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Demonstrating the Improvement of Predictive
Maturity of a Computational Model

Frangois Hemez' Sezer Atamturktur’ Cetin Unal*
Los Alamos National Laboratory Clemson University Los Alamos National Laboratory
XCP-Division (XCP-1) Civil Engineering Department CCS-Division (CCS-DO)
Los Alamos, New Mexico Clemson, South Carolina Los Alamos, New Mexico

Abstract: We demonstrate an improvement of predictive capability brought to a
non-linear material model using a combination of test data, sensitivity analysis,
uncertainty quantification, and calibration. A model that captures increasingly
complicated phenomena, such as plasticity, temperature and strain rate effects,
is analyzed. Predictive maturity is defined, here, as the accuracy of the model to
predict multiple Hopkinson bar experiments. A statistical discrepancy quantifies
the systematic disagreement (bias) between measurements and predictions. Our
hypothesis is that improving the predictive capability of a model should translate
into better agreement between measurements and predictions. This agreement,
in turn, should lead to a smaller discrepancy. We have recently proposed to use
discrepancy and coverage, that is, the extent to which the physical experiments
used for calibration populate the regime of applicability of the model, as basis to
define a Predictive Maturity Index (PMI). It was shown that predictive maturity
could be improved when additional physical tests are made available to increase
coverage of the regime of applicability. This contribution illustrates how the PMI
changes as “better” physics are implemented in the model. The application is
the non-linear Preston-Tonks-Wallace (PTW) strength model applied to Beryllium
metal. We demonstrate that our framework tracks the evolution of maturity of the
PTW model. Robustness of the PMI with respect to the selection of coefficients
needed in its definition is also studied. (Approved for unlimited, public release
on March-xx-2010, LA-UR-10-xxxx.)

1. Introduction

The ever-increasing role that numerical models and computer simulations play in decision-
making motivates the need to quantify “predictive maturity.” This concept is needed to assess
the extent to which a modeling capability may be applied successfully to a specific problem.
Tracking progress in the development of a predictive capability is another important motivation.
Code developers and their customers have a need to understand the degree of improvement in
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predictive capability potentially realized by implementing a new algorithm or performing a new
experimental campaign. This cannot easily be achieved without tracking progress with a metric.

Whether it is to make a statement about the predictive maturity of a modeling capability or
track progress, an important question is whether predictive maturity can even be achieved in the
case of multi-scale, multi-physics models. Our working hypothesis is that, if one could conduct a
large-enough number of physical experiments, then one could reasonably envision reducing the
prediction uncertainty down to the level of uncontrolled, natural variability. Therefore, it can be
postulated that, as new experimental information becomes available, the disagreement between
simulation predictions and physical measurements should be reduced down to a “constant” level
of systematic bias. Such statement should also apply vis-a-vis the physical complexity or degree
of sophistication of models implemented in simulation codes. As models needed to represent
the relevant physics are progressively developed and implemented in a computer code, the
disagreement between simulation predictions and physical measurements should be reduced.

In Reference [1], we have proposed to use this concept of “stabilization” of the systematic
discrepancy between numerical predictions and physical measurements to assess the maturity
of a model or simulation. Our approach is in contrast to other efforts to define predictive maturity
through the combination of qualitative assessments and quantitative scores. An institution that
leads these efforts is the National Aeronautics and Space Administration (specifically, NASA
Langley Research Center), as documented in References [2-3]. The authors of References [4-5]
develop yet another approach based on a goodness-of-fit metric to correlate predictions and
measurements. The metric includes the concept of novelty of information to quantify whether an
additional physical test is independent from the others in terms of exploring the physics regimes
that previous experiments have stayed away from.

What can be observed from literature available on the subject is that very few investigations
venture away from the concept of goodness-of-fit, that is, the extent to which predictions from
models or simulations correlates well with physical measurements. We argue that goodness-of-
fit metrics are only part of the puzzle because they do not address the domain of applicability of
a modeling capability. It is our opinion that predictive maturity should include a statement about
the ability of models to deliver accurate predictions over a “range” of settings of the domain of
applicability. These observations motivated the proposal, in Reference [1], of a metric based on
several attributes to go beyond the simple concept of goodness-of-fit. The necessary attributes
include, as mentioned previously, a measure of discrepancy between physical observations and
numerical predictions and, also, a measure of complexity of the model and the extent to which
physical experiments used for calibration cover the domain of applicability of the model.

