chunks and indexing it. An example data chunk layout can 
be seen in figure 3. The components are: 

I) Sentinel Values are intended to ensure that a chunk is 
marked inconsistent if the system crashes in the middle 
of a write. 

2) Metadata is present for system restart purposes, and 
describes the exact layout of the chunk index and set of 
data elements. 

3) lndexing is described in a previous section . 
4) Data and Elements are where the actual data itself is 

stored. 

The second main thread is intended for I/O. Our I/O model 
works on a simple priority scheme: if there is a chunk of data 
ready to be put on disk , it gets first priority and is written as 
soon as possible. Data is only read if there is no chunk which 
currently needs to be written. 

This method produces a jagged access pattern, especially 
for reads, since nothing may be read for some time, and then 
an entire chunk is read and delivered all at once. This is an 
unfortunate but necessary effect of making quality of service 
guarantees and maximizing bandwidth, since we do not wish 
to fritter away disk head time seeking back and forth over the 
disk in pursuit of a smoother curve on a bandwidth graph. 

Long-tenn trends average out the bandwidth into smooth 
curves, which we feel is acceptable when considering the sheer 
amounts of data we are attempting to deal with. In the short­
term view, while a read request is never entirely starved, it 
may be forced to wait some time. 

As each data element arrives at Mahanaxar, it is immediately 
indexed and placed into a chunk. If element sizes are large, 
one element may be equal to one chunk. If sizes are small, 
hundreds or thousands of data elements may be placed into 
a single chunk. Default primary indexing is based entirely 
around chunks, and is made up of a pair of timestamps. The 
first marks the time at which the first element started arriving, 
and the second marks the time at which the last element has 
fully arrived. Other indexing schemes are possible, and we use 
only a single sequence number for LWA-type data. 

The chunk size may be configured according to system 
requirements, but we have found that larger chunks provide 
the best perfonnance. We prefer to use a rule-of-thumb that 
one chunk should be approximately the amount that the disk 
takes one second to write to disk. In order to minimize wasted 
space, chunk size should be arranged to be a close multiple of 
the typical element size, and including a margin for metadata 
and indexing information. If elements are X MB each, a chunk 
size of 2X - 1 MB would be a very poor choice. 

If the main memory is of sufficient size and elements are 
sufficiently large, each element can be individually indexed by 
timestamp and possibly other "primary ids." Mahanaxar does 
its best to store as much indexing infonnation as possible in 
main memory, so that searches can be performed quickly, but 
in certain scenarios, it may not be able to index anything more 
than timestamp ranges in main memory. 

Unfortunately, in order to maintain rig id chunk size and 
available bandwidth, we must save an entire chunk at a time, 
even if only a single small element of that chunk is actually 
desired . We are currently working on a way to accumulate 

individual elements on the fly as they pass under the disk 
head for later storage in dedicated chunks. 

VII. TESTING PROCEDURE 

We designed our tests to focus on the raw bandwidth under 
several different workloads. We used several different disks on 
the same machine and achieved similar results for each disk, 
adjusted for its available bandwidth. All the results presented 
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Fig. 4. Comparison of Mahanaxar and ext2 filesystem with an incoming data rate of 60 MB/s and increasing requested read speeds 

here are based upon one particular disk (profiled in figure 2) 
so that we make fair bandwidth comparisons between tests. 

Our testing machine used an Intel Core 2 Quad processor 
clocked at 2.83 GHz, with 8 GB of main memory, and an 
operating system of Debian 5.0 ("lenny"). The particular disk 
used for these results was a Western Digital Caviar Green 
of 1.5 (decimal) TB advertised capacity. Our own reported 
measurements shall be understood to use the binary convention 
of KB, MB, etc. 

The raw write bandwidth of this particular disk averaged 
from 50 MB/s to 70 MB/s, and its read bandwidth from 57 
MB/s to 115 MB/s. Upon profiling the drive, we determined 
that the read bandwidth decreased in an approximately linear 
fashion from its peak at the outermost tracks of the drive at 
115 MB/s to about 70 MB/s at a point about 80% into the 
drive. Bandwidth dropped sharply in the last 20% of the drive 
to a low of around 50 MB/s. Meanwhile, the write bandwidth 
only dropped from 70 MB/s to 65 MB/s in that same 80% of 
the disk, and sharply decreased in the last 20%. 

Due to this behavior, we elected not to use the 
lower/innermost portion of the drive. This allows us to offer 
a sustained write bandwidth of 60 MB/s with 5-10 MB/s left 
available for reading. This gave us a usable disk size of about 
one (binary) terabyte. 

We disabled disk write caching for our testing so that we 
could be (reasonably) sure that the data was on disk when 
we thought it was, and we ensured that the disk was fully 
synchronized with each chunk that was written. Interestingly, 
disabling the write cache slightly improved overall write 
bandwidth on our disks. 

