LA-UR- O7-CHlg
Approved for public reloase;
distribution is unlimited.

Title: | CELLFS: TAKING THE “DMA" OUT OF CELL
PROGRAMMING

Author(s): | LATCHESAR IONKOV, ANDREY MIRTCHOVSKI, AKI
NYRHINEN

Intended for: | USENIX 2007, SANTA CLARA, CA

> Los Alamos

NATIONAL LABORATORY
— EiT 1943

Los Alamos Mational Laboratory, an affirmative action/equal opporiunity eamployar, is operated by the Los Alamos Nailonat Sacurity, LLC
for the Mational Nuclear Security Administration of the U5, Depariment of Enargy under contract DE-ACS2-06MNAZ5396. By agceptance
of ihis article, the publisher recognizes that the U.5, Governmenl ratains a nonaxclusiva, royalty-ree license fo publish or reproduce tha
pubdished form of this contribution, or to allow others (o do so, for U.S, Government purposes. Los Alamos Mational Laboratory requests
ihat the publisher identify this article as work performed under the ausplcas of the U S, Depaniment of Enargy. Los Alamos National
Laboratory strongly supporis academic freedom and a researcher's right to publish; as an institulion, however, the Laboratlory doas not
endorse lhe viewpoint of a publication or guarantae its lechnical correciness.

Form 836 {7/08)

CellFS: Taking The “DMA” Qut Of Cell
Programming

Latchesar fonkov
Los Alamos National Laboratory®
lionkov@lanl.gov

Aki Nyrhinen
University of Helsinki
aki®helsinki.fi

Andrey Mirtchovski
los Alamos National Laboratory
andrey®lanl.gov

January 9, 2007

Abstract

In this present we present a new programming model for the Cell BE
architecture of scalar muliiprocessors, We call this programming maodel
CellF5. CellFS aims at simplifying the task of managing 1/0 between
the local store of the processing units and main memory, The CellFS
support library provides the means for transferrning data via simple Rle
1/0 operations hetween the PPU and the SPLL

1 Introduction

The Cell Broadband Engine [7] 15 a4 new architecture aimed at providing high-
performance computational facilities for scientific and media applications. Even
though the Cell BE was designed initially for the gaming industry and specifi-
cally for Sony's Playstation 3 game console, Cell computers have been embraced
by the scientific community for their potential to deliver high-performance to
certain applications. Several large clusters comprised of Cell processors are
currently being built at various facilities, with the most promising being Road-
Runner, to be delivered in the middle of 2007 here at the Loz Alamos National
Laboratory.

*LANL publication: —-

The Cell provides o novel and interesting new architeetare which challenges
the programmers to Aod new ways for exploiting its full potentisl. The Cell
architectuee has heen exploited at all levels with rescarch being done in new
programming models, execution models, compllers, library optimizations and
operating syvsbem design.

The current trends in computer hardware is towards incrensing the par-
calelization on a single chip by putting more processors. Cores Of Fo-processons
oft the same die. With Celi leading the front in multi-core, heterogeneous sys-
tems wie hope that rescarch in software support will bave long-lasting effecis
and implieationz on the future of high-performance computing,.

In this paper we deseribe o povel programming moedel for the Cell called
CellFS. The goad that we set for developing CellF'S i o present to the progran-
mers a fasl ver simple interface which provides the programoier with [amifiay
paradizms for communicating between separate parts of the execnting program
or the architecoare,

The CellFS programming model provides & POSTX-Tike [/ interface for
accessing the Cell’s main memory from the computational units. This model
can becasily extended to provide communication channels between the differsnt
anits directly and, more generally, can provide wecess to all resources available
an the Cell hardware. CellFS also aims at ceplacing the most often used triples
buHering programumimg with a sinple, carelully designed, coroutine modesl in
which rcomputational nnits are scheduled cooperatively o provide a determin-
tabic execation with nun-blocking, asynchronous aceess to main memory.

The following scctions will describe briefy the parts of the Cell Architectum
pertaluing to oor programming inodet, the programmang maodel itself, as well ay
the implementation we have completed. The paper alse provides performance
metrics for the current implementation of CellFS and discusses mprovements
wied futsiee work we have planned.

2 Cell Architecture

The Cell arelntecture hos been discussed in detail elsewhere [4) [T] 3], however
we will deseribe the most important aspects s they perlain Lo oar oew pro-
gramying model, namely the metnory architecture, the processor architectire
and the messaging model used throughout.