In this work, we use the non-linear Preston-Tonks-Wallace (PTW) material model of plastic
deformation for illustration. Physical experiments are performed on samples of Beryllium metal
to measure its strain-stress behavior as a function of various settings of temperature and strain-
rate. These experiments are Hopkinson bar tests. A statistical procedure is then applied to infer
the joint probability distribution of eight coefficients of the PTW model such that its predictions
match the measured strain-stress curves over the regime of temperature and strain-rate settings
of interest. Three model variants are investigated, ranging from a moderately predictive version
to the original PTW equation. The accuracy of model predictions is tracked as new experiments
are provided to the analysis and better models are analyzed. It is shown that the PMI is capable
to track progress, as more physical experiments are provided to the analysis, and discriminate
the moderately predictive model from better variants.

These results suggest that the approach can be useful to claim completion of a calibration
process, deliver model predictions with quantified uncertainty and bias, and provide insight into
the predictive maturity of a model or numerical simulation. These results also open the door to
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designing physical experiments such that a minimal resource can be spent on performing tests
while guaranteeing a given level of predictive maturity. This direction is one that will be pursued
in future research. What this work does not yet address, that will also be pursued in future work,
is to understand the extent to which these concepts can be applied to the verification, validation
and uncertainty quantification of multi-space, multi-physics models or simulations.

The manuscript is organized as follows. Section 2 summarizes the PMI metric developed in
Reference [1]. The PTW model and datasets of Hopkinson bar measurements are presented in
section 3. Section 4 discusses the results obtained by analyzing several variants of the model
and progressively adding measurements obtained at different settings of temperature and strain
rate. Finally, conclusions and directions of future research are briefly discussed in section 5.

2. The Predictive Maturity Index Metric

In this work, the terms “model,” “code” and “simulation” are used inter-changeably to denote
an analytical or numerical model. They are collectively referred to as the “model” that, in short,
builds a functional relation between input variables and output responses:

y = M(p;0), (1)

where the pair (p; 8) denotes inputs to the model and y is the output. Variables (p; 8) and y can
be scalar-valued or multi-dimensional. The symbol p refers to inputs that define the domain of
applicability while © denotes other inputs such as ancillary variables or calibration variables. In
the application to the PTW model, input variable p refers to the pair (temperature; strain rate) of
control variables while 8 refers to eight, material-dependent coefficients.

The terms “data” and “dataset,” likewise, refer to physical measurements or observations
collected by performing experimental tests. Measurements are denoted by the symbol y™, a
quantity that, again, can be either scalar-valued or multi-dimensional. Verification and Validation
(V&V) investigations typically assess the extent to which predictions y and measurements y"*
are correlated, and quantify the sensitivity and uncertainty of these predictions [6-8].

2.1 The Attributes of Predictive Maturity

Reference [1] postulates that, at least, three attributes are essential to define predictive
maturity: (A-1) the extent to which datasets available “cover” the domain of applicability; (A-2)
the “complexity” of the model; and (A-3) the level of accuracy of model predictions. Clearly, the
list is not exhaustive and other attributes could be added to define predictive maturity. Examples
include the robustness of model predictions to assumptions, and time-to-solution.

Time-to-solution is important because getting the answer from a computer code that runs in
one minute as opposed to another simulation that runs in one hour, everything else being equal,
matters greatly. Robustness is essential, as stressed in References [9-10]. Robustness refers to
the extent to which model predictions vary or, to the contrary, are insensitive or “robust,” when
assumptions upon which the model is derived are modified. Achieving robustness means that
predictions do not change significantly and, therefore, can be trusted with a higher degree of
confidence, even if some of the assumptions of the simulation are incorrect. Robustness can be
dealt with by quantifying the extent to which the PMI is sensitive to modeling assumptions.

2.2 Attribute (A-1): Coverage of the Domain of Applicability

Coverage of the domain of applicability {Qy} refers to the location of physical experiments
performed. Figure 1 illustrates this concept for a notional 2D domain parameterized by a pair
(p1; p2) of control parameters. In Reference [1], coverage is measured by assessing the extent
to which the physical experiments performed fill the space. One can, for example, compute the
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convex hull {Qcn} of physical experiments and measure it relative to the total “volume” of the
multi-dimensional domain of applicability {Qy}.

