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Abstract. We review recent theoretical and experimental results on low-temperature tunneling
and in-plane transport properties in double quantum wells (DQWs) in an in-plane magnetic field
By These properties arise from the combined effect of Byi-induced relative displacement of the
wave vectors in the two QWs and the interwell tunneling. In weakly coupled DQWs, the tunnel-
ing conductance has two sharp maxima as a function of B - In strongly coupled DQWs, a partial
minigap is formed due to the anticrossing of the two QW dispersion curves, yielding sharp
B (-dependent structures in the density of states and in-plane transport properties. Excellent
agreement is obtained between the theory and the data from GaAs/AlGaAs DQWs.

1. Introduction P

In this paper, we discuss low-temperature tunneling and in-plane transport properties of dou-
ble quantum wells (DQWs) in an in-plane magnetic field By Il x. DQW:s consist of two paral-
lel layers of two-dimensional (2D) degenerate electron-gases (2DEGs) separated by a barrier.
Recent surge of interest in DQW structures can be attributed to the fact that DQWs display
richer unique physical properties than single QWSs due to an extra degree of freedom in the
growth direction (Il z). Some of the examples are the interlayer Coulomb-drag effect [1] in
zero field, the tunneling Coulomb gap [2], the interlayer-tunneling excitonic effect [3] in
strong perpendicular fields B ; , and 2D-2D interwell tunneling in By {4-8]. In DQWs, one can
control the well-to-well separation and the interwell overlap, both sensitive to the barrier
thickness. The charges in the wells can be controlled by gate voltages. We show that By pro-
vides an additional control of the effective interwell coupling by displacing the wave vectors
k in the two QWs. As a result, By can be used to tune the tunneling current and deform the
Fermi surface, introducing sharp Bj-dependent structures in the density of states (DOS) and
other in-plane transport properties [9-13]. In contrast to the high B case [2, 3], Coulomb
interactions are used in By only for band bending corrections and can otherwise be neglected:
our data are well explained using the combined effect of tunneling and By within the frame
work of noninteracting electrons. Three samples discussed in this paper are symmetric
(except for sample 1) GaAs/Aly3Gay7As DQWs with well widths w and depths V,,. The
GaAs wells are separated by an AIO 3Gag 7As barrier of thickness z.

The primary effect of By is to induce a linear transverse displacement Aky « By in

k-space in one QW relative to the other. Here the in-plane wave vector k is a good quantum
number. The linear displacement arises from the second term of the Hamiltonian:
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where p, = -ifid/0z and £ = (ic/eBy)'2. The GaAs effective mass m* = 0.067 (in units of the
free electron mass) is used in both the QWs and the barriers because the confinement wave
functions ¢y(z) (n = 1, 2) penetrate negligibly into the barriers. The kinetic energy e(k,) =
(ﬁkx)2/2m* is to be added to (1). The confinement potential V(z) is a superposition of the
potentials V1(z) and V,(z) of QW1 and QW2. We assume quasi-2D (i.e., w < €) thin QW’s
where only the ground sublevels are populated and are relevant. For the sake of physical argu-
ment and for 2D-2D tunneling in Sec. 2, z in the second term of (1) can be replaced by its
expectation values <z>1, <z> with respect to ¢(z) [6]. The net effect of By is then to shift the
origin of ky of QW2 by Aky =d/ £ « Byd relative to that of QW1, where d = <z>, - <z>1. The
basic transport properties to be discussed in the following arise from the Bj-induced shift Ak,
and the tunneling between the two QWs. Spin splitting is neglected in this paper.