The Cell achieves its performance by utilizing two different computational
nuits: the Power Processing Unit or Element (PP and the Synergistic Pro-
vessing Units or Elements {SPU} 2], processor. The operating svstem and user
programs run on the MPLU, while the 8 SPUs are used for computation offload.

The PPU of the Cell is & fully-compliant 64-bit Power Architecunre processor,
I has conventional access to main memory, disks and other resources such as
networks and is directly connected to an on-chip bus, serving as the interconneet
Lo Lle SPUs,

Even though the PPU is a Mll-blown processor with L1 amd L2 caclhes,
it i quite underpowered by today's standacds sel by processors from other

archirectures such as AMD's G4-bit Opteron. In order to speed up the operation
of the cell computation must be offfloaded to the SPUs.

The SPU (2] implements a separate instruction-set architecture optimized
for performance on computationally intensive applications. The SPU has a very
limited local store to which all memory aceesses are performed. Currently the
local store is 256 kilobytes. In order to populate this local store data s trans-
ferred between main memory and the SPU via asynchronous, coberent direct
mnemary access {DMA) commands, There is support for up to 16 ouistanding
DM A requests on each SPU. DMA is programmed either one-hy-one by instruc-
tions executing on the SPU, by preparing DMA lists, or by inserting commands
in the DMA gqueue from another processor (usually the PPU). All instructions
on the SPU are 128-bil single instruction multiple data {SIMD}. The element
width of the data can vary down to 1-bit.

Besides DMA, the Cell architecture hnplements several modes for notifica-
tion of external events and synchronization between the PPU and the SPs:
Mailboxes and Signals. Communication occurs through chanoels. Channels
are unidirectional message-passing interfpces, supporting 32-bit messages and
commands, Each SPU has its own set of channels supporting two mailboxes
for sending messages from the SPU to the PPU and one mailbox for sending
messages from the PPU to the SPU. The channel interface also supports two
signal-notification channels (signals) for inbound messages Lo the SPU. This
architecture often forces the PPU to be used as an application controller, man-
aging and distributing work to the SPUs.

3 Existing Cell Programming Models

The Cell architecture marks a significant step in advancing hardware design
and differs from conventional microprocessors significantly. While there are
significant improvements in computational power and memory bandwidth of
the Cell processors, they can easily be lost if software is unable to utilize fully
the resources provided by the hardware. While the cell SPUs are fast, the small
size of local memory and the communication restrictions imposed on them forces
programmers to be very careful in structuring their computational code when
porting i to the Cell. This complicates already non-trivial implementations of
scientific codes to an extent where application programmers need to explicitly
care about such things as scheduling direct memory access between the SPUs
and the PP

To aleviate the problem of micromanaging one's memory footprint and 1/0
on the SPU several different programming models have been proposed [1], which
hide the single-instruction-multiple-data (SIMD) natnre of the datafiow behind
a sel of libraries or methods, each with its benefits and drawbacks. Below we
discuss the major methods proposed by the Cell's designers [4],

3.1 Function offoad

I this model the application runs primarily on the PP while sperific functions
from standard lihraries are optimized for execution on the SPU and offloaded
to them for faster computation. This model s the simplest from an applicalion
programier’s point of view and offers the benehiv of mirimal change regoire-
ments for existing code {in s most reduced form the application tuns on the
IPPU entively, never requiring anything [rom the SPLY,

While useful for fast deplovment this mode] suffers spmulicautly in s perfor-
mance, o fact, conning any compautationally intensive code on the PPU shonld
e frowned-upon as the PPU is significantly slower than other contemporary
processors. While library finetions do execute faster, the majorivy of science
code requires that external support libraries such as BLAS (9] be ported and
optimized for execution on the SPUs. There is however a significant benefit for
ume programmers, which rely heavily oo graplics libraries,

3.2 Streaming and buffering

Streaming and the triple-buffering programming models provide a method lor
optimizing /O or compututation by pipelining data elther between muliiple
SPLs ar by staging multiple buflers for DMA to and from vhe PPLU, thus per-
forming both computation and commnication at the same 1iine. Streaming
usually involves passing the same chunk of data from one SPU v another, with
each SPU performing a particnlar operation. Dutfering models lnvolve storing
up to thiree chunks of data on the SPU, two of whicl are being transferred via
DM A either wo or from the PPU while Lhe third 15 being worked un by Lhe SPU
iteell

Streaming and buffering both offer significant performance nprovements,
however they also have drawbacks. Streaming may not well soited for some
computitional models such as some where data may fow chrough different paths
depending on decisions mude carlier in the pipeline. Buffering also suffers [row
that issue, but has the added drawback that the local storage in the Cell SP1T
ar 256 kilohytes, is minimal by today's standards.

