
LA-UR-10- () ;?LXJ3 
Approved for public release; 
distribution is unlimited. 

Title: 

Author(s)." 

DEMONSTRATING THE IMPROVEMENT OF PREDICTIVE 
MATURITY OF A COMPUTATIONAL MODEL 

(Manuscript) 

Franyois M. Hemez, Los Alamos National Laboratory, XCP-1 

Sezer Atamturktur, Civil Engineering Department, Clemson University 

Cetin Unal, Los Alamos National Laboratory, CCS-DO 

Intended for: 51 st AIAAIASME/ASCE/AHS/ASC Structures, Structural Dynamics, and 
Materials Conference and 1 ih AIM l\Jon-Deterministic Approaches 
Conference, Orlando, Florida, April 12-15, 2010 

fo~Alamos 
NATIONAL LABORATORY 

----- EST. 1943 ----

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the Los Alamos National Security, 
LLC for the National Nuclear Security Administration of the U.S. Department of Energy under contract DE-AC52-06NA25396. By 
acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish 
or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National 
Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. 
Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, 
the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness . 

Form 836 (7/06) 



1 ih AIAA Non-Deterministic Approaches (NDA) Conference 
Orlando, Florida, April 12-15, 2010, AIAA Tracking Number 213426 

This page is left blank intentionally. 

2 
American Institute of Aeronautics and Astronautics 

Approved for unlimited, public release on March xx, 2010 LA-UR-10-xxxx, Unclassified 



1 i h AIAA Non-Deterministic Approaches (NDA) Conference 
Orlando, Florida, April 12-15, 2010, AIAA Tracking Number 213426 

Demonstrating the Improvement of Predictive 
Maturity of a Computational Model 

Franc;ois Hemez' 

Los Alamos National Laboratory 
XCP-Division (XCP-1) 

Los Alamos, New Mexico 

Sezer Atamturkturt 

Clemson University 
Civil Engineering Department 

Clemson, South Carolina 

Cetin Unal& 

Los Alamos National Laboratory 
CCS-Division (CCS-DO) 
Los Alamos, New Mexico 

Abstract: We demonstrate an improvement of predictive capability brought to a 
non-linear material model using a combination of test data, sensitivity analysis, 
uncertainty quantification, and calibration. A model that captures increasingly 
complicated phenomena, such as plasticity, temperature and strain rate effects, 
is analyzed. Predictive maturity is defined, here, as the accuracy of the model to 
predict multiple Hopkinson bar experiments. A statistical discrepancy quantifies 
the systematic disagreement (bias) between measurements and predictions. Our 
hypothesis is that improving the predictive capability of a model should translate 
into better agreement between measurements and predictions. This agreement, 
in turn, should lead to a smaller discrepancy. We have recently proposed to use 
discrepancy and coverage, that is, the extent to which the physical experiments 
used for calibration populate the regime of applicability of the model, as basis to 
define a Predictive Maturity Index (PM I). It was shown that predictive maturity 
could be improved when additional physical tests are made available to increase 
coverage of the regime of applicability. This contribution illustrates how the PMI 
changes as "better" physics are implemented in the model. The application is 
the non-linear Preston-Tonks-Wallace (PTW) strength model applied to Beryllium 
metal. We demonstrate that our framework tracks the evolution of maturity of the 
PTW model. Robustness of the PMI with respect to the selection of coefficients 
needed in its definition is also studied. (Approved for unlimited, public release 
on March-xx-2010, LA-UR-10-xxxx.) 

1. Introduction 

The ever-increasing role that numerical models and computer simulations play in decision­
making motivates the need to quantify "predictive maturity." This concept is needed to assess 
the extent to which a modeling capability may be applied successfully to a specific problem. 
Tracking progress in the development of a predictive capability is another important motivation . 
Code developers and their customers have a need to understand the degree of improvement in 
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predictive capability potentially realized by implementing a new algorithm or performing a new 
experimental campaign. This cannot easily be achieved without tracking progress with a metric. 

Whether it is to make a statement about the predictive maturity of a modeling capability or 
track progress, an important question is whether predictive maturity can even be achieved in the 
case of multi-scale, multi-physics models. Our working hypothesis is that, if one could conduct a 
large-enough number of physical experiments, then one could reasonably envision reducing the 
prediction uncertainty down to the level of uncontrolled, natural variability. Therefore, it can be 
postulated that, as new experimental information becomes available, the disagreement between 
simulation predictions and physical measurements should be reduced down to a "constant" level 
of systematic bias. Such statement should also apply vis-a-vis the physical complexity or degree 
of sophistication of models implemented in simulation codes . As models needed to represent 
the relevant physics are progressively developed and implemented in a computer code, the 
disagreement between simulation predictions and physical measurements should be reduced. 