2. Resonant 2D-2D tunneling

The tunneling conductance G,, is the steady-state current flowing from QW1 to QW2 per unit
linear electric field applied between the QWSs. The current flows into QW1 from a source, tun-
nels into QW2, and then flows out of QW2 to the drain. The source-drain resistance is related
to the tunneling conductance and the zero-Bj conductances (i.e., mobilities) of the QWs in
terms of a transmission-line model [6,7]. The G,, data is obtained from the source-drain resis-
tance data using this relationship [7]. The latter depends on the geometrical structure of the
source-drain current paths of the sample [6]. The electrons are rapidly scattered inside the
QWs, occasionally tunnelling into the other QW with the tunneling integral J. A weak depen-
dence of J on k is ignored [6]. For tunneling from k in QW1 to k'in QW2 (with k = %] and the
sublevel energyA,), the initial and final energies are given by

2. 2
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Only the electrons on the Fermi circles can tunnel when the energy and momentum
conservations are satisfied: &y - &y and k = k' [5]. For 2D densities N; > N,, the Fermi sur-
faces are concentric circles of radii k; and k, at By = 0 as illustrated in the inset of Fig. 1(a)
and the conservation conditions are not satisfied. As B, is increased, the inner smaller circle
slides relative to the outer circle until they touch each other tangentially. The conservation
conditions are satisfied at this By, yielding a G,, peak. As By is increased further, the inner cir-
cle begins to move outside the larger circle, intersecting it at two points. G,, begins to
decrease as the area of contact decreases. Another G,, maximum is reached at a higher By,
when the smaller circle touches the larger circle from outside. G, begins to drop beyond this
field as the two circles are separated as illustrated in Fig 1(b). The G,, maxima diverge in the
absence of scattering. However, the data from sample 1 displayed in Fig. 1(a) does not show
the divergence due to finite scattering times as will be shown below. Sam;;le 1 is weakly cou-
pled and has w =150 A, ¢ =65 A, N; = 1.8X10! cm™2, and N, = 1.0x10!! cm™2.

The tunneling conductance is calculated using a linear response theory. The dominant
contribution arises from the so-called bubble diagram shown in Fig. 1(b) and is given by [6]
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Figure 1. Tunneling conductance per unit area Figure 2. (a) Energy dispersion curves from sample
from the data from sample 1 (a) and theory (b). 2 with (solid curves) and without (dashed curves)
The insets show the relative Fermi surfaces of tunneling. (b) The DOS from the lower (dashed
the QWs (a) and the bubble diagram (b). curves) and both branches (solid curves).

Here 7, = (21 n/ﬁ) is the quantum scattering time of the electrons on the Fermi surface.

The mobilities in the wells are p; = 6X10* cm?/Vs and My =6X10° cm?/ Vs, indicating
that I'} >> I, In this case, G,, becomes independent of I. The theoretical G,, displayed in
Fig. 1(b) for several values of F 1and J = 0.04 meV, show good agreement with the data. This
value of J is close to J = 0.03 meV estimated from the splitting of the two ground sublevels
due to tunneling. For isotropic scattermg, the mobility p; =6X 10* cm?/Vs corresponds to I}
= 0.15 meV and 7; = 2.3X10°'2 5. The G,, maxima diverge for I} = 0 at the fields

By =Fic/2 (1/ + 1/ <) ed, where N, (N_) is the larger (lesser) of Ny and N,

3. In-plane transport properties
3.1. Energy dispersion and anticrossing

DQW structures show interesting in-plane transport properties when interwell tunneling is
significant. The By-induced linear displacement Ak, « By, of the origins of the transverse crys-
tal momenta ky in the two QWs is shown in Fl% 2(a) by dashed curves for sample 2 which has
w=150 A, =25 A, and N; = N, = 1.5X10"! cm™. For such a thin barrier (i.e., large orver-
lap) between the QWs, the two energy-dispersion parabolas anticross significantly and a par-
tial minigap is formed as shown by the solid curves therein. For symmetric DQWs, the latter
correspond to the upper and lower branches of the elgenvalues of (1) (to the lowest order in

the overlap <¢;(2)l,(2)>) [9, 13]:

E 1/2 E
+ (46,&;(ky Va1 2+ (—zi)z) +-8 (5)