4.3 Shared-memory multiprocessor

The Cell can be programmed as o shared-memory multiprocessor with the help
of both the operating systerm and compilers and [ibraries. In o shared-memory
multiprocessor environment the SPU and PPL unils operale in & cache-coberens
shared-miermory programming model. Conventlonsl memory loads from the SPT
are transparently replaced with a DMA operation frow shared wemory to the
SPU' local siore. The shacod-memory multiproeessor has the disadvantage that
the SPLs and the PPU have different instruction sets. Also, the cost of constant
DMA for random memory aceesses should foree the svstemn programmers Lo
think about implementing & cache system for the local store of the SPIL

3.4 Computational acceleration

This programming model uses the SPU as an accelerator for all computationally-
intensive code, with the PPU used as an 1/(arbiter. We describe Computa-
tional Acceleration fully in section 4, as our proposed method is a variation of
this model.

4 Our proposed programming model

Observations of programmers here at LANL which are porting existing software
for the Cell conclude that the most important and time-consuming effort goes
into changing or manipulating the memory management mode! of the code to
fit the ones available for the new architecture. Due to the specifics and mnemory
constraints of the Cell architecture nearly all porting efforts we have identified
end up having to manage DMA to and from the SPU by themselves, Having
to drop to such low-level abstraction is not trivial and requires a lot of effort to
“get right” on the part of the programmer.

Our desire is to provide a higher-level abstraction that hides the particular-
ities of each DMA access behind a model which most, if not all programmers
are familiar with,

We have ideptified that the SPU main memory access model is equivalent
{in the sense that it utilizes DMA transfers} to the access model a traditional
CPU has to hard disk, We believe that the file svstem abstraction is well suited
for main memory access from the SPU. We also believe that this model is well
understood by all programmers familiar with C and POSIX programming,

Representing operating system resources as files is o relatively old concept
exploited to some extent in the oviginal UNIX operating system, but it matured
extensively with the development and release of the “Plan 9 from Bell-Labs"
operating system [8].

“Plan % from Bell-Labs™ nses a simple, yvet very powerful communication
protocol to facilitate communication between different parts of the system. The
protocol, named “9P" 5] allows heterogeneous resource sharing by allowing
servers to build a hierarchy of files corresponding to real or virtual system re-
sources which then elients access via common {POSIX-like) Ale cperations by
sending and receiving 9P messages.

Our proposed programming model consists of two parts: a file server and
client library. The fle server code runs on the PPU and provides an interface
to disk. main memory, pipes and files residing in main memory via several file
syaterns. The file systems are as described in table 1.

Code running on the SPUs accesses this fle system via library calls corre-
sponding to normal POSIX Gle operations. To open a file named test in /ftmp
on the main file system of the Cell and write to it one would write:

fd = spc_open{"#U/tmp/test");
spc_write(fd, data, num);
spc_closa(fd);

MName and Lype Lrescription

##r File server allowing operation on files existing in
ramndisk on the main memory of the Cell
F#1 File server allowing vperation on files existing on

the unix file systemn acersaible by the PPU Files
served by # U are munagp j-ed 10 main memory o
inerease 1O bandwidoh

#R Similar to #U, but chunges wo the files ure oot
propagated to the disk, This 3 eguivalent o g
read-only file system, however it allows the SPUs
to communicate date botween each other as the
computation progresses

Fp Clients can use this Ale system wo create @ ramed
pipe which can be used to communicate between
eliegnts ranning on different SPUs.