In Reference [1], we have proposed to use this concept of "stabilization" of the systematic 
discrepancy between numerical predictions and physical measurements to assess the maturity 
of a model or simulation . Our approach is in contrast to other efforts to define predictive maturity 
through the combination of qualitative assessments and quantitative scores. An institution that 
leads these efforts is the National Aeronautics and Space Administration (specifically, NASA 
Langley Research Center), as documented in References [2-3]. The authors of References [4-5] 
develop yet another approach based on a goodness-of-fit metric to correlate predictions and 
measurements. The metric includes the concept of novelty of information to quantify whether an 
additional physical test is independent from the others in terms of exploring the physics regimes 
that previous experiments have stayed away from. 

What can be observed from literature available on the subject is that very few investigations 
venture away from the concept of goodness-of-fit, that is, the extent to which predictions from 
models or simulations correlates well with physical measurements. We argue that goodness-of­
fit metrics are only part of the puzzle because they do not address the domain of applicability of 
a modeling capability. It is our opinion that predictive maturity should include a statement about 
the ability of models to deliver accurate predictions over a "range" of settings of the domain of 
applicability. These observations motivated the proposal , in Reference [1], of a metric based on 
several attributes to go beyond the simple concept of goodness-of-fit. The necessary attributes 
include, as mentioned previously, a measure of discrepancy between physical observations and 
numerical predictions and, also, a measure of complexity of the model and the extent to which 
physical experiments used for calibration cover the domain of applicability of the model. 

In this work, we use the non-linear Preston-Tonks-Wallace (PTW) material model of plastic 
deformation for illustration. Physical experiments are performed on samples of Beryllium metal 
to measure its strain-stress behavior as a function of various settings of temperature and strain­
rate. These experiments are Hopkinson bar tests. A statistical procedure is then applied to infer 
the joint probability distribution of eight coefficients of the PTW model such that its predictions 
match the measured strain-stress curves over the regime of temperature and strain-rate settings 
of interest. Three model variants are investigated, ranging from a moderately predictive version 
to the original PTW equation. The accuracy of model predictions is tracked as new experiments 
are provided to the analysis and better models are analyzed . It is shown that the PMI is capable 
to track progress, as more physical experiments are provided to the analysis, and discriminate 
the moderately predictive model from better variants. 

These results suggest that the approach can be useful to claim completion of a calibration 
process, deliver model predictions with quantified uncertainty and bias, and provide insight into 
the predictive maturity of a model or numerical simulation. These results also open the door to 
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designing physical experiments such that a minimal resource can be spent on performing tests 
while guaranteeing a given level of predictive maturity. This direction is one that will be pursued 
in future research . What this work does not yet address, that will also be pursued in future work, 
is to understand the extent to which these concepts can be applied to the verification , validation 
and uncertainty quantification of multi-space, multi-physics models or simulations. 

The manuscript is organized as follows. Section 2 summarizes the PMI metric developed in 
Reference [1]. The PTW model and datasets of Hopkinson bar measurements are presented in 
section 3. Section 4 discusses the results obtained by analyzing several variants of the model 
and progressively adding measurements obtained at different settings of temperature and strain 
rate . Finally, conclusions and directions of future research are briefly discussed in section 5. 

2. The Predictive Maturity Index Metric 
In this work, the terms "model, " "code" and "simulation" are used inter-changeably to denote 

an analytical or numerical model. They are collectively referred to as the "model" that, in short, 
builds a functional relation between input variables and output responses: 

y = M (p ; e) , ( 1 ) 

where the pair (p; 8) denotes inputs to the model and y is the output. Variables (p; 8) and y can 
be scalar-valued or mUlti-dimensional. The symbol p refers to inputs that define the domain of 
applicability while 8 denotes other inputs such as ancillary variables or calibration variables. In 
the application to the PTW model, input variable p refers to the pair (temperature; strain rate) of 
control variables while 8 refers to eight, material-dependent coefficients. 

The terms "data" and "dataset," likewise, refer to physical measurements or observations 
collected by performing experimental tests. Measurements are denoted by the symbol lest. a 
quantity that, again, can be either scalar-valued or mUlti-dimensional. Verification and Validation 
(V&V) investigations typically assess the extent to which predictions y and measurements lest 
are correlated, and quantify the sensitivity and uncertainty of these predictions [6-8]. 

2.1 The Attributes of Predictive Maturity 

Reference [1] postulates that, at least, three attributes are essential to define predictive 
maturity: (A-i) the extent to which datasets available "cover" the domain of applicability; (A-2) 
the "complexity" of the model; and (A-3) the level of accuracy of model predictions. Clearly, the 
list is not exhaustive and other attributes could be added to define predictive maturity. Examples 
include the robustness of model predictions to assumptions, and time-to-solution. 

