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ABSTRACT

A numerical solution for buoyant natural convection within a square enclosure
containing a fluid with highly temperature dependent viscosity is presented. Although
the fluid properties employed do not represent any real fluid, the large variation in the
fluid viscosity with temperature is characteristic of turbulent flow modeling with eddy-

viscosity concepts. Results are obtained using a primitive variable formulation and the
resistor capacitor method. The results presented include velocity, temperature and
pressure distributions within the enclosure as well as shear stress and heat flux
distributions along the enclosure walls. Three mesh refinements were employed and
uncertainty values are suggested for the final mesh refinement. These solutions are part of
a contributed ‘ﬁenchmark solution set. for the subject problem

NOMENCLATURE
General
u Dimensionless velocity vector, u=ui+ vj
P Dimensionless pressure
p Characteristic pressure
f Dimensionless absolute viscosity, f= p(T)/po
g Acceleration due to gravity
L Enclosure side length
N Number of nodes in the mesh
q Linear heat rate
Ra, ‘Rayleigh number (Eq.(5)) This work was supported by the Unijted
Pr, Prandtl number, Pro= v(T, Yo, é’:‘:?:ageg?rtmenf of Energy under
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T* Temperature

AT Enclosure temperature drop, AT=Ty-Tc
Characteristic velocity

X Dimensionless position vector, X=Xxi + yj

Greek

a Thermal diffusivity

B Volumetric thermal expansion coefficient

£q Heat balance error (Eq.(7))

T Dimensionless temperature, T = (T*- T ,)AT

) Absolute viscosity

v Dynamic viscosity

Q2 Enclosure boundary

Subscript

max Maximum nodal quantity

min Minimum nodal quantity

o Indicates evaluation at the mean enclosure temperature, To= (Ty+Tc)/2

H Hot wall, x/1.=0

C Cold wall, x/L=1

PROBLEM DESCRIPTION

The problem geometry consists of a square enclosure of side length L, x € [0,L}, y €
[0, L] with the left wall maintained at a higher temperature than the right wall, T(0, y)=
Ty> Te=T(L, y). The horizontal walls are insulated and gravity is directed in the -y
direction. With the exception of the density and viscosity, all of the material properties
are assumed to be constant. The variation of the fluid density with temperature is
modeled using the Oberbeck-Boussinesq approximation [Patankar, 1980]. The viscosity
variation is given by:
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where T, is the mean enclosure temperature, To= (Tyy + Tc)/2. The fluid Prandtl number
was evaluated at the mean enclosure temperature and is Pro=0.71 for all of the results

presented here. This problem was formulated by an external source to be a benchmark

problem examining various contributed solution procedures.

Assumptions
D
2)
3)
4
5

GOVERNING EQUATIONS

Low speed flow

Two dimensional flow

Steady flow

Constant specific heat, thermal conductivity
Oberbeck-Boussinesq approximation for density

The following list summarizes the characteristic values used to scale the governing

transport equations for mass, momentum and energy:

Characteristic length -
Characteristic velocity -
Characteristic pressure -

L
U = /gpATL
P= u(To)Uo/L

Characteristic temperature drop - AT = Ty -Tc

Given the assumptions discussed in the problem description, the scaled transport

equations for mass, momentum, and energy may then be written:

V-u=0 )
%‘%u-vu = -VP+V [ f(6)Vu]+ f%e} 3)
Ra Pr,u-V0=vV3’@ )

where the Rayleigh number is given by:

Ra, =8E2L ©)




Boundary Conditions

The follwing boundary conditions were used as specfied in the provided problem

statement:
6(0,y)=0.5V y€o,1] ©)
6(1y)=-0.5Vy€lo,1] )
Q(x,O) = -é'—e-(x,l) =0.0 Vx €(0,]) ®
dy dy
u(x.y) =v(xy)=0V (xy)EQ ©)
SOLUTION METHOD

Equations (2)-(4) are evaluated using a resistor capacitor solution method similar to that
described by Patankar (1980) using collocated velocity and pressure nodes. A collocated
version of Patankar's SIMPLER algorithm was developed in the thesis by Burns (1990)
and was later employed in the TEXSAN thermal-hydraulic analysis program (Burns and
Klein, 1993). The TEXSAN program employs a translation method described in the
dissertation by Gianoulakis (1992) to extract resistor capacitor information from a finite
element mesh. Bilinear (4-node quadrilateral) elements were employed to obtain all of
the results presented in this work. Figure 1 shows a typical resistor capacitor
computational molecule which arises from the TEXSAN translation method using a mesh
of bilinear elements.