P2 Test P2 Convex
4 Measurements 4 2D ./Hull
3 __I:'.'.......-. IIIIIII - 3 . / . \
: 7/ \
2 N Y | 2 Q \
IIIIIIIIIII -IIIIIIII.I;.-‘--" h
e e e SRS S
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T B s e R i
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Figure 1. Definition of a 2D domain of applicability (left) and coverage by test data (right).

The convex hull is, by definition, the smallest domain that, while remaining convex, includes
all physical experiments. The ratio between the volume of the convex hull {Qcy} and that of the
domain of applicability {Qv} defines the coverage metric:

B Volume(Qcyy )
fig= Volume(Qy ) '

where Volume(e) denotes a function that calculates the N-dimensional volume of a region of RN,
For the domain of applicability {Qy} = [1; 5] x [1; 3] shown in Figure 1, coverage is equal to the
area highlighted in orange divided by the total area, that is, n¢ = Area(Qcn)/Area(Qy).

2.3 Attribute (A-2): Complexity of a Model or Numerical Simulation

Defining the complexity of a model can be an extremely difficult task. It may involve making
a statement about the sophistication of physical principles that are modeled; the complexity of
mathematical spaces where the continuous or discrete solutions are constructed; the degree to
which different physics are coupled; how many sub-models, algorithms or numerical methods
are implemented; how many lines of codes are written; etc.

(2)

To define complexity, one metric is chosen that, while remaining simple, cuts across most
of these aspects: the number of calibration “knobs,” or ancillary variables 8y, of the model. This
choice is guided by the principle that, in general, more sophisticated models possess larger
numbers of ancillary variables. The number of calibration knobs is denoted by the symbol Ng.

2.4 Attribute (A-3): Level of Accuracy of Model Predictions

The ability of a model or simulation to accurately reproduce the datasets is defined, not so
much in terms of goodness-of-fit, but through a “discrepancy” as proposed in Reference [11]:

YT (p) = y(p:0) + 8(p) + €1, (3)

where symbols y"*(p), y(p;8), 8(p) and €™ denote, respectively, the physical measurements,
model predictions, discrepancy term, and measurement error. The measurement error takes the
form of a zero-mean, Gaussian process, £ ' ~ N(0; o'*), obtained from replicate experiments.

The role played by the discrepancy term 0(p) is to capture residual differences between
predictions and measurements that cannot be accounted for when calibration parameters 6 are
varied or calibrated. Discrepancy is a statistical process that represents model form error, as
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opposed to parametric uncertainty captured by ancillary variables 8. The theory behind equation
(3) comes from Reference [11]. It is implemented at the Los Alamos National Laboratory in the
Gaussian Process Modeling for Simulation Analysis (GPM/SA) software package [12-13].

Once the statistics of discrepancy &(p) are estimated, the metric of accuracy is defined as:

== O Max (5(40))
é‘S - ;Max ()?CTO))’ (4)

where the operator o(s) denotes the maximum singular value computed when all realizations of
either discrepancy, that is, 8(p), or prediction, that is, y(p;8), are analyzed. The Singular Value
Decomposition (SVD) algorithm is used in these computations. (See Reference [1] for details.)
The maximum singular value is a convenient metric because it exhibits the same physical units
as those of measurements and predictions analyzed, while being independent of the number of
realizations analyzed. The resulting scaled discrepancy metric &g exhibits no unit.

2.5 Definition of the Predictive Maturity Index (PMI) Metric

The PMI metric defined in Reference [1] depends on coverage nc¢, number of knobs Nk, and
goodness-of-fit 8s. Its values are, without loss of generality, bounded in the interval 0 <PMI <1
for intuitive interpretation. PMI = 0 means that the model has no maturity what-so-ever. PM| = 1
implies, on the other hand, perfect maturity over the entire domain of applicability. Clearly, these
two cases are asymptotes that cannot be reached with a finite number of physical experiments.

In Reference [1], several mathematical and asymptotic properties of predictive maturity are
proposed that constrain the definition of the metric. The first property is that the level of maturity
increases when coverage of the domain of applicability increases. Conversely, maturity should
decrease when the number of knobs increases. It means that simpler models, that tend to have
fewer knobs, are more mature than complicated models defined with more knobs, at equivalent
levels of coverage and discrepancy. Thirdly, maturity decreases when discrepancy increases.