Time-to-solution is important because getting the answer from a computer code that runs in 
one minute as opposed to another simulation that runs in one hour, everything else being equal , 
matters greatly. Robustness is essential, as stressed in References [9-10]. Robustness refers to 
the extent to which model predictions vary or, to the contrary, are insensitive or "robust," when 
assumptions upon which the model is derived are modified. Achieving robustness means that 
predictions do not change significantly and, therefore, can be trusted with a higher degree of 
confidence, even if some of the assumptions of the simulation are incorrect. Robustness can be 
dealt with by quantifying the extent to which the PMI is sensitive to modeling assumptions. 

2.2 Attribute (A-1): Coverage of the Domain of Applicability 

Coverage of the domain of applicability {Ov} refers to the location of physical experiments 
performed. Figure 1 illustrates this concept for a notional 20 domain parameterized by a pair 
(P1; P2) of control parameters. In Reference [1], coverage is measured by assessing the extent 
to which the physical experiments performed fill the space. One can, for example, compute the 
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convex hull {OCH} of physical experiments and measure it relative to the total "volume" of the 
multi-dimensional domain of applicability {Ov}. 

P2 Test P2 Convex 
Measurements / /HUII 

/ • 3 3 

/ 
2 •••••••••• • 2 . 
1 1 • ., 

P1 P1 

1 2 3 4 5 1 2 3 4 5 

Figure 1. Definition of a 20 domain of applicability (left) and coverage by test data (right). 

The convex hull is, by definition, the smallest domain that, while remaining convex, includes 
all physical experiments. The ratio between the volume of the convex hull {OCH} and that of the 
domain of applicability {Ov} defines the coverage metric: 

Volume(QCH) 
TJC = (, Volume\Qv ) , 

(2) 

where Volume(e) denotes a function that calculates the N-dimensional volume of a region of 9\N. 
For the domain of applicability {Ov} = [1 ; 5] x [1; 3] shown in Figure 1, coverage is equal to the 
area highlighted in orange divided by the total area, that is, I1c = Area(OCH)/Area(Ov). 

2.3 Attribute (A-2): Complexity of a Model or Numerical Simulation 

Defining the complexity of a model can be an extremely difficult task. It may involve making 
a statement about the sophistication of physical principles that are modeled; the complexity of 
mathematical spaces where the continuous or discrete solutions are constructed; the degree to 
which different physics are coupled; how many sub-models, algorithms or numerical methods 
are implemented; how many lines of codes are written; etc. 

To define complexity, one metric is chosen that, while remaining simple, cuts across most 
of these aspects: the number of calibration "knobs," or ancillary variables 9k, of the model. This 
choice is guided by the principle that, in general, more sophisticated models possess larger 
numbers of ancillary variables . The number of calibration knobs is denoted by the symbol NK. 

2.4 Attribute (A-3): Level of Accuracy of Model Predictions 

The ability of a model or simulation to accurately reproduce the datasets is defined, not so 
much in terms of goodness-of-fit, but through a "discrepancy" as proposed in Reference [11] : 

yTest (p) = y (p;8) + c5(p) + ;rest, (3) 

where symbols lest(p), y(p;6), o(p) and E
Test denote, respectively, the physical measurements, 

model predictions, discrepancy term, and measurement error. The measurement error takes the 
form of a zero-mean, Gaussian process, E Test - N(O; aTest), obtained from replicate experiments. 

The role played by the discrepancy term o(p) is to capture residual differences between 
predictions and measurements that cannot be accounted for when calibration parameters 6 are 
varied or calibrated . Discrepancy is a statistical process that represents model form error, as 
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opposed to parametric uncertainty captured by ancillary variables 8. The theory behind equation 
(3) comes from Reference [11] . It is implemented at the Los Alamos National Laboratory in the 
Gaussian Process Modeling for Simulation Analysis (GPM/SA) software package [12-13]. 

Once the statistics of discrepancy o(p) are estimated, the metric of accuracy is defined as: 

5
s 

= ()Max(5(p )) , (4) 

()Max(y(p;B)) 
where the operator a(.) denotes the maximum singular value computed when all realizations of 
either discrepancy, that is, o(p), or prediction, that is, y(p;8), are analyzed. The Singular Value 
Decomposition (SVD) algorithm is used in these computations. (See Reference [1] for details.) 
The maximum singular value is a convenient metric because it exhibits the same physical units 
as those of measurements and predictions analyzed, while being independent of the number of 
realizations analyzed . The resulting scaled discrepancy metric Os exhibits no unit. 