&.(k,)=¢e(k,)+ 5

d12 +(Az, )? €
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where (k) = (fky)2/2m* gp= (A YH2m*, d, = |<z>y|, and d; = d,. Here (Az)? = < (2)(z -
<zn>) |¢,(2)> is the mean square deviation of z arising from finite widths of the QWs. In (5),
use is made of Az; = Az,. The minigap is independent of By, and is given by

Eg = 2IS12<¢1(Z)|V2(Z)|¢1(Z)> - <¢1(Z)IV1(Z)|¢2(Z)>I. (6)
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Square-well potentials are used for the curves in Fig. 2. A similar anticrossing of dispersion
curves, although of different origin occurs without By’s in a vicinal surface such as (911) of a
Si-inversion layer and was studied extensively many years ago [14].

3.2. Minigap and density of states

The lower minigap edges in Fig. 2(a) at 4 T and 6 T are saddle points with opposite signs of
curvatures in the k, and k, directions. The DOS has a van Hove singularity diverging loga-
rithmically at the saddle point as shown in Fig. 2(b) at these By’s. The latter is formed only at
high fields (i.e., By = 4 T) when the energy of the crossing point is large enough to overcome
the energy repulsion between the two branches. The sharp step in the DOS in Fig. 2(b) is due
to the contribution from the upper branch. The region between the sharp singularity and the
step is the minigap and moves up in energy rigidly with increasing By as shown in Fig. 2(b).
For the samples discussed in this paper, the 2D density Npp = Ny +N, is sufficiently high so
that the chemical potential  lies in the upper branch (i.e., above the step edge) at By = 0. At
low By’s, j1 is insensitive to By while the gap rises in energy nearly quadratically with By [9].
Therefore the gap sweeps through w as By is increased. Above these By’s, w rises in energy
eventually together with the bottom of the lower branch. In Fig. 3, we compare the calculated
reduced DOS at y with the capacitive DOS data [15] from sample 3 in units of m*AlQRwh>),
where A is the cross-sectional area of the QWs. Use is made of d = 140 A, (Azl)2 =621 A?
obtained by a self-consistent Hartree approximation, and E, = 1.8 meV determined experi-
mentally from the conductance data [10]. The latter is somewhat smaller than the Hartree
value E, = 2.0 meV. Sample 3 has w =100 A, £=35 A, and Npp = 24X 10! cm2. p drops off
the DOS step suddenly at ~7.2 T and passes through the saddle point at ~ 8.9 T. Sharp edges
as well as the singularity peak are rounded by damping [15]. The data are fitted at the theoret-
ical asymptotic value D(p) = 2 at high By’s, where the two QWS are uncoupled. Small oscilla-
tions in the data are due to a small B, . :

3.3 Cyclotron mass

The cyclotron mass m, is given by m; = %2/ 21)0S/0er where S is the orbit area in k-space
and & is the Fermi energy [13]. In 2D structures, m. can be rewritten as mg / m*= D(p),
where D(y) is the reduced DOS at the Fermi level from the orbit under consideration. In Fig.
4, we display m, / m* calculated for sample 2 using d = 200 A, (Azl)2 = 1150 A? obtained by
a self-consistent Hartree approximation, and E; = 1.2 meV determined experimentally from
the conductance data [10]. The latter is somewhat smaller than the Hartree value E, = 1.4
meV. At low Bys, i is above the gap and the cyclotron orbits consist of a large hour-glass
orbit in the lower branch and a smaller lens orbit in the upper branch shown in the lower left
corner of Fig. 4. The electrons in the hour-glass orbit have a large mass as shown by the
dash-dotted curve and are scattered before completing a cycle: the oscillations from the
lower-mass inner lens orbit are dominant in recent Shubnikov-de Haas measurements [12].
As By increases, [ moves toward the gap edge in Fig. 2(b). Asa result, the reduced DOS (i.e.,
m,) from the lower and upper branch increases (dash-dotted curve) and decreases (solid
curve) monotonically as a function of By, respectively, for the hour-glass orbit and the lens
orbit as shown in Fig. 4. At higher Bys (i.e., above 6.1 T in Fig. 4), { moves into the gap,
depopulating the lens orbit. Therefore m, increases abruptly to the mass of the hour-glass
orbit. At 6.9 T, u lies at the saddle point. Above this By, the orbit splits into two separated
orbits and m, drops to half. The mass thus saturates to m* of the uncoupled QWs. The calcu-
lated m, yields excellent agreement with the data from sample 2 without adjustable parame-
ters, as shown in Fig. 4 .
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Figure 3. Comparison of the calculated reduced Figure 4. Comparison of the calculated m,, (solid,
DOS at p (solid curve) with the capacitive dash-dotted curves) with the data (black dots) from
DOS data (dashed curve) from sample 3. sample 2 with the relevant cyclotron orbits.
3.3 In-plane conductance