Predictive Maturity Index, PMI (with y,=0, v,=0.25, v,=2)

Predictive Maturity PMI(5.;N,in )

05 1
06

Discrepancy, 5 02 04
T o Coverage, 1,

Figure 2. Predictive maturity PMI(8s;Nk;nc) with coefficients y; =0,y =% and y, = 2.

Four asymptotic properties of predictive maturity are also defined. The first limit case is that
maturity tends to zero as predictions of the model become increasingly inaccurate, or s = 1.
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The second case is that maturity deteriorates as Nk = <. This expresses that it becomes easier
to match physical measurements if a large number of knobs is available for calibration. The third
case is that maturity deteriorates if coverage tends to zero, or n¢ = 0. Finally, we postulate that
“perfect” maturity, or PMI = 1, can only be reached to the extent that the model delivers “perfect”
accuracy, or 8s > 0, and the physical experiments used for correlation and calibration provide
“infinite” coverage of the domain of applicability, or nc =2 1.

Reference [1] proposes the following PMI metric that verifies the above-stated properties:
7 2Y3_¢2
N 1 . 1~ =5
PMI(8s;N31c )= Ne X [ER—] x (1- 85 )2 x e( ’?CI S, (5)
K

where vy;, y» and ys are strictly positive, user-defined coefficients used to weight the effects of
various contributions relative to the first one. The symbol N denotes a “reference” number of
knobs. It is a characteristic number of calibration variables that one would expect to encounter
in a class of similar models. The ratio (Ng/Nk) defines a non-dimensional number of knobs.

Figure 2 illustrates a “2D slice” of the PMI function obtained when the number of knobs is
kept constant. Coefficients y; = 0, y» = ¥ and y; = 2 are used to show the combined effect of
discrepancy ds and coverage nc. The PMI reaches “perfect” predictability, or PMI = 1, only when
(ds; nc) = (0; 1). It can also be observed that maturity decreases as either coverage reduces or
discrepancy increases. The triplet (y:; y2; y3) is kept constant for consistency with Reference [1].

3. Application of the Preston-Tonks-Wallace Model to Beryllium Metal

In this section, the Preston-Tonks-Wallace (PTW) model of plastic deformation documented
in Reference [14] is briefly discussed. It is applied to the prediction of strain-stress curves for the
light-weight, high-strength Beryllium (Be) metal. Two variants of the original PTW equations are
also defined to assess, in section 4, the evolution of the PMI as “better” physics are analyzed.

3.1 The Preston-Tonks-Wallace (PTW) Model of Strength and Plastic Deformation

The PTW model of strength and plasticity describes strain-stress curves obtained at various
regimes of strain rate and temperature. It models the plastic flow of metals and is usually though
of as suitable to simulate the material response to fast transients such as those from explosive
loading or high velocity impacts. The main equations from Reference [14] are:

» =sG—MﬂmgM}e*m s a,,=,VO-MJ;”"’*‘W‘%—M, (6)

N Jr

where symbols 0s and oy denote the dimensionless work hardening saturation stress and yield
stress, respectively. Control parameters that define the two-dimensional domain of applicability
are the strain rate (de/dt) and temperature (T) of equation (6). Symbols 6, K, Y, So, Se, Yo and Y.
are seven, also dimensionless, calibration variables that depend on the material analyzed.

Table 1. Definition of variants of the PTW model analyzed.

Identifier Description

Variant-0 | It is the original PTW model of equation (6).
Variant-1 | The “erf” function replaced with an exponential “err” function.
Variant-2 | The stress hardening is turned off (with PTW parameter p = 0).

In addition to the original PTW model of equation (6), two variants are analyzed to observe
how the PMI metric changes as “better” physics are implemented to describe the behavior of the
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material. These variants are defined in Table 1. The first version is the original PTW model. The
second version, labeled “Variant-1," is an implementation where “erf’ functions of equation (6)
are replaced by simpler, exponential “err” functions. This implementation is expected to perform
less accurately than the original model. A third version, labeled “Variant-2,” is an implementation
where stress hardening is turned off. Because this implementation is incapable to account for an
important phenomenology, it is expected to be the least mature of the variants considered.