The TEXSAN program employs a Picard iteration method to evaluate the temperature,
pressure, and velocity components at each of the nodes in the mesh. Iterations continued

until the following condition was met:

l¢;n _¢in‘1 -6 .
1< 10°Vid ] N] A ¢{u, v, T, P} (10)

¢max min

where n represents the current iteration level and n-1 represents the previous iteration

fevel.

COMPUTATIONAL DETAILS
To assess the solution accuracy, the linear heat rates at the hot and cold walls were

compared and the following heat balance error defined

& =0-g(x=1)

. - (11)




The mesh spacing was refined until the heat balance error for all values of the Rayleigh
number was less than 1-2%. A 60x60 element grid with 8:1 node refinement at the wall
met this criteria. The refinement ratio represents the ratio of the node spacing at the
center of the enclosure to the normal node spacing directly adjacent to any wall. The
results from the 60x60, 8:1 mesh were then compared to results using an 80x80 mesh
with 8:1 mesh refinement at the walls to check mesh independence. The relative change
in the results from the 60x60, 8:1 mesh and the 80x80, 8:1 mesh are summarized in the
principal results section.

All tabulated values presented in the proceeding sections represent nodal values with no
interpolation between nodal locations. The shear stress and Nusselt numbers were
calculated using a quadratic curve fit of the wall node and its two nearest neighbors along
a line perpendicular to the wall. It will be shown that the postprocessing method used to
determine the wall shear stress from the nodal velocities may have a dramatic effect on
the final shear stress value. Linear interpolation between nodal values was used in some
of the profiles in Figures 2-13 to provide the profiles at x and y= 0.05. The construction
of the finite element mesh assured that nodes always lay on the boundaries as well as

along the enclosure centerlines.

VERIFICATION

de Vahl Davis and Jones (1983) and de Vahl Davis (1983) present a bench mark
numerical solution for buoyant fluid flow and heat transfer within a square enclosure with
constant fluid properties and a Prandtl number of 0.71. This section compares the current
TEXSAN solution using a uniform 60x60 mesh with the previous results provided by de
Vahl Davis (1983). A more limited comparison between the TEXSAN program and the
de Vahl Davis results is also provided by Burns and Klein (1993) using a uniform mesh
of three noded triangular elements.

Table 1 compares the TEXSAN solution with the de Vahl Davis bench mark solution
for all three values of the Rayleigh number considered. The quantities shown in Table 1
are defined by de Vahl Davis and Jones (1983) and represent values along the horizontal
and vertical centerlines and the hot wall of the enclosure. The heat balance error (Eq.(11))
for the TEXSAN results shown in Table 1 are 1.01% for Ray,= 104, 1.10% for Ra,= 105,
and 1.26% for Ra,= 109.




PRINCIPAL RESULTS
Tables 2-13 and Figures 2-13 summarize the principal numerical results obtained using
the 80xR0, 8:1 mesh described above. The heat balance error (Eq.(11)) corresponding to
the 80x80, 8:1 mesh results are 0.28% for Ray= 104, 0.05% for Ra,= 103, and 0.62% for
Ra,=10%. The tables include data from a uniform 40x40 mesh as well as the 60x60, 8:1
mesh and 80x80, 8:1 mesh. Tables 14-16 provide data relating to the computational

effort required to obtain the solutions presented here for each mesh and at each Rayleigh
number. All of the results were obtained using a CRAY Y-MP8/864 supercomputer
running the UNICOS operating system version 8.0.3.1

To provide some measure of the solution accuracy, the maximum changes in the data
shown in Tables 2-13 for the 60x60, 8:1 and 80x80, 8:1 mesh results were calculated.
The shear stress values showed the greatest variation between the two mesh spacings.
The maximum shear stress value changed by as much as 11.6% of the 80x80, 8:1 mesh
results and the greatest change in the position of the maximum shear stress was 5.7% of
the enclosure width, L.. The change in the maximum shear stress is much smaller along
walls where the velocity gradients are smaller. From Table 4, the change in the
maximum shear stress value between the 60x60, 8:1 and the 80x80, 8:1 mesh was less
than 2.4% of the 80x80, 8:1 mesh value along the hot wall.

Since the minimum shear stress values were very close to zero, the relative change in
these values was typically very large. The position of the minimum shear stress values,
however, changed by less than 2.4% of L between the 60x60, 8:1 and the 80x80, 8:1
mesh results.