#1 Log file system used by lightweight library rou-
tines replacing printf()

Tahle 1 File systems served by whie PPL

Due to the nature of DMA transactions, any single-threaded code that runs
on the SPU will have o block alter ssuing o DMA cequest: thus wasting valu-
able cveoles. Several methiods for aleviating this problem have been developed,
virtually all of them relving on scheduling OMA in advance in such a way that
comnputation ean eontinue on the SPLU without waiting for DMA completion.
This normally requbres that more than one memory baller 35 in the local slore
on the SPU. ['ypleally our colleagues at LANL have decided on a triple-buffered
mode! in which {here are Lhree bulters in memory: one being DMA' out to main
inemory, one DMA’ (0, and one on which the compuration is being performed.
The computational kernel then becomes more complicated and the How 1n the
computation & broken up by having to explicitly sehedule DMA and check for
their cowmpletion as soon as work on one of the bullers has completed, The
mnlti-buflered solution oxplained above does have a drawback due wo Lbhe fnet
that not all computations explicitly fit this model. Furthermore, the extra ef-
furt reguiced w schedule the out-of-band communication causes code to be more
error-prone than usual sinee it must earefully handle the boundary conditions
between chenging hulfars.

We have solved the problem of blocking while DMA is in transit, by taking a
ecareflully designed coroutine model allowing more than one computational code
toexecite inoa single SPLUL In the coroutine model we have adopred ong or mose
functions run on the same SPU mdependantly, Whenever a function requests
memory acrcess (o loeations ontside of the anes stored in the SPLs local store,
this coroutineg would block and another one will start executing while the DAMA
of the first completes. The model does not provide facilities for preempting o

coroutine, therefore one would continue execution until it is done processing the
current memory chunk in the SPUs local store.

The benefits of the coroutine model are several. Unlike threads or normally-
scheduled S processes, coroutines execute completely deterministically, thus
removing Lhe need for locking or mutual exclusion. The coroutines can share
all variables defined in the SPU code a5 long as they do not try sharing the
memory areas for which DMA may be in progress.

Coroutines are created similarly to POSIX threads, namely, lunction pointer,
paramcter pointer and stack buffer pointers are passed to the library which
handles the set-up stage. A new coroutine is not immediately scheduled, hut
is put in a FIFO waiting quene The following code creates a coroutine with a
stack size of 4096 bytes which prints a greeting, Note that this code avoids using
the printf () library call, instead using the much more lightweight spc_log()
provided by our library.

char stack[4096];
void
cor{void earg)
{
spc_log("hello worldin");
¥

void
cormain()
{
mkcor(cor, NULL, stack, sizeof stack);
}

5 Implementation

Maln targets for our library are to provide for optimized 1/0 operations to
and fromn main memory and to have & very low memory footprint on the SPLU,
W were very careful in choosing a protocol for our system. Our requirements
called for something thal is both lghtweight, vet provides support for all fle
operations that we required. We chose the 9P (5] protocol as its used in the
“Plan 9 from Bell-Labs” operating syslem, There are several reasons for Lhis:

o Simplicity: the pratocol lins only a handful of messages which encom-
puss wll major Ale operations, yet it can be implemented (including the
coronting code explained above) in around 2000 lines of C code

o Robustuess: GF has been in use in the Plan 9 operating system for over
15 years

o Architecture independence: 91 has been ported and used on all major
computer architectures

o Scalability: our Xepa |6 suite uses OF 1o control and oxocute pIOgrams
on several thousand nodes at the same time

Sinee the 9P prowocal is not directly accessible by the user all implementation
details beluw do not concern ond programs,

A UP session betweon a server and its clients consisis of requests by the
elients v mavigate the server’s file and directory hierarchy and respouses {rom
thi sorver to those tequests. The olient’s requests by lssuing & T-message, the
seryer pesponses with an R-messages. A UP transaction s the combined act
ol transmiving a request ol particular type by the cliemt and receiving a roply
from the seever, There meay be more than one request outstanding, however
each request tequires o response Lo complete a transaction, There is no Hmic an
the number of transactions o progress for o single session,

Fach 9P miessage contains & sequence of hyies repeesonting the size of the
miessuge, the Lype, the tag (transsetion), convol Belds depending of the mes-
sige type and a UTF-8 encoded paylond, Most T-messeges contain a 52-bit
unslgned iteger called Fid, used by che client w identify the “current Hle™ on
the sorver, Lo the last filo wecessod by the client. Each file in the file systen
sopver by our dbrory bae an associded eleent ealled Qid wsed to unmguely
idontify it in tho file system.