3.2 Application to the High-strength Beryllium (Be) Metal

The application considered is the development of a material model for the Be metal over a
range of temperatures and strain rates likely to be encountered in an application of interest that
could, for example, be the numerical simulation of the mechanical and thermal responses of fuel
rods subjected to irradiation in a nuclear reactor. Hopkinson bar experiments are performed on
Be samples to collect the strain-stress curves shown in Figure 3. The pairs (T; de/dt) of control
parameters that define the Hopkinson bar tests are listed in Table 2.

Measured Stress-Strain Curves for Beryllium
1400

Stress (psi)
—_—

D co o
Q [ = | (=]
o o o

400
20093 0.2 03 0.4

Engineering Strain (unitless)
Figure 3. Strain-stress curves measured from Hopkinson bar tests for the Be metal.
Table 2. Definition of settings for experiments performed on Be samples.

Dataset Maximum Strain, eysx | Temperature, T (°K) | Strain-rate, de/dt (sec.™)
1 0.0539 77.0°K 3,000.0 sec.”
2 0.1118 223.0°K 3,500.0 sec.”™
3 0.1202 298.0°K 3,500.0 sec.™
4 0.1355 473.0°K 3,700.0 sec.”
5 0.1360 573.0°K 3,900.0 sec.”
6 0.2100 573.0°K 1.0 sec.™
7 0.2689 473.0°K 0.001 sec.”
8 0.090 293.0°K 2,000 sec.™
9 0.150 293.0°K 950.0 sec.”'
10 0.200 293.0°K 2.0 sec.”
11 0.250 293.0°K 0.02 sec.™
12 0.350 293.0°K 0.0001 sec.”
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Figure 3 illustrates the range of stain and stress values, as well as the variety of shapes,
that the material model is expected to reproduce over the domain of applicability. Measurement
error is modeled as a Gaussian process with zero mean and 2.5% variance, as described by the
experimentalists.

The seven ancillary variables (6; K; y; So; S=; Yo; ¥=») Of the PTW model and its variants are
defined in Table 3, together with the lower and upper bounds within which they are believed to
vary for the Be metal. Ideally, one could calibrate these variables to improve the goodness-of-fit
between strain-stress curves predicted by the model and those measured. Attempting, however,
to find through numerical optimization a unique set of values that reproduce the measurements
is impossible because of intrinsic grain size and texture variability of the metal. Also, performing
Hopkinson bar tests at various regimes of temperature and strain rate exercise different-enough
effects that it is unrealistic to envision that all could be represented by a unique set of calibration
variables (B; K; y; So; S=; Yo, ¥=).

Table 3. Definition of calibration variables of the PTW model for the Be metal.

Symbol Description Minimum | Maximum
0 Initial strain hardening rate 0.009979 | 0.0480590
K Temperature dependence of thermal activation energy | 0.013516 | 0.4901500
Y Strain rate dependence of thermal activation energy -22.15299 | 7.4708000
Yo Minimum vyield stress (at T = 0 °K) 0.001054 | 0.0021643
Yo Maximum yield stress (at T = melting) 0.000194 | 0.0016100
So Minimum saturation stress (at T = 0 °K) 0.002493 | 0.0480680
Se Maximum saturation stress (at T = melting) 0.000599 | 0.0080031

Instead, our procedure searches for the joint probability distribution of calibration variables
(8; K; Y; So; Se; Yo Y=) such that model predictions are statistically consistent with measurements
over the two-dimensional domain of applicability {Qy}. It is performed with the GPM/SA software
that also infers from the comparison between predictions and measurements a statistical model
of the discrepancy term &(p) of equation (3). GPM/SA explores the joint probability distribution
with a Markov-chain random walk that is based on a simple but effective principle: predictions
that better match the measurements originate from combinations of calibration variables that
tend to be visited more frequently by the random walk. After performing a sufficient number of
iterations, selected to be 10,000 here, the statistics of calibration variables visited are computed
to estimate the (unknown) joint probability distribution that represents our modeling uncertainty.

3.3 Definition of the Analysis Performed

The Markov-chain exploration of the posterior probability distribution of calibration variables
(0; K; ¥, So: S-; Yo Y=), @and estimation of the discrepancy term &(p), is repeated for each variant
of the PTW model (see previous Table 1) and different combinations of physical measurements.
The combinations of physical tests used in each case are defined in Table 4.

Table 4. Definition of the nine sets of Hopkinson bar experiments analyzed.