2.5 Definition of the Predictive Maturity Index (PMI) Metric 

The PMI metric defined in Reference [1] depends on coverage Ile, number of knobs NK, and 
goodness-of-fit os. Its values are, without loss of generality, bounded in the interval 0 ::;;PMI ::;;1 
for intuitive interpretation. PMI = 0 means that the model has no maturity what-so-ever. PMI = 1 
implies, on the other hand, perfect maturity over the entire domain of applicability. Clearly, these 
two cases are asymptotes that cannot be reached with a finite number of physical experiments. 

In Reference [1], several mathematical and asymptotic properties of predictive maturity are 
proposed that constrain the definition of the metric. The first property is that the level of maturity 
increases when coverage of the domain of applicability increases. Conversely, maturity should 
decrease when the number of knobs increases. It means that simpler models, that tend to have 
fewer knobs, are more mature than complicated models defined with more knobs, at equivalent 
levels of coverage and discrepancy. Thirdly, maturity decreases when discrepancy increases. 

Predictive Maturity Index, PMI (with y =0, Y2=0.25, 13=2) 

- , . .. . . . 
o . , .... 

. ;:;. 
-;C 
S 0.8 

:E n. 0 .6 
>. -·c 
::::l 0.4 -ra 
:E 

Q,) 0 .2 
> :.;:: 
(J 

0 :s 
Q,) 0 ... n. 

Discrepancy, 0s 1 0 Coverage, T] c 

Figure 2. Predictive maturity PMI(6s;NK;fJd with coefficients V1 = 0, V2 = % and V2 = 2. 

Four asymptotic properties of predictive maturity are also defined. The first limit case is that 
maturity tends to zero as predictions of the model become increasingly inaccurate, or Os -7 1. 
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The second case is that maturity deteriorates as NK -7 00 . This expresses that it becomes easier 
to match physical measurements if a large number of knobs is available for calibration. The third 
case is that maturity deteriorates if coverage tends to zero, or Ile -7 O. Finally, we postulate that 
"perfect" maturity, or PMI = 1, can only be reached to the extent that the model delivers "perfect" 
accuracy, or Os -7 0, and the physical experiments used for correlation and calibration provide 
"infinite" coverage of the domain of applicability, or Ile -7 1. 

Reference [1] proposes the following PMI metric that verifies the above-stated properties: 

(
N ) Y1 €-772 J 3 _62 

PMl(Os;NK ;1Jc)=1JcX N; X(1-os )Y2 xe C S , (5) 

where V1, V2 and V3 are strictly positive, user-defined coefficients used to weight the effects of 
various contributions relative to the first one. The symbol NR denotes a "reference" number of 
knobs. It is a characteristic number of calibration variables that one would expect to encounter 
in a class of similar models. The ratio (NR/NK) defines a non-dimensional number of knobs. 

Figure 2 illustrates a "20 slice" of the PMI function obtained when the number of knobs is 
kept constant. Coefficients V1 = 0, V2 = ~ and V3 = 2 are used to show the combined effect of 
discrepancy Os and coverage Ile. The PMI reaches "perfect" predictability, or PMI = 1, only when 
(Os; Ilc) -7 (0; 1). It can also be observed that maturity decreases as either coverage reduces or 
discrepancy increases. The triplet (V1; V2; V3) is kept constant for consistency with Reference [1] . 

3. Application of the Preston-Tonks-Wallace Model to Beryllium Metal 
In this section, the Preston-Tonks-Wallace (PTW) model of plastic deformation documented 

in Reference [14] is briefly discussed. It is applied to the prediction of strain-stress curves for the 
light-weight, high-strength Beryllium (Be) metal. Two variants of the original PTW equations are 
also defined to assess, in section 4, the evolution of the PMI as "better" physics are analyzed. 

3.1 The Pres ton-Tonks-Wallace (PTW) Model of Strength and Plastic Deformation 

The PTW model of strength and plasticity describes strain-stress curves obtained at various 
regimes of strain rate and temperature. It models the plastic flow of metals and is usually though 
of as suitable to simulate the material response to fast transients such as those from explosive 
loading or high velocity impacts. The main equations from Reference [14] are: 

_ 2 (so - s~ ) f TlO g(;£IB) _ }.2 _ 2 (Yo - Y ~ ) rKT10g(I'!" IB) _}.2 (6) 
O'5 - S0- J;i e dA and O'y - YO - J;i.b e dA, 

where symbols as and ay denote the dimensionless work hardening saturation stress and yield 
stress, respectively. Control parameters that define the two-dimensional domain of applicability 
are the strain rate (d£/dt) and temperature (T) of equation (6). Symbols 8, K, V, so, s~, Yo and y~ 
are seven , also dimensionless, calibration variables that depend on the material analyzed. 