9P message type Description

varsion ilentifies the version of fhe protoeal ani ndicates

Ehe maximun message size the system is prepared
tiv handle

suth e hnges auth messupges (o establish nn authen-
ticutlon fd used by the attach message

Crror indicores that o request (T-message) fniled and
specities the reason for the fbilure

flush aborts all outstanding requests

aLturch imitiates & connection to the server

waulk canses the server to change the onrrone file asso-
cnted with o fid

open opens o file

croate crostes o pew fie

read roads from a file

writn writes to n file

clunk frews o fiel Lhat s no longor needed

remnve deletos a file

stat rotrieves information about 4 filke

wstal miodifies information about the file

Table 2: Message types in the 9P prowocol

The current implement ation of the corvutine library and 9P client code for
the SPLU Lake only 20K of local store memory on the SPL, thus leaving ample

space for user code, The maximum nomber of coroutines running on & single
SPU has been limited to 8 to allow for a larger stack and thus more user-code
variables, The size of the stack used by coroutines is user-defined and can vary
between coroutines running on the same SPIT

In the proposed programming model the server runs on the PPU and clients
run on the SPU. Clients constuct 9P messages in the local store and send notifi-
cations to the PPU via the mailbox communication channel. The PP retrieves
the messages via DMA, performs the operation and sends back the responses
to the same local store buffer of the originating request. The PPU notifies the
SPU via signals,

A simple optimization is used to improve performance of the special case
when the file is in main memory: in this case the Qid of the file to which
the operation refers is a pointer to a fle description structure. This structure
cortains Information about the file size and its memory location (the Ales are
contiguously stored in memory). This improves performance by allowing more
informalion to be transferred in a single DMA than the maximum allowed by
the 9P protocol implementation. Read and write operations to 16-byte-aligned
buffers of files marked as in-memory schedule a DMA directly bypassing the 9P
protocol, thus further improving performance.

Coroutines are implemented through the library calls of the CellFS. library.
If the user code calls & routine Involving DMA to or from the PPU the library
schedules the DMA, saves the registers of the callee coroutine, restores the
registers of the next coroutine and jumps to its PC. If there is no coroutine
waiting the library blocks until it recelves a notification that a DMA is complete,
or a signal notification for a request from the PP,

6 Performance

In order to evaluate the performance of the proposed programming model, we
created Lwo benchmarks. We run them on a Cell blade system that contained
two 3.2CGHz Cell processors. We didn't have access to a blade with HugeTLE
selup.

The first benehmark tests the memory bandwidth that can be achieved. The
SPU program opens a 128MB file stored on the Unix fAle system. then creates
a numer of coroutines, each of which reads 16777216 8K blocks from the files.
As mentioned in the previons section, the regular Unix [les are mmap-ed when
accessed from the SPU, so after the initial page faulis that bring the file content
to the memaory, reading from the file is equivalent to accessing the main memory.
We tested the program running on different number of SPUs and coroutines.
We alzo implemented a simple SPU program that implements the conventional
double buffering method of reading 16777216 (multiplied by two) 8K blocks via
DA,

Table 3 shows the results of running the memory bandwidth benchmark. The
performance in both cases is comparable. The memory bandwith we achive is
much lower than the theoretic 204.8 GB/s. We believe that the main reason for

that & that we don't use Huge TLE,

T#SPU S | _ #Coroutines T
' f ¥ J&8 J3 Ja 5 16 [T |
i [13858 | 562 | 625 | 610 [600 |609 | 505
| 2 ["6.85 | ILIO| 1161 | 1159 | 1158 | 11.59 | 1151
'3 [10.08 7] 1630 [17AL [1744 [1728 [17.52 | 1735
(47 13.12] 19.89] 21.95 | 2185 [23,22 | 21.21 [21.46
3 | [14622071 94.04 | 23.42 | 28.87 | 2151 | 21.87 |
6 | 1604 | 2281 | 2456 2411 | 20.90 | 2234 | 2233
7 |~ | 18687 2200 | 25.00 | 23.83 | 24.53; 2164 [22.27 |

I_H =

Tablo 4 Memory Bandwith {in GB/s} for various numbers of active SPs and
Coroutines

e second benchimark is a modification of the [BM optimized matrix mol-
tiplication workload, We left the optimized functions Matloit MxM aned Mat-
AMul.Mxa intacy, changing only the logic that veads and writes the blocks, In-
stepd of using dma duectly, our implementation uses two coroutines that each
cilenlates hall of the blocks assigned to the SPU. The intial data of the A and
B matrices is stored in regular Unix [les and the resule of the multiplication is
abso stored oo regular ke, Tnoorder o have fair comparision we modified Lhe
original matrix moltiplication program to read the content of A and B from the
same hiles instead of senerating it on the Ay

7551 6218
3786 | 3LIS
AW | 1560 |

Table & Time to run 10000 mdtiplications of two 5122512 single Hoating point
marrices

Table 4 shows the results of runoing the original and the modifed applica.
tions, There is abour 2% penalty of using our modified application.