Case List of Experiments Case List of Experiments
1 A2 6 1,2,3,4,5,6,7
2 1.2 83 7 1,2,3,4,5 6,7and 10
3 1,2, 3,4 8 1,2,3,4,5 6, 7and 10, 11
4 1.2.3 4.5 9 1,2,3,4,56,7and 10, 11, 12
5 1; 2.8,4,5,6
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Nine separate cases are defined, as opposed to a single analysis with twelve experiments,
to assess the effect that increasing the number of physical tests has on predictive maturity. With
the analysis of three variants of the PTW model, the effect of implementing “better” physics is
also studied in section 4. Our hypothesis is that the PMI metric of Reference [1] will be sensitive
to both increasing the number of physical tests available for analysis and improving the model.

4. Assessment of Predictive Maturity of the PTW Model and Variants

Figure 4 illustrates the location of physical experiments in the 2D domain (T; de/dt). Blue,
square symbols represent the Hopkinson bar experiments defined in Table 2. This domain is a
two-dimensional hyper-cube defined as {Qy} = [107; 4.10"°] x [70; 600] °K.sec.”'. The convex
hull {Qc} of all twelve experiments is shown with a red, dashed line.

Domain of Applicability With Be Hopkinson Bar Experiments

600 !
: e e —e——— -n
; - ‘6 5:
E {'" : 4‘
2 /! 4 a
£ a0t -, Ny : 1
° / ’ |
Nt /
- 3043 |
; o
el . | =1 |
1 "-‘,_“ r
3 2 s~ M 10 983
o 200+ H“‘»E' S L
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100 - e e e N N S e ...._"" DY U
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Strain Rate, de/dt (sec.™)
Figure 4. Domain of applicability and coverage of Hopkinson bar experiments.

Results are presented by, first, briefly discussing the analysis of the original PTW model,
labeled “Variant-0” in Table 1. Results obtained with the other two variants are discussed next.
The discussion concludes with an illustration of the robustness of predictive maturity to unknown
modeling choices, such as those of the PTW model or coefficients (y1; v2; y3) of the PMI metric.

4.1 Analysis of Predictive Maturity of the PTW Model

Results shown in this section have been published in Reference [1]. They are summarized
here for completeness. The values of coverage nc, number of calibration variables Nk, scaled
discrepancy ds and PMI are listed in Table 5 for each one of the nine cases defined in Table 4.
The PMI is computed from equation (6) with v, = %%, y» = ¥4, y3 = 2 and Ng = 5. A reference of
five calibration variables, that is, Ng = 5, is used because this number is typical of material
models in solid mechanics such as, for example, Johnson-Cooke or Zerilli-Amstrong.

It can be seen in Table 5 that coverage increases from 3.11% to nearly 75% of the domain
of applicability. Discrepancy starts at 7.11% and decreases to 0.63% when test 5 is added to
the analysis. Tests 5 and 6 are experiments performed at high temperatures; they are essential
to the predictability of the PTW model, which explains the improvement of accuracy obtained
when they are included in the analysis. It then becomes increasingly more difficult to match the
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variety of strain-stress curves obtained when new experiments are added at low strain rates. It
results that discrepancy increases from 0.63% (case 4) to nearly 17% (case 9). With PMI values
above 70%, it is nevertheless assessed that maturity of the PTW model is acceptable.

Table 5. Predictive maturity for the nine sets of experiments (PTW model of Be metal).
Case Coverage, Number of Discrepancy, PMI Metric
Ne (%) Knobs, Nk Ss (%) (%)
1 3.11% 7 7.11% 6.96%
2 4.62% 7 7.21% 10.32%
3 8.17% 7 1.55% 18.44%
4 9.68% 7 0.63% 21.80%
5 34.16% 7 9.72% 60.83%
6 55.55% 7 11.82% 72.36%
7 55.55% 7 11.23% 72.58%
8 62.74% 7 12.01% 73.12%
9 74.25% 7 16.85% 71.24%

Table 5 also conveys the “stabilization” of the PMI metric as the level of coverage provided
by physical experiments is increased. (This can also be observed in Figure 5 where PMI values
for the “Variant-0" model are identical to those of Table 5.) The fact that the predictive maturity
metric stabilizes after enough physical tests have been provided to the analysis illustrates our
hypothesis that “maturity can be reached if enough experiments are analyzed.”

