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Abstract

The metched fifter is an important kernel in the process-
tng of hvperspectral dara, The filter enables researchers to
sift wseful data from instruments thar span large frequency
Braneds,

fon this werk, we evaluate the pecformance of a
marched filier algorithm implementation on aceelerated co-
processer (X000, the 1BM Cell microprocessor, and the
NVITHA GeForee 6900 GTX GPU graphics card.

We pravide extensive discussion of the challenges and
appartinities afforded by each platfarm. In particular. we
explore the proddems of partivioning the filter most effi-
ctently between the host CPL and the co-processor.

Using our resulis, we derive several perjormance met-
rics that provide the apiimal solution for a variery of appli-
Cotton Sitnattons.

1. Iniroduction

Even though clock speeds of current nucroprocessor-
hased systems are 10-30 times that of a typical FPGA based
design, the large amount of spatial parallehsm afforded
by modern FPGAs offers the poteniial for speedup. FP-
GAs now deliver peak Joating-point performance equal-
ing or surpassing that offercd by microprocessor-based sys-
tems | 104, a rend thar will likely intensify in the future as
FPGA logic area continues 1o grow,

Other architectures, including the [BM Cell processor
and Graphics Processing Units (GPUs) can act as accel-
erators for general purpose computing.  The devices were
imualy desipned for use in gaming. The Cell s a part of
the Sony Playstation 3, and GPUs, such as the NVIDIA
GeForce senes that target, are used for accelerating the ren-
dering performance on commodity CPU-based systems.

On zll platforms, the devices are meant for a large, con-
swmer audience. Cell and GPUs are targeted al the guming
market, and FPGAs are widely used in ielecommunications
and even in consumer products. This enables the prices to

be relatively low compared to the cost of highly customized
chips, and make them very interesting and accessible o the
research commimity.

The ability to strewn data toffrom memory and overlap
control and data fow, combine w help these coprocessor-
based systems attain high levels of performance. Capi-
talizing on the potential of these coprocessors, supercom-
puting vendors such as SRC Computers, 1BM. Cray and
SGI are now offering high-performance computing systems
coupling standard CPUs with FPGA, Cell. and other co-
processors, These system architectures make it feasible o
adapt existing scientific codes o use FPGA acceleratins,

The matched filter is a vital kernel for extracting useful
data from hyperspectral instruments, The lerm Hyperspec.
tral implies that the spectra collected covers a very large
swath of the frequency spectrum. Generally, this dara is
broken oo many frequency bands that are independently
collected. Generally this is done through the use of a prism
iFigure 1) for near-visible bunds or a set of Glter banks lor
wider bands. In our application, floating point data is col-
lected for each band over & few hundred bands. The main
umit of data in hyperspectral processing is the datacube, luy-
ers of 2-D image for each spectral band of interest. The sig
natnere 15 simply u vector of single-precision floating point
values for every spectral band, in our case. 240,
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Figure 1. Splitting spectral bands for indepe-
nent detection

The matched filter takes the hyperspectral data and
malches it against @ particular signature. The signature is
a vector of coefhicients that represent the spectral reflection
or ransnussion of a parmicular material. The mached filter
15 most commonly used in detecting chemical plumes. An



interesting plumes might signify pollution, illegal arms pro-
duction, contraband drug manufacturing, etc. It can also be
used to detect particular types of vegetation. For instance,
the spectral signature of the invasive species athel tamartsk
is unique [4]. When this signature s applied against a dat-
acube, the tamarisk is highlighted and is distinct against the
background. Because tamarisk is such an agressive species
out of its native habitat, 1t must be desiroyed if it nears frag-
ile ecosystems, The matched filter is wseful for detecting it
remotely and monitoring ils spread.

The version of the matched filter we have implemented
on various platforms is focused on long-term surveilance
with a large number of signatures. In terms of kernel design,
this means that the signatures are pre-processed — which re-
duces overhead and setup costs — but that there will be huge
volume of data that has o be processed as quickly as possi-
ble.

