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Abstract

Shortest path algorithms are a key element of many graph
problems. They are used in such applications as online
direction finding and navigation, as well as modeling of
traffic for large scale simulations of major metropolitan
areas. As the shortest path algorithms are an execution
bottleneck, it is beneficial to move their exectution to par-
allel hardware such as Field-Programmable Gate Arrays
(FPGAs),

Hardware implementation is accomplished through the
use of a small A* core replicated on the order of 20 times
on an FPGA device. The objective is to maximize the use
of on-board random-access memory bandwidth through
the use of multi-threaded latency tolerance. Each shortest
path core is responsible for one shortest path calculation,
and when it is finished it outputs its result and requests the
next source from a gueue,

One of the innovations of this approach is the use of
a small bubble sort core to produce the extract-min func-
tion. While bubble sort is not usually considered an ap-
propriate algorithm for any non-irivial usage, it is appro-
priate in this case as it can produce a single minimum out
of the list in O(n) cycles, where n is the number of el-
ements in the vertex list. The cost of this min operation
does not impact the running time of the architecture, be-
cause the queve depth for fetching the next set of edges
from memory 1% roughly equivalent to the number of cores
in the system.

Additionally, this work provides a collection of simu-
lation results that model the behavior of the node queue
in hardware. The results show that a hardware queue, im-

plementing a small bubble-type minimum function, need
only be on the order of 16 elements to provide both cor-
rect and optimal paths.

Because the graph database size is measured in the hun-
dreds of megabytes, the Cray SRAM memory is insuffi-
cient. In addition to the A* cores, we have developed
a memory management system allowing round-robin ser-
vicing of the nodes as well as virtual memory managed
over the Hypertransport bus.

With support for a DRAM graph store with SRAM-
based caching on the FPGA, the system provides a
speedup of roughly 8 9x over the CPU-based implemen-
tatation.

1 Introduction

Transportation infrastructure is a highly complex system,
where hundreds of thousands of automobiles traverse vast
road networks. The ability to understand and predict re-
sponses of the network Lo perturbations of the traffic flow
and damage to the roads is of great value to planners. Ex-
ploring the effects of various changes to the infrastruciure
provides understanding of what to expect when similar
changes happen in reality.

Part of the TranSIMs data is based on long-form census
reports. These reports provide detailed information about
the behaviors of large segments of a population. Given
data on where a person lives, works, goes after school,
etc., we can know where in the city grid they will be
at any given time. As they have to get from one place
to another, we also know roughly what routes they will



travel. Thus, we can model the transportation network
at any given point of the day, given certain assumpltions,
namely, the choice of routing.

The current routing algorithm we are using 15 a basic
shortest path approach. This does not take into account
loading on the freeways, but is less data intensive and
easier 1o calculate in parallel. However, 1t is sufficient 1o
model many types of travel plans. Some of the questions
that can be answered are:

e Given a bridge closure, what will be the effect on the
mid-day traffic?

e Given necessary freeway repairs, what is the best
time of the day to divert traffic onto side roads?

» Ciiven a natural disaster, what is the best way 1o evac-
uate a city?

Road and epidimological graph data is highly sparse,
providing a challenging problem to hardware designers.
Sparse graphs have very little non-zern data, allowing
for highly efficient compressed representations. However,
determining shortest paths from a sparse graph is difficult
because of the irregular data access patterns of algorithms
and the tendency of some solution techniques to fill (de-
sparsify) the connection matrix,

The sparseness of the graphs in question ranges from an
average connectivity of 2.75 in 560,000 nodes for the Los
Angeles road data to 1500 in 1.6 million for the Portland
human network.

The wransportation network can be modeled at any
given point of the day with certain assumptions, namely,
the choice of routing algorithm.