Our primary comparisons were made against the ext2 file 
system utilizing flat files. We also tested against ext3 and 
XFS, each of which had worse performance than ext2, which 
we attribute to their joumaling nature. 10urnaling file systems 
impose unnecessary bandwidth on the disk for problems of 
this nature. In order to give the file system write caching an 
opportunity to reorder its disk access patterns as necessary, 
we refrained from explicitly sync'ing to disk after each chunk, 
as we did with our own system. Instead, we only explicitly 

synchronized to disk every few hundred megabytes, which 
was several seconds worth of writing. We would prefer to 
have tight sync'ing to disk to keep the same consistency as 
Mahanaxar, but we discovered that ext2 performed much better 
when explicit synchronization was rare. 

We had also intended to compare against a pure database 
model, but quickly discovered that performance was extremely 
poor as we approached the limits of the disk. The initial 
population of our database on the first cycle of data was of 
comparable speed to our ext2 based system, but performance 
quickly dropped to less than a third of ext2 when constantly 
expiring old data in favor of new elements. We therefore 
stopped testing against a database model and focused on our 
comparisons against the regular filesystem. 

Our primary testing procedure was to select various element 
and chunk sizes, then measure the bandwidth in both writing 
and reading. We partitioned the "uppermost" 80% of the drive 
and ran tests utilizing the entire space for some of the results 
here. For others, we created smaller partitions within that space 
in order to gather data of a finer grain. All results are gathered 
from an "aged" system which has been in operation for several 
full cycles over the space of the disk, unless otherwise noted. 

We present here only those results for which our comparison 
ext2 filesystem achieved stable performance. Certain of our 
tests led to an ever-decreasing performance over time as the 
entire system continued to age, and continued that decrease 
over many full disk cycles. For example, when dealing with 
highly variable element sizes, the standard filesystem had to 
constantly delete a variable number of elements and create 
new elements of different size. Because the file system was 
operating at 99%+ of capacity (as intended), fragmentation 
problems built up very quickly and data locality was destroyed. 

Because of this characteristic, we hypothesize that fragmen­
tation would continue until blocks belonging to the same ele­
ment would only be physically consecutive by happenstance. 
Therefore, we discontinued these tests and instead used a 
constant element size which we overwrote in-place on the 
standard file system in order to give it as much of an advantage 
as possible. 
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Our own system, Mahanaxar, is designed to deal with this 
variable element size without changing its mode of operation 

. and thus its performance never declined over time . Because 
its design packs variable element sizes into fixed chunk sizes, 
the graphs presented in the next section are identical to those 
from our variable element size testing, except in "packing 
efficiency." 

VIfI. RESULTS 

Figure 4 is a basic comparison of Mahanaxar versus a 
normal ext2 filesystem with no modifications. The incoming 
data stream has a bandwidth of 60 MB/s. The element size is 
also set to be 60 MB . An external process is attempting to read 
data from the disk at increasing speeds along the x-axis. The 
total available bandwidth of the disk drive in this region of the 
disk has ample capacity to write at 60 MB/s, and read at up to 
12 MB/s if the writing and reading are properly coordinated. 

The values shown on the graph are the average read and 
write bandwidths of Mahanaxar and the ext2 filesystem over an 
entire partition. The partition is already populated with existing 
data (for several cycles) at the start of the test. Mahanaxar 
maintains a constant write bandwidth of 60 MB/s no matter 
how much bandwidth the external reading process requests . 
Up to the physical limitations of the disk drive, Mahanaxar 
can also provide the requested read speed. 

By contrast, the ext2 based filesystem starts falling behind 
the required 60 MB/s write bandwidth, even when the read 
process is only attempting to read at 2 MB/s. By the time 
the read process is attempting to read at 10 MB/s (which the 
disk can easily handle if managed correctly), over 5% of the 
incoming data is lost due to insufficient bandwidth. Even at 
that point, the reading process still can't reach the requested 
10 MB/s read speed, being held to about 8.5 MB/s. 

The reason for this disparity is that a standard ext2 filesys­
tern manages its bandwidth "fairly" rather than managing it 
in a way to provide quality of service. Mahanaxar is able 
to throttle the read requests and prioritizes writes entirely. 
Because of this disparity, we decided to introduce a similar 

mechanism for the standard filesystem which ensures writing 
always has priority . 

Figure 5 shows two different views of the comparison 
against a filesystem with strict priorities introduced , mimicking 
Mahanaxar. The element size remains at 60 MB/s for this test. 
Part (a) shows the initial populating of the disk. In other words, 
this is a "fresh" system on its first round. Both systems are able 
to maintain a 60 MB/s write speed here. Although Mahanaxar 
has a slightly higher bandwidth on reading, the two systems 
are largely equivalent for the first "cycle" through. 