4.2 Effect on Predictive Maturity of Varying the Degree of Fidelity of the PTW Model

The analysis summarized above is repeated with the “Variant-1" and “Variant-2" versions of
the PTW equation, as defined in Table 1. (“Variant-0" is the original PTW model of section 4.1.)
Results are summarized in Figure 5 that compares PMI values obtained for these three variants.

w @
o o

8

Predictive Maturity Index, PMI (%)
8

o
1

20 :w/,;

PMI Values of Three PTW-like Models (Be Dalasels, Feb-2010)

=@ NomInal PTW model
<@ PTW variant w/ p = 10
PTW variant w/ "err" functlon

4 5

6
Hopkinson Bar Test Identifier

7 8 k]

“Variant-0"

|

.
“Variant-2"

~ .‘0

Figure 5. Predictive maturity values for three variants of the PTW model.

Results obtained with the “Variant-1" model are shown with an orange, dashed line and
diamond symbols. Results of “Variant-2” are shown with a red, dashed line and square symbols.
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Figure 5 illustrates a degradation of PMI values as one progresses from the nominal model to
“Variant-1" and “Variant-2.” This observation is consistent with expectation because “Variant-1"
implements an exponential function in lieu of the “erf” function of equation (6). This perturbation
of the original PTW equation is thought to be somewhat less severe than the implementation of
“Variant-2,” where stress hardening is completely turned off.

This application, while it does not constitute a formal proof, confirms our hypothesis that the
PMI metric of Reference [1] is capable of tracking progress as “better” physics become available
in a model or code. These results open the door to designing physical experiments such that a
minimal resource can be spent on collecting measurements while guaranteeing a given level of
predictive maturity. The availability of a quantitative metric of predictive maturity can also guide
studies where the benefits of improving the fidelity of a phenomenon are traded against those of
performing more physical experiments. Figure 5, for example, clearly illustrates that the benefits
of adding “better” physics to progress from “Variant-1" to “Variant-0" are small relative to the
benefits of including in the analysis the high-temperature Hopkinson bar tests 5 and 6.

4.3 lllustration of the Robustness of Predictive Maturity

In this last section, we attempt to address one criticism often encountered when attempting
to define metrics for model validation or, in our case, predictive maturity. The concern is that the
definition of a metric usually relies on arbitrary coefficients. One can, appropriately-so, question
whether the value of the metric is sensitive to these arbitrary choices. The PMI of equation (5),
for example, introduces a triplet of weighting factors (y+; v2; y3) to account for the contributions of
discrepancy, coverage and complexity. These arbitrary coefficients can be seen as strength for
their ability to add flexibility and account for expert judgment. But they constitute a weakness if
PMI values happen to be overly sensitive to the choice of arbitrary coefficients (y1; y2; Ya).

PMI Metric vs. Test Number for PTW Modeling of Be Metal
B8O, Y . T e .

a=0.00 .-~+...-_-0—__‘
70! o= 01?_..':’?———.“..\.’_"%‘
—~ a=0.3 D Lol = _"‘_‘—0———-__._.—-—-—-"—__.
oo > _
= a=0.50
2
@ 50-
g
=
5 w0 .
§ a=0.83
= 30}
2 = 1.00
.g a
o

—-Q-LEminn!Eune {u_:,E) I
o— Robusiness Curve (u = &kl |

L L i L 1
1 2 3 4 5 6 7 8 ] 10
Test Datasel Case

Figure 6. Robustness of the PMI with respect to the choice of coefficients (y;; y2; v3)-

Our contention is that the question is not to justify the choice of these arbitrary coefficients
because their introduction in the definition of a metric is somewhat unavoidable. Instead, we can
make the question go away by demonstrating that it is irrelevant since values of the PM| metric
are somewhat robust, or insensitive, to these arbitrary choices.
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To do so, a robustness analysis is performed for the “Variant-0,” or original, PTW equation.
The analysis consists of varying the coefficients (y1; y2; y3) and searching for the worst-possible
PMI, or smallest value, by solving an optimization problem. Gamma coefficients y, are varied up
to a “horizon-of-uncertainty,” denoted by the symbol a, that defines how far away from their
nominal values v, one is willing to vary the arbitrary coefficients (y1; Yz; Va):

(1—a)s%s(1+a), %
where nominal values are v,‘Y = %, v, = % and y5'% = 2, as used previously. The horizon-of-
uncertainty parameter a is then increased progressively to examine by how much the smallest
PMI value changes as one ventures further away from the nominal triplet (y+%; y,%; y5?). Note
that this procedure involves solving a constrained optimization problem, where constraints are
defined by three instances of equation (7), one for each coefficient yx. Reference [15] discusses
the theory and application of information-gap robustness that has inspired the present analysis.