The use of a parallel single-source shortest path ap-
proach to solving the all-pairs or many-pairs shortest path
problem can leverage a sparse representation of a graph.
Because each shortest path problem is only concerned
with one set of edges, it i5 does not damage the sparsity
of the graph during the solution. For completeness’ sake,
we remind the reader of the A* strategy [2]:

while ¢ i= not an empty set
Extract-Min{Q)

§ := 5 union {u}

for sach edge (u,v) ocutgoing from u

u o=

if wiu,v) < div] =-upnvisited
div] := wiu,w)

previgus|[v] = u

In this formulation, tw(u, ) is the weight of the edge
from w to v. In the A* algorithm, a “heuristic estima-
tion™ is used instead of the weight of the edge. In this
case, w(u, v) is usually the cost from u to the objective.
In our case, the objective could be the closest exit point
from the hierarchical block (be it a neighborhood or city).
This can be estimated using a manhattan or euclidian dis-
tance. The interest in using A* over Dijkstra's is that it
can utilize the knowledge of the graph we already have -
that is, latitude and longitude, to predict it's distance from
an objective point. In a general graph G(w, £, w) this sort
of short-cutting is impossible, but we have a map graph
(G{vl, e, w, lat, long)), which can speed things up. The
difference in implementation is trivial.

In order for this approach ta work, several assumptions
are required:

total number of paths > 1000
extract-min should require =
#Funits * time for memory fetch

The cost of extract-min, in cycles, is roughly the num-
ber of paths in the set ) of possible paths. This number
can increase in an exponential manner (depending on the
graph) during the execution of the shortest path.

Equivalently, #units = extract-min / time for memory
ferch, meaning that if the number of units able 1o fit on
the device is too small, the memory bandwidth will not be
used to its maximum capacity. The approximate value of
these terms will be determined by simulation (below).

2 Related Work

Some other work has been done in exploring some of the
hardware components used in this work. One, [3], deals
with a fast heap implementation, and an implementation
of Dijkstra’s that uses a full hardware priority encoder (4]
In both siwations, the priorty encoder requires a large
percentage of the slices available. This prevents the de-
signers from using a larger number of units to process
shortest paths in parallel. Because we are feasibly prior-
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Figure 2: Zoomed in section showing where gueue is required after greedy selection of routes causes A algonithm to

get stuck i a dead-end

izing thousands of distance measures, it s infeasible
imiplement this in an {1} full-parallel hurdware solution.
By spreading the extract-min operation over ({n) cycles
with €(1) hardware, we take advantage of the round-
rubin memory scheduler's request latency while simulia-
neously fitting far more hardware on the device,

The Floyd-Warshall architectures, such as [1], are only
appropriate for dense matrices.  Because the all-pairs
problem demands u solution from every node o every
other node, the benefits of the sparse matx are lost as
the algorithm runs. The dynamic programming solution
fills in the enure matrix, as follows:



vk,i,j DEH

(3}

= min{ D, 5y Df iy + Dl 3}

Because of the matrix-filling property of Floyd-
Warshall's, it 15 pointless to use a sparse-matrix data
structure. While the matrix starts out sparse, it becomes
completely filled, unless the graph has specific properties
{namely, a set of disjoint connected subgraphs would re-
main sparse, but it would be better to handle them as in-
dependent closures). The sparse structure has high over-
heads in terms of random-access to elements. Thus, the
combination of an All-pairs solution and a sparse matrix is
not ideal. The parallel single-source problem, run over all
noades (or some subset thereof) seems to be able 1o lever-
age the sparse graph more effectively.

3 Introduction to Our Approach

Dermining the next edge to explore is a key element
of the A* algorithm, and the running time of the algo-
rithm is largely determined by the data structure used
to provide this information. Software implementations
use a Fibonacci Heap to provide O(log(n)) average per-
formance. However, this is an amortized performance
achieved through a complicated data structure that would
be difficult to implement well in hardware, There have
been implementations of priority queues [3] but they are
of a size that would require far too many device resources.

The Fibonacci heap is the key to an efficient software
implementation. However, based on our simulations it
seemed that the Fibonacei heap might be providing more
that is needed, at & cost that is undesirable. The main
observation is that the heap can grow without bound dur-
ing execution of the A* algorithm. Edges are potentially
added whenever a new node is explored, but queue ele-
ments are only removed when they are explored. This
leads to a queue that can grow into the thousands of el-
ements for a large praph. However, afier simulation, we
noticed that the size of the queue — within limits — does
not affect the correctness of resulis.