Table 1. Definition of variants of the PTW model analyzed 

Identifier Description 

Variant-O It is the original PTW model of equation 16). 
Variant-1 The "erf' function replaced with an exponential "err" function. 
Variant-2 The stress hardening is turned off (with PTW parameter p = 0). 

In addition to the original PTW model of equation (6), two variants are analyzed to observe 
how the PMI metric changes as "better" physics are implemented to describe the behavior of the 
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material. These variants are defined in Table 1. The first version is the original PTW model. The 
second version, labeled "Variant-1," is an implementation where "erf' functions of equation (6) 
are replaced by simpler, exponential "err" functions . This implementation is expected to perform 
less accurately than the original model. A third version, labeled "Variant-2," is an implementation 
where stress hardening is turned off. Because this implementation is incapable to account for an 
important phenomenology, it is expected to be the least mature of the variants considered . 

3.2 Application to the High-strength Beryllium (Be) Metal 

The application considered is the development of a material model for the Be metal over a 
range of temperatures and strain rates likely to be encountered in an application of interest that 
could, for example, be the numerical simulation of the mechanical and thermal responses of fuel 
rods subjected to irradiation in a nuclear reactor. Hopkinson bar experiments are performed on 
Be samples to collect the strain-stress curves shown in Figure 3. The pairs (T; d£/dt) of control 
parameters that define the Hopkinson bar tests are listed in Table 2. 

Measured Stress-Strain Curves for Beryllium 
1400 

1200 ....................... " ...... "' ... ",, ..... . 

~1000 . 
CI> 
c.. 
'-" 

~ 800r 
Q) .... .... 

(f) 600 . 

400 ..... 

..... .. .. . ... .. '., ... " .... . ........ ............... : 

-
0.1 0.2 0.3 
Engineering Strain (unitless) 

0.4 

Figure 3. Strain-stress curves measured from Hopkinson bar tests for the Be metal. 

T bl 2 D f .. f tt a e e Inltlon 0 se ings f B or experiments performed on .. e samples. 

Dataset Maximum Strain, EMax Temperature, T (OK) Strain-rate, dEldt (sec.-i) 

1 0.0539 77.0 oK 3,000.0 sec. 1 

2 0.1118 223.0 oK 3,500.0 sec.-1 

3 0.1202 298.0 oK 3,500.0 sec. 1 

4 0.1355 473.0 oK 3,700.0 sec. -1 

5 0.1360 573.0 oK 3,900.0 sec.-1 

6 0.2100 573.0 oK 1.0 sec. 1 

7 0.2689 473.0 oK 0.001 sec.-1 

8 0.090 293.0 oK 2,000 sec.-1 

9 0.150 293.0 oK 950.0 sec.-1 

10 0.200 293.0 oK 2.0 sec.-1 

11 0.250 293.0 oK 0.02 sec.-1 

12 0.350 293.0 oK 0.0001 sec. 1 
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Figure 3 illustrates the range of stain and stress values, as well as the variety of shapes, 
that the material model is expected to reproduce over the domain of applicability. Measurement 
error is modeled as a Gaussian process with zero mean and 2.5% variance, as described by the 
experimentalists. 

The seven ancillary variables (9; K; y; so; s .. ; Yo; y .. ) of the PTW model and its variants are 
defined in Table 3, together with the lower and upper bounds within which they are believed to 
vary for the Be metal. Ideally, one could calibrate these variables to improve the goodness-of-fit 
between strain-stress curves predicted by the model and those measured. Attempting, however, 
to find through numerical optimization a unique set of values that reproduce the measurements 
is impossible because of intrinsic grain size and texture variability of the metal. Also, performing 
Hopkinson bar tests at various regimes of temperature and strain rate exercise different-enough 
effects that it is unrealistic to envision that all could be represented by a unique set of calibration 
variables (9; K; y; so; s .. ; Yo; y .. ). 

Table 3. Definition of calibration variables of the PTW model for the Be metal. 