Figure 6 compares the nominal PMI curve, obtained with triplet (y; = %%, y2 = %; y3 = 2), to
worst-case PMI curves obtained when coefficients (ys; y2; Y3) are allowed to vary up to the level
of uncertainty a. The analysis is performed at seven discrete levels a =0, 0.17, 0.33, 0.50, 0.67,
0.83 and 1. Even though a deterioration of maturity is clearly visible, the overall trend remains
unchanged as more physical experiments are provided to the analysis. This result translates the
fact that the PMI metric is robust to the choice of arbitrary coefficients y,. A practical implication
is that one should not worry too much about the choice of coefficients yi: the trends identified by
the PMI metric remain unchanged no matter which values of coefficients (y1; y2; y3) are used.

Robustness of PMI Metrlc for PTW Modeling of Be Metal (Jan-2010)

®@ Robustness a*(PMI) |

"""" - Quadratic Best-fit
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Horizon-of-uncertainty, o (no unit)

(y = 0.007.53-0.177x + 7321) PMI = 60%
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Predictive Maturity Index, PMI (%)

Figure 7. Robustness of the Case-9 PMI metric as a function of a-parameter.

Figure 7 shows the worst-case PMI metric as a function of increasing horizon-of-uncertainty
parameter a. This result is produced for case 10 where the ten tests 1, 2, 3, 4, 5, 6, 7, 10, 11
and 12 are provided to the test-analysis correlation and calibration procedure. The figure shows
that the analysis can be performed at a small number of discrete a-values. A simple polynomial
curve-fit can then be performed to estimate the PMI metric at other (non-analyzed) a-values.
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Figure 7 also illustrates how to interpret the analysis of robustness if the objective is, for
example, to guarantee a minimum level of predictive maturity equal to PMI = 60%. The figure
shows that 60% maturity corresponds to a maximum horizon-of-uncertainty equal to 0.48. The
implication is that, for the dataset of case 10 considered, our analysis of predictive maturity of
the PTW model has a level of robustness of a* = 0.48. Stated simply, it means that the PMI is
guaranteed to be, at least, equal to 60% as long as the analysis is performed with a triplet of
coefficients (y1; y2; ys) that does not deviate from nominal values vy’ by more than:

(1—a*) 1" <y <(1+a*)%”. 8
=0.52 =1.48

Note that, in the particular case of the PMI metric, an analytical expression is available from
equation (5) that can be used to obtain sensitivities (dPMI/dyi). These sensitivities can be used,
in a crude sense, to assess the robustness of PMI values to coefficients y,. Even though it offers
another possibility, the robustness analysis is preferred because it is applicable to all situations,
especially, those where obtaining a closed-form solution is not an option.

5. Conclusion

In this publication, we pursue the development, started in Reference [1], of a quantitative
metric to assess the predictive maturity of a model or numerical simulation. The metric proposed
is based on a statistical discrepancy term that quantifies the systematic disagreement, or bias,
between measurements and predictions. It also accounts for coverage, or the degree to which
physical experiments cover the domain of applicability of the model or code. A third attribute of
the metric is the level of complexity of the model analyzed.

Our hypothesis is that improving the predictive capability of a model should translate into
better agreement between measurements and predictions. This agreement, in turn, should lead
to a smaller discrepancy term. The hypothesis is illustrated with the non-linear Preston-Tonks-
Wallace strength model applied to Hopkinson bar experiments performed on Beryllium metal. It
is shown that predictive maturity improves when additional physical tests are made available to
increase coverage of the domain of applicability. It is also shown that the maturity metric tracks
progress as “better” physics are implemented in the model. Finally, robustness of the metric with
respect to the choice of arbitrary coefficients needed in its definition is demonstrated.

These results, while preliminary, open the door to designing physical experiments such that
a minimal resource can be spent on collecting measurements while guaranteeing a given level
of predictive maturity. The availability of a quantitative metric of maturity can also guide studies
where the benefits of improving the fidelity of a phenomenon, for example, by implementing a
“better” model, are traded against those of performing more physical experiments.
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