The various implementations we have investigated are
customized for each platform. In all systems we have the
ability o partition the design between a CPU and the co-
processor. Because the strengths of each platform vary, we
have auempted o exploit the sirengths of each in our de-
signs. Tn the following sections, we will attempt to explain
and justify out design decisions, while simulateously ex-
ploring the strengths and weaknesses of each platform.

1.1 Matched Filter Algorithm

We implement a reduced set of operations for the match
filter. Using pre-processed signature templates, the opera-
tions required are simplified. The kernel remains a realis-
tic application as the signature templates can be generated
offline with no loss of practicality. The simplification fo-
cuses attention on the real-time costs of data transfer and
bulk computation.

Figure 2 illustrates the basic blocks of the kernel. First,
the signatores and the datacube are read in from the input
file. The datacube is then transposed, as the data armives
from the sensor in spectral frames, meaning that the en-
tire 2-I3 frame for a spectral band is contiguous. After one
frame is taken, the filter bank switches to the next spectral
band, and another frame is saved. Because the matched fil-
ter loops over all of the speciral bands for a single pixel
during the main filter phase, it is more efficient to have all
of the spectral data for each pixel in sequential order. Oth-
erwise, the memory siride would be the size of an entire
frame, or 240,000 32 bit words, This is not efficient, and
thus the data is ransformed early on in the process.

The main pixel loop is performed for every pixel in the
image. In this phase, each value in the datacube will be
accessed several times. Here, the ability w reuse data and
parallize computation is highly valuable. First, the values
of an entire column are averaged. Second, that average is

subtracted from the entire column. Third, the dot-product
is executed over the entre pixel column and the signature.
Various scalar operations are executed on the result of the
dot-product, and the results are retwrned. The process is
repeated over all pixels in the frame,

2  Related Work

Zhuo et al, [11] explored a variety of linear algebra oper-
ations, including dot-product. As dot-prodet is the main ker
nel we implement on the FPGA, this 1s an important prior
work. The authors® sirategy for dealing with the Foating-
point latency is to execute the dot product accumulation as
a tree-based reduction civcuit. This of course requires more
routing and more adders than the systolic array approach
that 15 enabled by our application. The matched filter ap-
plication allows us to be less concerned with the fatency of
any purticular dot-product result and more focused on the
overall throughput.

Meredith et al. [7] have implemented a variation of the
matched filter application on GPU co-processors, The ao-
thors report a 26.5x speedup over a Pentium 4 CPU. This
performance improvement is higher than what we claim,
but their application is somewhat better for the GPU as it 1s
more computationally intensive. Our version of the appli-
cation only processes the pre-prepared signature templates
and data cube, rather than processing the signature library.
As processing the signature library requires the calculation
of a covariance matrix, and thereby a matrix inversion, it
is of high computational complexity. Because we expect
to process the signatures once, and then apply them apainst
datacubes cver long time spans, it is sensible for our appli-
cation 10 only supporn pre-processed signature databases,

One interesting approach 1o matched filter design was
explored by Love er al. [?]. In this approach, a Digital
Micro-Mirror Array is used Lo select bands of interest. Mi-
cromirmors, commonly found in video projectors, provide
a uny moveable mirror for each pixel of an image. These
mirrers are independently controlled at high refresh rates.
In the DMMA approach. a single line of an image s di-
rected through a prism. The prism defracts the light into its
various components, which are then directed onto the mi-
cromirror device. By selectively turning on and off rows of
pixels in the DMMA, frequency bands can be selected. The
bands that of are interest reflect off of the DMMA and are
condensed. This, in essense, is the matched filter output,
excepl it is accomplished optically.