Symbol Description Minimum Maximum 

9 Initial strain hardening rate 0.009979 0.0480590 
K Temperature dependence of thermal activation energy 0.013516 0.4901500 

Y Strain rate dependence of thermal activation energy -22.15299 7.4708000 

Yo Minimum yield stress (at T = 0 OK) 0.001054 0.0021643 
y .. Maximum yield stress (at T "" melting) 0.000194 0.0016100 

So Minimum saturation stress (at T = 0 OK) 0.002493 0.0480680 
s .. Maximum saturation stress (at T "" melting) 0.000599 0.0080031 

Instead, our procedure searches for the joint probability distribution of calibration variables 
(9; K; Y; so; s .. ; Yo; y .. ) such that model predictions are statistically consistent with measurements 
over the two-dimensional domain of applicability {Ov}. It is performed with the GPM/SA software 
that also infers from the comparison between predictions and measurements a statistical model 
of the discrepancy term o(p) of equation (3). GPM/SA explores the joint probability distribution 
with a Markov-chain random walk that is based on a simple but effective principle: predictions 
that better match the measurements originate from combinations of calibration variables that 
tend to be visited more frequently by the random walk. After performing a sufficient number of 
iterations, selected to be 10,000 here, the statistics of calibration variables visited are computed 
to estimate the (unknown) joint probability distribution that represents our modeling uncertainty. 

3.3 Definition of the Analysis Performed 

The Markov-chain exploration of the posterior probability distribution of calibration variables 
(9; K; Y; so; s .. ; Yo; y .. ), and estimation of the discrepancy term o(p), is repeated for each variant 
of the PTW model (see previous Table 1) and different combinations of physical measurements. 
The combinations of physical tests used in each case are defined in Table 4. 

Table 4. Definition of the nine sets of Ho,~kinson bar experiments analyzed 

Case List of Experiments Case List of Experiments 

1 1, 2 6 1,2,3,4,5,6,7 
2 1,2,3 7 1, 2, 3, 4, 5, 6, 7 and 10 
3 1, 2,3,4 8 1, 2, 3, 4, 5, 6, 7 and 10, 11 
4 1, 2, 3, 4, 5 9 1, 2, 3, 4, 5, 6, 7 and 1 Q, 11 , 12 
5 1,2,3,4, 5,6 
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Nine separate cases are defined, as opposed to a single analysis with twelve experiments, 
to assess the effect that increasing the number of physical tests has on predictive maturity. With 
the analysis of three variants of the PTW model, the effect of implementing "better" physics is 
also studied in section 4. Our hypothesis is that the PMI metric of Reference [1] will be sensitive 
to both increasing the number of physical tests available for analysis and improving the model. 

4. Assessment of Predictive Maturity of the PTW Model and Variants 

Figure 4 illustrates the location of physical experiments in the 20 domain (T; dE/dt). Blue, 
square symbols represent the Hopkinson bar experiments defined in Table 2. This domain is a 
two-dimensional hyper-cube defined as {Ov} = [10-4; 4.10+3

] x [70; 600] °K.sec.-1
. The convex 

hull {OCH} of all twelve experiments is shown with a red , dashed line. 

Domain of Applicability With Be Hopkinson Bar Experiments 
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Figure 4. Domain of applicability and coverage of Hopkinson bar experiments. 

Results are presented by, first, briefly discussing the analysis of the original PTW model , 
labeled "Variant-O" in Table 1. Results obtained with the other two variants are discussed next. 
The discussion concludes with an illustration of the robustness of predictive maturity to unknown 
modeling choices, such as those of the PTW model or coefficients (Y1; Y2; Y3) of the PMI metric. 

4.1 Analysis of Predictive Maturity of the PTW Model 

Results shown in this section have been published in Reference [1] . They are summarized 
here for completeness. The values of coverage Ilc, number of calibration variables NK, scaled 
discrepancy Os and PMI are listed in Table 5 for each one of the nine cases defined in Table 4. 
The PMI is computed from equation (6) with Yl = ~, Y2 = %, Y3 = 2 and NR = 5. A reference of 
five calibration variables, that is, NR = 5, is used because this number is typical of material 
models in solid mechanics such as, for example, Johnson-Cooke or Zerilli-Amstrong. 

It can be seen in Table 5 that coverage increases from 3.11 % to nearly 75% of the domain 
of applicability. Discrepancy starts at 7.11 % and decreases to 0.63% when test 5 is added to 
the analysis. Tests 5 and 6 are experiments performed at high temperatures; they are essential 
to the predictability of the PTW model, which explains the improvement of accuracy obtained 
when they are included in the analysis. It then becomes increasingly more difficult to match the 

11 
American Institute of Aeronautics and Astronautics 

Approved for unlimited, public release on March xx, 2010 LA-UR-10-xxxx, Unclassified 



1 i h AIM Non-Deterministic Approaches (NDA) Conference 
Orlando, Florida, April 12-15, 2010, AIAA Tracking Number 213426 

variety of strain-stress curves obtained when new experiments are added at low strain rates. It 
results that discrepancy increases from 0.63% (case 4) to nearly 17% (case 9). With PMI values 
above 70%, it is nevertheless assessed that maturity of the PTW model is acceptable. 