For any route, given a start, destination, and graph of
the road network, there is a certain size of queue that is
required. The purpose of the queue, going back to the A*
algorithm, is to provide some ability to backirack. The
A* algorithm repeatedly performs the extract-rmin) op-

eration on the heap, allowing the best greedy route o be
followed, This is fine for a repular grid, but in a real city,
with complications such as housing developments, rivers,
and freeways, the best greedy route is often not able to be
completed. For instance, see Figure 2, which is a closeup
of the example route shown in Figure 1. The best greedy
route leads the algorithm into a dead-end. The heap is
then consulted for the next best option. This may mean
that all of the nodes leading into the dead-end will be
explored. Because the algorithm only knows about the
nodes in the gqueue, it cannot backwrack if the queue is not
big enough. A subdivision, for instance, with one entry
point but many internal streets, can cause the algorithm to
not complete. Our tests of the Los Angeles network, over
150 randomly selected start/destination pairs, show that
a queuve size of 16 elements is sufficient for most cases.
Figure 3 shows the number of completions and accuracy
versus an infinite buffer as the gueue size is reduced. Even
while the accuracy is of the returned route is reduced, the
algorithm still completes the majority of the cases until
the queue size is reduced to 8, which is the equivalent of
3-4 intersections worth of sireets.

These simulation tests have led us o a novel modifica-
tion to the A* algorithm that makes it ideal for hardware
implementation. Rather than an unnecesarily complex
hardware Fibonacei heap implementation, we have devel-
oped a simple bubble sort core that provides one exiract-
min{) operation every & cycles, where & is the depth of
the gueue. Bubble sort would not normally be an efficient
method for providing min-heap functionality. The aver-
age behavior is worse than a randomized sorting method,
like quick-sort. However, the hardware resources required
to implement it are very low, consisting of a single register
and comparator.

The algorithm only requires one minimum element re-
guired per exploration time step.  Another option would
be to just remove the minimum element from the queue,
which would not require any write-back to the queue.
While this would be somewhat simpler, as the “bubbling™
action does require a write-back port on the memory, it
would cause gaps in the queve where elements have been
removed. Additionally, the bubbling action has the addi-
tional benefit of pushing larpe clements toward the tail of
the queue. As large elements are less likely to be used,
there is little problem if they are overwritten as the queue
loops.
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3.1 Simulation Results

In iests of the Los Angeles dataser using A™, the maxi-
mum heap size required was 4,926 over a sel of randomly
selected origin/destination pairs, With a 20 hir sireet iden-
ufier (there are 560000 some street segments in Los An-
geles. There may be lots of “slip” roads thar can he re-
maoved vig optimuezation) and a4 16 bt distance, we wall
require about 10 block RAMs,

This results means we can fit between at least 2{) short-
est path units on a chip, depending on the device.

4  Analysis

The objective of this work is to maximize the possible
ith #Zpathatomplated i e .
roughput ) by targeting a large number

Latrie

of small shortesi-path units a1 the highest frequency, thus

Frey=Funils

#Fpathacompleted
#Feyelesperpalh

tiE

The ohjective 1s for this o maxintize the wsage of the
available random access bandwidth as well,
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s bandwidth{lookups/sec) *
dunits « lookups /path

In processing the Los Angeles sireet graph, we have
found that the average connectivity is 2.75 links over the
560,000 individual street end points. Thus, when running
the shortest path algorithm, each lookup should retrieve
2.75 nodes on average. The total number of lookups is re-
lated to the diameter of the graph and is highly dependent
on the particular pair of endpoints selected.