The variation of the Nusselt number values between the 60x60, 8:1 and 80x80, 8:1
mesh results was in general much better than the shear stress values. The maximum
Nusselt number changed by less than 1.2% of the 80x80, 8:1 mesh value between the two
mesh spacings and the position of the maximum changed by less than 1.2% of L. The
change in the minimum Nusselt namber values was less than 3.6% of the 80x80, 8:1 mesh
value and the position of the minimum changed by less than 0.5% of L.

The maximum centerline velocity components shown in Tables 2 and 11 changed by
less that 6.8% of the 80x80, 8:1 mesh value between the 60x60, 8:1 and the 80x80, 8:1
mesh results. The corresponding change in the position of the maximum centerline
velocity components was less than 0.96% of L. The u velocity component along the
vertical centerline showed a larger variation between the two mesh spacings than did the
v component along the horizontal centerline. The greatest change in the maximum v
velocity component along the horizontal centerline was less than 2.0% of the 80x&0, 8:1

mesh value.




A two point approximation was also employed to calculate the temperature and velocity
gradients at the walls. When compared to the three point approximation used to obtain
the values in Tables 3-10, 12-13, it was found that the maximum shear stress values
changed by as much as 27% of the three point values when a two point approximation
was employed. The locations of the maximum shear stresses also changed by as much as
7.1% of L. when a two point approximation was employed.

The effect of the postprocessing method was much less pronounced when calculating
the Nusselt number values. The maximum Nusselt number value changed by less than
1.2% of the values shown in Tables 8 and 10 when a two point approximation was used
for the wall temperature gradient. The corresponding change in the minimum Nusselt
number values was less than 0.22% of the values shown in Tables 7 and 9. The positions
of the extreme Nusselt number values changed by less than 0.54% of L. when a two point
approximation was employed.

Convergence was not smooth for the highest Rayleigh number, Ra, =109, for both the
60x60, 8:1 and the 80x80, 8:1 meshes. Reasonably smooth convergence was obtained
for Ra, =104, and 10° using an underrelaxation coefficient of 0.5 for both the temperature
and velocity systems. For Ra, =10, however, it was necessary to decrease the
underrelaxation coefficient to 0.2 to obtain a convergence level of O(105 - 10-6) (cf.
Eq.(6)) for the 60x60, 8:1 and the 80x80, 8:1 meshes. The computation time shown in
Table 16 reflects the slower convergence rate brought about by the smaller
underrelaxation level.

CONCLUSIONS

A numerical solution for buoyant natural convection within an enclosure containing a
fluid with highly temperature dependent viscosity is presented. The numerical results
presented were obtained from a resistor capacitor network constructed from a mesh of
80x8&0 bilinear finite elements with an 8:1 mesh refinement at the enclosure walls. The
solution presented is intended to contribute to a bench mark solution set for the problem
described. This problem was developed by an source other than the authors.

Based upon mesh refinement data, the current solution involves an uncertainty in the
local velocities of approximately 7% of the maximum velocity. The local Nusselt
numbers are known to within 1-4% of the local value and the local shear stress to within
12% of the maximum shear stress value. Along walls with small velocity gradients, the
shear stress uncertainty decreases to on the order of 2% of the maximum value.

The shear stress values presented should be approached with some caution as they are
very sensitive to the postprocessing method employed. It was shown that the use of a two
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point or three point approximation to the velocity gradient at the walls could result in as
high as a 27% change in the maximum wall shear stress values.
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TABLE 1 Comparison of TEXSAN Solution to Bench Mark
Solution for Constant Viscosity

1 _ Bench Mark Solution from G. de Vahl Davis, 1983

TABLE 2 - Maximum Nodal u Velocity Component Along (0.5, y)
I Rra=10+ |  Ra=105 |  Ra=105

Mesh Umax Umax Umax
0.100
0.0690

0.0672

TABLE 3 - Minimum Nodal Shear Stress Along (0.0,y),y €(0, 1)

Ra=10 |  Ra=105 |  Raz=106
aufos| | afox] " aufox] y

40x40, 1:1
60x60, 8:1
80x80, 8:1

0.153 0489 0975

0.0144
972x103 0984

0.0633 0.990

0.0432 0.992

TABLE 4 - Maximum Nodal Shear Stress Along (0.0, y)
Ray= 104 ‘ Ra,= 105 " Ray= 109

Mesh “ aufox] aufox] " aufox|




TABLE 5 - Minimum Nodal Shear Stress Along (1.0, y)

" Ra,= 104 Ra,= 103 Ra,= 106

Mesh " aufax] v aufox_ X_:“ aufox| v
0.567 0975 0184 | 0050 267 0.0500
0361 0.990 0.164 0.99 1823 00510
0293 0.988 0.135 0992 1.586 0.0746