Table 5 Predictive maturity for the nine sets of experiments (PTW model of Be metal). 

Case Coverage, Number of Discrepancy, PMI Metric 
flc (%) Knobs,NK lis (%) (%) 

1 3.11% 7 7.11% 6.96% 
2 4.62% 7 7.21% 10.32% 
3 8.17% 7 1.55% 18.44% 
4 9.68% 7 0.63% 21.80% 
5 34.16% 7 9.72% 60.83% 
6 55.55% 7 11.82% 72.36% 
7 55.55% 7 11.23% 72.58% 
8 62.74% 7 12.01% 73.12% 
9 74.25% 7 16.85% 71.24% 

Table 5 also conveys the "stabilization" of the PMI metric as the level of coverage provided 
by physical experiments is increased. (This can also be observed in Figure 5 where PMI values 
for the "Variant-O" model are identical to those of Table 5.) The fact that the predictive maturity 
metric stabilizes after enough physical tests have been provided to the analysis illustrates our 
hypothesis that "maturity can be reached if enough experiments are analyzed. " 

4.2 Effect on Predictive Maturity of Varying the Degree of Fidelity of the PTW Model 

The analysis summarized above is repeated with the "Variant-1" and "Variant-2" versions of 
the PTW equation, as defined in Table 1. ("Variant-O" is the original PTW model of section 4.1.) 
Results are summarized in Figure 5 that compares PMI values obtained for these three variants. 

PMI Values of Three PTW·llke Models (Be Dalasels, Feb·2010) 
80 ,--.,--...,.----r----,-----,-----,---..,.----,---, 
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Figure 5. Predictive maturity values for three variants of the PTW model. 

Results obtained with the "Variant-1 " model are shown with an orange, dashed line and 
diamond symbols. Results of "Variant-2" are shown with a red, dashed line and square symbols. 
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Figure 5 illustrates a degradation of PMI values as one progresses from the nominal model to 
"Variant-1" and "Variant-2." This observation is consistent with expectation because "Variant-1" 
implements an exponential function in lieu of the "erf' function of equation (6). This perturbation 
of the original PTW equation is thought to be somewhat less severe than the implementation of 
"Variant-2," where stress hardening is completely turned off. 

This application, while it does not constitute a formal proof, confirms our hypothesis that the 
PMI metric of Reference [1] is capable of tracking progress as "better" physics become available 
in a model or code. These results open the door to designing physical experiments such that a 
minimal resource can be spent on collecting measurements while guaranteeing a given level of 
predictive maturity. The availability of a quantitative metric of predictive maturity can also guide 
studies where the benefits of improving the fidelity of a phenomenon are traded against those of 
performing more physical experiments. Figure 5, for example, clearly illustrates that the benefits 
of adding "better" physics to progress from "Variant-1" to "Variant-O" are small relative to the 
benefits of including in the analysis the high-temperature Hopkinson bar tests 5 and 6. 

4.3 Illustration of the Robustness of Predictive Maturity 

In this last section, we attempt to address one criticism often encountered when attempting 
to define metrics for model validation or, in our case, predictive maturity. The concern is that the 
definition of a metric usually relies on arbitrary coefficients. One can, appropriately-so, question 
whether the value of the metric is sensitive to these arbitrary choices. The PMI of equation (5), 
for example, introduces a triplet of weighting factors (Y1; Y2; Y3) to account for the contributions of 
discrepancy, coverage and complexity. These arbitrary coefficients can be seen as strength for 
their ability to add flexibility and account for expert judgment. But they constitute a weakness if 
PMI values happen to be overly sensitive to the choice of arbitrary coefficients (Y1; Y2; Y3). 

PMI Metric vs. Test Number for PTW Modeling of Be Metal 
~r---~--~---.--------r---~~~---.---' 

70 

-+~ Nominat Curve (a = 0) -+- Robustness Curve (a = a
k

) 

3 4 5 6 8 
Test Dataset Case 

Figure 6. Robustness of the PMI with respect to the choice of coefficients (V1; V2; V3)' 

Our contention is that the question is not to justify the choice of these arbitrary coefficients 
because their introduction in the definition of a metric is somewhat unavoidable. Instead, we can 
make the question go away by demonstrating that it is irrelevant since values of the PMI metric 
are somewhat robust, or insensitive, to these arbitrary choices. 
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To do so, a robustness analysis is performed for the "Variant-O," or original, PTW equation. 
The analysis consists of varying the coefficients (Y1; Y2; Y3) and searching for the worst-possible 
PMI, or smallest value, by solving an optimization problem. Gamma coefficients Yk are varied up 
to a "horizon-of-uncertainty," denoted by the symbol a, that defines how far away from their 
nominal values Yk(O) one is willing to vary the arbitrary coefficients (Y1; Y2; Y3): 

(1- a) :s; ~~) :s; (1 + a) , (7) 

where nominal values are Y1(O) = ~, Y2(O) = % and Y3(O) = 2, as used previously. The horizon-of­
uncertainty parameter a is then increased progressively to examine by how much the smallest 
PMI value changes as one ventures further away from the nominal triplet (Y1(O); Y2(O); Y3(O»). Note 
that this procedure involves solving a constrained optimization problem, where constraints are 
defined by three instances of equation (7), one for each coefficient Yk. Reference [15] discusses 
the theory and application of information-gap robustness that has inspired the present analysis. 