Because Dijkstra’s and A* are only concerned with the
new nodes, and the structure of the graph determines how
new nodes present themselves, we must simulate to de-
velop an understanding of the memory access patterns of
the system. For instance, a tree that is explored using Di-
jkstra’s from the root will always present new nodes. A
lattice (as in a regularly laid-out road network) is easily
predictable in terms of the A* aversal. At each node, the
choice of the next node to explore is generally the edge
that leads in the direction of the destination. However,
few cities are that simple. Freeways, bridges, rivers, and
undeveloped areas can make route finding, and the data
access patterns associated with them, more complex.

5 Architecture

The efficient bubble sorting technique allows for more
units per device, The delay of the min-bubble operation is
mitigated through the same multi-threading technique that
allows the SRAM (and, occasionally, the virtual mem-
ory manager) latency o be ignored. By having several
dozen A* units working in parallel, an SRAM request for
one unit is handled while another unit is busy sorting its
gueue, This allows the SEAM bandwidth to be maxim-
ixed — the round-robin memory controller can provide a
new data request on every SRAM data cycle, because the
A* umts immediately sort their queue as soon as a data
request is completed and then wait for their next access
graph memaory.

The Los Angeles road graph has roughly 65,000 edges.
In our data structure representation, this occupies about 48
MB. Thus, the 16 MB QDRII SRAM banks on the XD-1
will not be able to hold the entire graph at once. When-
ever the SRAM does not have the particular graph block

required, it starts the software-controlled virtual memory
system. This is illustrated in Figure 5.

|
A*
- — A Addr
h* [
A #*
L=
« 1

Figure 5: Virtual memory controller

Because the XID-1 is much faster at software-controlled
block DRAM transfers to the SRAM than FPGA-initiated
DRAM requests, we contral the virtwal memory sys-
tem using the CPU. The round-robin memory controller
swilches 10 a new A* unit and determines if there is an
outstanding request. 1f a memory request is ready, the
memory controller looks at the high-order bits and com-
pares it against a set of CAM entries. This is accom-
plished in one cycle. If the data is already in memory,
the CAM returns the appropriate offset into the SRAM
banks and puts the request on the memory address bus,
Because the SRAM has a guaranteed latency, the mem-
ory controller can signal to the A* unit that it can expect
its data on the bus after 20 cycles. Because the latency is
guaranteed, the memory controller can go on to process
the next unit.

If the data block is not already in SRAM memory, the
memory controller switches into the virtual memory re-
guest mode. Because there is only one memory bus to the
SEAM, the A* units can continue sorting, but outstand-
ing requests will block until the requested data is paged
in from DRAM. The controller writes a register detailing
that it requires memory service and the block required.
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Table 1: SRAM word layout

The CPU then initiates a DMA transfer from DRAM to
the SRAM and tells the memory controller which cache
block was written.

As in all systems, this is an expensive operation com-
pared o0 normal SRAM-based memory fetches. Fortu-
nately, the graph data is laid out in blocks such that there
is temporal and spatial locality in the data accesses. This
makes the cache behavior more efficient than if the data
was laid out randomly in memory.

The Cray XD-1 has a 16 MB of SRAM available to the
FPGA. We address this as a unified single bank with many
blocks addressed from a single memory manager,

Each 64-bit word coming out of the QDRII SRAM 1s
laid out as illustrated in Table 1:

Each memory word is contains enough information to
provide the data inputs to the gueue. Latitude and lon-
gitude is necessary to provide the queue's sorting ability,
The address provides the location in memory for the node
in question. At that address, the following memory words
are the edges connected to the node.

Tahle 2 illustrates the effect of various SRAM block
sizes on the virtual memory manager. Because the XD-
1 only has 16 MB of 64 hit words, there are not a lot of
options for the block sizes. The V2Pro 60 device can sup-
port about 24 A* processing elements. As the memory
manager services the A* units in a round-robin fashion,
there must be at least 24 blocks. We tested 32, 64, 128,
and 256 blocks, corresponding to block sizes of 64, 32,
16, and 8 words. For each size, we tested two replace-
ment policies, a round robin approach that is very easy 1o
implement, and a last-used policy. Because the A* units
move through a block of graph data in several cycles, the
round-robin unit is workahle. The last-used approach is a
more traditional approach; if the block of data isn't cur-
rently being used by any of the A* units, it is a sensible
block to replace.