7 Conclusions and future work
Wi have deseribed nominboalistie programming model for the Cell BE computer

architecture and the lbraries supporting i, Our model aims ac aleviating the
Cell programmer from explicitly

Oine unexpected benefit from our programming model is that the develop-
ment and testing cycles can be completed on any computer since the server and
client libraries hide the specifics of the Cell architecture. Also, as long as the
coroutine and SPU 9P client libraries are ported or stubbed to an 08, our pro-
gramming model is also OS-independent. The only thing a programmer needs
to worry about is the requirement that code fits into the local store of the Cell
SPU.

Cwir programming model can be extended further by providing Gle servers
lor other resources such as networks or specialized hardware, As part of the
XCPU {6 cluster management suite, our libraries allow for starting a new pro-
gram on a separate SPU (not necessarily located on the same Cell), thus pro-
viding extensibility and workflow management in a heterogeneoos environment.

Unfortunately our model is not without drawbacks. One of those is the that
the stack of the coroutine can be quite large. limiting the maximum number
of coroutines (and thus bandwidth attainable) on a single SPU. For example,
if the SPU events mechanism is used by the program running on the SPU the
stack needs to be at least BKbytes. Another drawback is that the client library
requres non-zero time for switching between coroutines and for constructing
and deconstructing 9P messages. There is definite room for optimization in
that area,

Future works improving this programiming model is allowing for direct com-
munication hetween SPUs without the involvement of the PPU. Something that
the Cell architecture allows, but is currently not exploited by our libraries, We
also plan to port part of the client library to the PPU and dllow user code to be
risn there for tasks such as controlling and synehronization between the different
SPUs. Note that this is still achievable with the current implementation, but
requires that a coroutine on an SPU i dedicated to that task.

We also want to integrate more fully with the Xepu Cluster Management
Suite, which also utilizes Lhe same file-hased approach to sharing resources, 5o we
can have a complete top-to-bottom stack for the new heterogenecous computers
such as Road Runner currently being built ar LANL

References

[1] P. Bellens, J. M. Perez, B. M. Badia, and J. Labarta. Cellss: a programming
maodel for the cell be architecture, ln SC'06, 2006,

(2] B. Flachs, 5. Asano, 5. H. Dhong, H. P Hofstee, G. Gervais, K. Kim, T. Le,
. Liu, J. Leenstra, J. Liberty, B. Michael, H-J. Oh, 8. M. Mueller, 0. Taka-
hashi, A. Hatakeyama, Y. Watanabe, and N, Yano. The microarchitecture
of the streaming processor for a cell processgr, In IEEE International Solud-
State Cereuits Conference, pages 184- 185, 2 2005,

(3] IBM. Cell broadband engine programming handbook, 2006.

4 Jo A Kanle, M. N Day, H. P. Hofstee, C. B Johns, T. B Maweoir, amd
D. Shippv. Introduction to the cell multiprocessor. TBM J. Res. & Dev,
155859604, 2005,

i ATET Bell Labortories. Introduction wo the 9p protocal. Plan 9 Prograr-
mer's Manual, 3, 2000

6 1L Minnich and A Mirtchovski. Xepo 2 new, Yp-hased, process manage-
ment system for clusters and grids In Cluster 2006, 2006

7. D. Pham, 5. Asano M. Bolliger, M. N. Day, L P. Hofstee. C. Johns,
J. Kahle, A. Kamevama, J. Keaty, Y. Masobuchi, M. Riley, D. Shippy,
D. Stasink. M. Swenoki. M. Wang, 1 Warpock, 5 Weitzel, D. Wendel
T. Yamazaki, . and K. Yazawa. The design and implemeniation of a first-
seneration cell processor. In Custom Integrated Corcusts Conference. 2005

5, Rob Pike, Dave Presotto, Sean Dorward, Bob Flandrena, Ken Thompson,
Howard Trickey, and Phil Winterbottom. Plan 9 from Bell Labs. Computing
Systems 8{31:221-254, Summer 1995,

W BLAS {Baste Linear Algebra Subprograms). AL www.netlib.org/blas.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16