Part (b) shows what happens after several cycles, and 
focuses on the read performance only (write performance 
remains at 60 MB/s for both systems). This test takes place 
within a single partition in order to limit the region of the disk 
which is used . Here, Mahanaxar maintains a read performance 
of 10-12 MB/s, while the ext2 system drops down to about 2-4 
MB/s before it stabilizes. As mentioned before, all elements 
in this test are overwritten in place. We also wish to note 
that we used the same in-memory index for the ext2 system 
as we did for Mahanaxar. If we let the ext2 system rely on 
filesystem metadata only, in determining which data elements 
expire, performance continues to decrease steadily over time . 

For both the graphs in figure 5, the x-axis has a slightly 
different interpretation for each system. For Mahanaxar, the 
x-axis represents the literal position of the data within the 
disk or partition. In the ext2 file system approach, the x-axis 
only represents the position in the cycle for that particular set 
of data . The literal position within the disk is determined by 
the filesystem's data placement techniques, though the units 
are identical. We focused on a smaller partition for part (b) 
mainly to ensure that the ext2 approach stayed in the same 
small region of the disk for a more limited test. 

Figures 4 and 5 were both carried out with a 60 MB 
element size, which is what a regular filesystem can handle 
best: large contiguous files written and read as one unit. Figure 
6 shows the results when we reduce the element size to 1MB, 
but leave in the other enhancements to the regular filesystem 
with regards to indexing and priorities. This results of this test 
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are shown on a single partition for detail, rather than over the 
whole drive. 

Mahanaxar retains a write bandwidth of 60 MB/s, and has 
an available read bandwidth of nearly 20 MB/s in this partition, 
for a total JlO bandwidth of around 80 MB/s. This performance 
is practically identical to when it was working with 60 MB 
elements because it combines those elements together into 60 
MB chunks. This same pattern holds for any element size, as 
we tested in going down to a mere 20 byte element size. 

However, the performance of the ext2 filesystem is drasti­
calJy reduced with I MB elements. If we do not explicitly syn­
chronize the write cache to disk, the filesystem can "pretend" 
to keep up for quite some time, but it eventually coll.apses 
under its own weight. Synchronizing after every element is 
unrealistic, however, and we only forced a sync to disk every 
few hundred elements (megabytes) to keep it honest. 

We found that the maximum sustainable write bandwidth 
for the ext2 filesystem was about 35 MB/s. At 38 MB/s and 
above, it slowly starts falling behind over time and eventually 
loses data as it runs out of buffer space. At 35 MB/s it loses no 
data over the course of many cycles, having stabilized, and it 
can read off data at around I MB/s. This combined bandwidth 
of less than 36 MB/s compares very poorly with Mahanaxar's 
performance of nearly 80 MB/s combined bandwidth. The 
performance difference between Mahanaxar and fiat files only 
increases as the element size shrinks even further. 

When we tested variable element sizes on the ext2 filesys­
tem, performance decreased steadily over time without ap­
pearing to stabilize at any point, and thus we do not have 
a proper comparison to make against the steady performance 
of Mahanaxar under the same circumstances. However, the 
performance graph of Mahanaxar when run with variable 
element sizes is identical to that of 6 (a). 

IX. CONCLUSION 

The perfonnance of Mahanaxar shows that is has a clear 
edge over standard filesystems in the high-bandwidth "write 
once, read rarely" workload. By staying very close to the 
physical hardware and aligning our workload to match, we are 

able to provide real quality of service guarantees to meet a set 
of hard real-time deadlines in a high-turnover, high-bandwidth 
environment. We are able to reach performance levels on par 
with the tested maximum of individual hard drives, though 
this depends on generating disk profiles on a per-drive basis 
in order to maximally exploit the hardware. 

Even when standard filesystems are adapted to prioritize 
data streams and enhanced with a more appropriate indexing 
capacity, they cannot maintain as high an overall bandwidth 
as Mahanaxar. Even with the ideal large element sizes, 
standard filesystems can only come "close" to Mahanaxar's 
performance. When element sizes are smaller or variable, 
performance of standard filesystems drops drastically, and they 
cannot handle variable element sizes in a 99%+ full. system 
sizes at all. 

Our future intentions are to tum this project into a full 
specialized file system, develop an API to interact with it, 
and develop an interface allowing an arbitrary number of such 
systems to operate in concert to capture arbitrarily large data 
streams. We also need to run performance tests on various 
types of rebuilding after hardware failure, and experiment with 
using separate " index" drives to improve search performance. 
Lastly, we need to address the problem of preserving individ­
ual data elements within a chunk , and develop a system for 
scalability. 

However, we feel that the raw performance numbers are 
sound , and promise a substantial improvement over the current 
systems which cannot offer any quality of service guarantees 
for this type of problem. 
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