TABLE 6 - Maximum Nodal Shear Stress Along (1.0, y)

Ra,=10% Ra,= 105 Ra,= 106
aufox] v aufox] y aufox] v
169 0.525 166 0.525 153 0575
492 0.539 739 0424 102 0359
24 0.530 81.4 0471 115 0416

TABLE 7 - Minimum Nodal Nusselt Number Along (0.0, y)

I Rra=10¢ Ra,= 105 Ra = 106
Mesh ﬂ -oofox] Y ~aofox| y -a8fox| y
4040, 1:1 0921 0975 128 0975 2.13 0.950
60x60, 8:1 0.928 100 1.3 0.995 175 0.995
80x80, 8:1 0.920 1.00 121 1.00 160 099

TABLE 8 - Maximum Nodal Nusselt Number Along (0.0, y)

n Ra,= 104 Ra,= 105 Ra,= 10°
v ~oofax| v ~o8fox] v
0.125 6.90 0.075 165 0.00
0.127 7.29 0.127 14.5 0.08354
0.128 7.26 0.139 14.1 0.0358

TABLE 9 - Minimum Nodal Nusselt Number Along (1.0, y)
Ra,= 105

Ra,= 104

Ra,= 10°

~ 66/6me

Y

—aofox]

Y

- ae/axlm

0458
0467
0464

0.00
0.00

0.703
0.678

0.00
0.00
0.00




TABLE 10 - Maximum Nodal Nusselt Number Along (1.0, y)

" Ra,= 104 Ra,= 10> Ra,= 106
~0fox]_ ~a0fox]__ 1___'[-:39/axlm__ix y
6.82 0.925 142 0.950
7.46 0910 165 0957
7.52 0918 167 0.959

TABLE 11 - Maximum Nodal v Velocity Component Along (x, 0.5)

Ra,= 104

Ray= 105

0.950
0.965
0.970

0.950

0978
0979

Ra,= 109
l Vmax X
-0.255 0.950
-0.390 0.984
-0.398 0.988

TABLE 12 - Minimum Nodal Shear Stress Along (x,0.0), x €(0, 1)

o |

Ra=10¢ |  Ra=10° Ra= 106
6v/6y]mi‘1 X " é)v/ayLn.n x av/ayImm X
0.0131 0.0250 0.0742 0.975 0446 0.025
711x103 | 489x103 || 381x103 | 00102 00176 | 489x103
209103 0.0117 491x103 | 7.56x103 || a69x104 | 3.68x103
TABLE 13 - Maximum Nodal Shear Stress Along (x, 0.0)
Ra,= 104 Ra,= 105 Ray= 106
av/aylm X av/aylm x J 6v/6ylmx x
-108 0725 -114 0.775 955 0.825
172 0.769 350 0.949 54.1 0.886
174 0.768 364 0838 612 0.882
TABLE 14 - Computational Effort, Ra,= 104
Memory CPU Time Initial
Mesh N (Mbyles) (seconds) Condition
1681 75 1,530 T=u=v=0
3721 15 5,100 T=u=v=0
6561 25 13030 | T=u=v=0
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TABLE 15 - Computational Effort, Ra,= 10>

Memory | CPUTime Initial

N Mgws) {seconds) Condition
1681 75 1,430 Ra,= 104
3721 15 4470 Rag= 104
6561 25 8,540 Rag= 104

TABLE 16 - Computational Effort, Ra,= 106

Memory CPU Time Initial
N (Mbytes) (seconds) Condition
1681 75 1,160 Rag= 10°
3721 15 6,550 Rag= 10°
6561 25 17050 | Rao=10°
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FIGURES

Colocated velocity-
pressure node

FIGURE 1 - Sample Eight Node Computational Molecule
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FIGURE 2 - u Velocity Component Variation Along Vertical Centerline
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FIGURE 3 - v Velocity Component Variation Near Hot Wall
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FIGURE 4 - Pressure Variation Along Vertical Centerline
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FIGURE 5 - Temperature Variation Near Hot Wall
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FIGURE 6 - Temperature Variation Along Vertical Centerline
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FIGURE 7 - Shear Stress Variation Along Hot Wall
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FIGURE 8 - Shear Stress Variation Along Cold Wall
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FIGURE 9 - Nusselt Number Variation Along Hot Wall
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FIGURE 10 - Nusselt Number Variation Along Cold Wall
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FIGURE 11 - u Velocity Component Variation Near Bottom Wall
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FIGURE 12 - v Velocity Component Variation Along Horizontal Centerline
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FIGURE 13 - Temperature Variation Along Horizontal Centerline