Figure 6 compares the nominal PMI curve, obtained with triplet (Y1 = ~; Y2 = %; Y3 = 2), to 
worst-case PM I curves obtained when coefficients (Y1; Y2; Y3) are allowed to vary up to the level 
of uncertainty a. The analysis is performed at seven discrete levels a = 0, 0.17, 0.33, 0.50, 0.67, 
0.83 and 1. Even though a deterioration of maturity is clearly visible, the overall trend remains 
unchanged as more physical experiments are provided to the analysis. This result translates the 
fact that the PMI metric is robust to the choice of arbitrary coefficients Yk. A practical implication 
is that one should not worry too much about the choice of coefficients Yk: the trends identified by 
the PM I metric remain unchanged no matter which values of coefficients (Y1; Y2; Y3) are used. 

Robustness of PMI Metric for PTW Modeling of Be Metal (Jan-2010) 
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Figure 7. Robustness of the Case-9 PMI metric as a function of a-parameter. 

Figure 7 shows the worst-case PMI metric as a function of increasing horizon-of-uncertainty 
parameter a. This result is produced for case 10 where the ten tests 1, 2, 3, 4, 5, 6, 7, 10, 11 
and 12 are provided to the test-analysis correlation and calibration procedure. The figure shows 
that the analysis can be performed at a small number of discrete a-values. A simple polynomial 
curve-fit can then be performed to estimate the PMI metric at other (non-analyzed) a-values. 
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Figure 7 also illustrates how to interpret the analysis of robustness if the objective is, for 
example, to guarantee a minimum level of predictive maturity equal to PMI = 60%. The figure 
shows that 60% maturity corresponds to a maximum horizon-of-uncertainty equal to 0.48. The 
implication is that, for the dataset of case 10 considered, our analysis of predictive maturity of 
the PTW model has a level of robustness of a* = 0.48. Stated simply, it means that the PMI is 
guaranteed to be, at least, equal to 60% as long as the analysis is performed with a triplet of 
coefficients (Yl; Y2; Y3) that does not deviate from nominal values Yk(O) by more than: 

(l-a*) n O) ::; Yk ::; (1 +a*) n O). 
~ ~ 

(8) 
= 0.52 = 1.48 

Note that, in the particular case of the PMI metric, an analytical expression is available from 
equation (5) that can be used to obtain sensitivities (dPMlldYk). These sensitivities can be used, 
in a crude sense, to assess the robustness of PMI values to coefficients Yk. Even though it offers 
another possibility, the robustness analysis is preferred because it is applicable to all situations, 
especially, those where obtaining a closed-form solution is not an option . 

5. Conclusion 

In this publication , we pursue the development, started in Reference [1], of a quantitative 
metric to assess the predictive maturity of a model or numerical simulation . The metric proposed 
is based on a statistical discrepancy term that quantifies the systematic disagreement, or bias, 
between measurements and predictions. It also accounts for coverage, or the degree to which 
physical experiments cover the domain of applicability of the model or code. A third attribute of 
the metric is the level of complexity of the model analyzed. 

Our hypothesis is that improving the predictive capability of a model should translate into 
better agreement between measurements and predictions. This agreement, in turn, should lead 
to a smaller discrepancy term. The hypothesis is illustrated with the non-linear Preston-Tonks­
Wallace strength model applied to Hopkinson bar experiments performed on Beryllium metal. It 
is shown that predictive maturity improves when additional physical tests are made available to 
increase coverage of the domain of applicability. It is also shown that the maturity metric tracks 
progress as "better" physics are implemented in the model. Finally, robustness of the metric with 
respect to the choice of arbitrary coefficients needed in its definition is demonstrated. 

These results, while preliminary, open the door to designing physical experiments such that 
a minimal resource can be spent on collecting measurements while guaranteeing a given level 
of predictive maturity. The availability of a quantitative metric of maturity can also guide studies 
where the benefits of improving the fidelity of a phenomenon, for example, by implementing a 
"better" model, are traded against those of performing more physical experiments. 
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