After experimentation with a set of random ori-
ginfdestination pairs, we found that the last-used replace-
ment policy with 32 blocks is the most effective method-
ology.

Number physical blocks
Replacement Policy | 32 64 128 256
Round robin To4e 6830 7902 10359
Last used 5§75 6030 7404 10157

Table 2: Total number of SRAM memory loads for vari-
ous sizes of pages

6 Performance Results

Using the Cray XD-1 with a Virtex 2-Pro 50 -7, we placed
and routed the design with 24 A* units at 130 MHz. This
clock rate is less due to the design of the dot product units
and more (o the SRAM interfaces and arrangement of the
pin constraints for the FPGA board.

Table 4 contains the performance results for a CPU im-
plementation, the SRAM-only implementation, and the
DRAM-based SRAM cache implementation. The re-
sults are based on a small set of randomly selected ori-
ginfdestination pairs, with roughly 21,600 accesses to the
graph memory. The SRAM-based implementation are not
valid for real use, as the small QDR memories do not hold
entire graphs, and the load time from the disk and DRAM
are not considered. Thus, the speedup of 1500 is largely
theoretical,

The DRAM-based results are more reflective of real-
ity. This result is the full system implementation, includ-
ing the memory manager that caches graph memory lo
the SRAM. The load time of the SRAM blocks is the
main bottleneck for this implementation, and largely de-
termines the running time and overall performance. The
speedup of 8.9x over the CPU is lower than we had ex-
pected at the beginning of the project, but the data access
costs were so high, even with the addition of the caching
SRAM design, that the overall system performance was
severely impacted.

While the architecture could easily be implemented in
a custom ASIC — in fact, the simple units that make up the
systolic array are designed explicitly for ease of ASIC im-
plementation — the use of FPGA allows the user to utilize
parameterized designs which allow for variable numbers
of spectral bands as well as optimized memory sizes for g
particular problem. As well, FPGAs allow the design to
be scaled upward easily as process technology allows for
ever-larger gale counts.



Num Units | Area (shees)  Area (%)  Mult (of 232) BRAM (of 232)
3 5277 22 [ 20
8 8362 36 16 41
16 14628 64 a T2
24 IB165 76 48 112

Tabie 3: Some mapping results on the Cray XD-1, with a Xilinx 2vp50 -7 running at 130 MHe

platform | time {sec) loads ratefsec spesdup
S 025 20600 words 86376 1
XD-1 (SEAM) 0.0002 21600 words | F0000000 1512
XD-1 (DRAM) 0028 3443 blocks LY B9

Table 4: Comparison between CPU and XD-1 performance for buth SRAM-only graphs and DRAM-based systems

with SRAM caching.

7 Conclusion

This paper contributes two main advancements to the
tield of shortest-path computation. One, the bubble-soried
queue, s 4 restriction that is only possible because of the
limited branching structure of ransportation grids. How-
ever, it enables a much smaller hardware implementation
of the A* algorithm, allowing a much higher level of par-
allelism  This parallelism allows for the memory band-
width of the XD-1 w be utilized more effectively than if
shortest paths were calculated sequentially.

The second contribution is the virtual memory round-
robin manager. This 1s obviously not particularly novel
in terms of computer architecture, but its implementation
un the XD-| does provide a capability that is useful o
u many applications where data access is random over a
large, sparse database.

The next step in improving the modeling capabilities
of this architecture 1s to add support for congestion. By
keeping track of the load on any given road segment dur-
ing a parficular time-step, the system can weight cdges
such that heavily wafficked arteries are less desireable. A*
normally sorts on the distunce to the destination, but that
can easily be changed to a weighted distance based on
the congestion and average rates of a particular road link.
This will provide more accurate modeling, as cars will be
attracted to freeways until they too become congested, and
otherwise route toward fast routes and away from traffic.
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