The in-plane conductance Gy in the direction u of the electric field is given by [9]

2 2
e (uevy)
Gy = T, dky, (7
I 271:271'[ k Vk k“

where vy, is the group velocity, vy = Ivil, 7y is the transport relaxation-time, and the integra-
tion is along the orbit. We consider only elastic scattering. In (7), Gy is proportional to vy and
7j- When g is above the gap at low By ‘s, the contribution to Gy arises from both the hour-glass
orbit and the lens orbit in Fig. 4. In contrast to the cyclotron mass, however, the lens orbit con-
tributes little to Gy because 1) the electrons in the lens orbit have slow velocities due to their
small k values and 2) the number of states in the lens orbit is much smaller than in the
hour-glass orbit. On the contrary, the lens orbit reduces 7y and therefore Gy by providing
states into which the electrons in the hour-glass orbit are scattered rapidly at low By °s. As By is
increased, u falls below the upper gap edge depopulating the lens orbit. In this case, the elec-
trons in the hour-glass orbit cannot be scattered into the upper branch elastically, yielding sig-
nificantly larger 7 as well as Gy. This behavior is shown by the solid curve (i.e., I, = 0 meV)
in Fig. 5, where we plot G calculated for sample 2 by approximating 7, © p(¢) Lin (7). Here
p(g) is the total DOS. The maximum in Gy is due to the depopulation of the lens orbit. The Gy,
minimum, on the other hand, arises when . lies on the saddle point, where Gy vanishes
because 7y « p(€) 1 = 0 due to the divergence of the DOS. E, can be determined from the By’s
of the G; maximum and minimum [10]. The effect of band bending is to increase the effective
d from 175 A to 200 A by pushing the confinement wave functions away from each other.
Since By enters the Hamiltonian approximately as d/ £ « B|d, the net effect of band bending
is to rescale the By-axis by 175X By /200 as shown in the upper axis of Fig. 5. The effect of
damping has been treated by a self-consistent linear response theory [16] and is shown in Fig.
5. The calculated results yield good agreement with the data [10] displayed in Fig. 6.

4. Summary

We have discussed low-temperature tunneling and in-plane transport properties in double
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Figure 5. Calculated Gy for sample 2 for sev- Figure 6. Gq data from sample 2. Charges are
eral values of damping { = 2Fo, The upper and approximately balanced at the gate bias Vg = -
lower scales are with and without band bending. 0.1V.

quantum wells in By’s. These properties arise from the combined effect of B-induced relative
displacement of the wave vectors in the two QWSs and the interwell tunneling. In weakly cou-
pled DQWs, the interwell tunneling conductance has two sharp maxima as a function of By
In strongly coupled DQWs, a partial minigap is formed due to the anticrossing of the two QW
dispersion curves, yielding sharp Bj-dependent structures in the density of states, cyclotron
mass, and the in-plane conductance. Excellent agreement is obtained between the theory and
the data from GaAs/AlGaAs DQWs.
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