3 FPGA Implmentation

The implementation of the matched filter on the FPGA
has been carefully partitioned between the CPL and the



Figure 2. Main processing blocks of the matched filter

FPGA in order o make best use of the hardware. Mod-
ern FPGAs allow a designer 1o configure uny arbitrary logic
function Based on the design, these operations can fune-
tion at high clock rates and behave similarly tw a CPL-
based version. Because the FPGA does not have to be a
“general-purpose’” device. a designer can take advantape of
the application-specific attributes of the device to achieve
higher performance than o CPU. This can be true cven with
a CPU that operates at perhaps 10x the clock frequency of
the FRGA. However, this is oniy possible through hardware
parallelism, and careful design,

Because an FPGA - for any given configuration - 1s re-
sponsible for only one function, the entire resources of the
device cun be leveraged [or that function. In the case of
the matched filter, 1t 15 possible o implement dozens of the
memory and hardware resources to build & single-precision
dot product unit. This is hecause the resource requirements
for the single-precision multiply and accumulate allow lor
significant parallelism without much control overhead. As
wie will discoss. the dot-product portion can be parallelized
in multiple ways. allowing the daia and computationally in-
tensive portion of the kernel to be executed very quickly on
the FPGA.

While the dot-product is straight-forward ro implement
in hardware, the other aspects of the matched filier are nol
appropriate for hardware. For instance, after calculating the
dot-product, various scalar multiplies are performed on the
dot-product result. While it would be possible 1o implement
this functionality in hardware, these units would be hoth ex-
pensive and under-utilized. One of the scalar operations is
a floating-point square root. This kernel would occupies
several times more area on the FPGA, but would only be
in operation at the end of every dot product. This means
the duty cycle is roughly one result every 240 cycles. This
is not the most effective way 1o use the scarce FPGA re-
sources, thus pushing the occasionally-used. but expensive
scalar operations wo the CPU.

31 Architecture

In the first stage of operation, the signature values are
loaded omo the XD2-1°5 SRAM memory banks.  These
will be moved in and out of the FPGA as required. The
FPGA's internal block memory resources are then loaded
from SRAM memory. The SEAM words are 64-hit, allow-

ing twa 32-bit Aoating point values o be loaded into the
block RAM in each cyele.

The computational stase of the dot-product is a stream
ing of image data through the FPGA. The dot-product units
are arranged in a systolic array{onginally developed in (6]).
The system architecture is depicted in Figure 3. The power
of the systalic array lies in its ability to reduce total device
intercomnect. By sllowing only short connections within a
small, repeated unil, o design will achieve o higher operat-
ing frequency as well as lower area consumpiion, Each unit
is only connected (o the previous and following units. and
each controls its own data movement and computation. This
eliminates the need tor large. multiplexed data and address
buses, The systolic array prevents the proliferation of global
routing resources, The clock 1s the only element absolutely
necessary and thus we desire w limit global routes o it

We implemcnt the dot-product systolic array using the
Sandia Aoating point cores [5].

Through the use of the systolic array we allow for
increased frequency performance, decreased interconnect,
and simple, easily scalable umis. We implemeni the par-
allelizuble and computation inwnsive operations within the
systolic array and implement the senal and control intensive
operations within a microcontroller.
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Figure 3. lllustration ot the general dot-
product systolic array in the XD-1 system

3.2 Extracting Parallelism

The design of the one-signature-per-unit systolic archi
tecture 15 meant o provide parallelism over signatures, A
struggle with implementing sysiems with foating point of
FPGA has always been the latency associated with floating
point cores. In order to provide u fast clock frequency. it is



necessary to pipeline the units, and this means that any op-
eration that requires feedback, as in a counter or a series of
additions, cannot accept new inputs every cycle. This is ad-
dressed in [11] through the use of multiple adder elements
and elaborate scheduling.
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Figure 4. Due to the latency of the floating
point adder, multiple dot-products are inter-
leaved within the adder pipeline

Our approach grows from vast amount of dot-product
operations required in the matched filer. For every dat-
acube, there is a dot-product executed for every pixel across
every signature template. For our datacube, the dot product
is executed on a 240 element spectrum vector, over thou-
sands of signature templates. Because we are interested
in throughput of entire datacubes rather than a fast result
on a single operation, we can interleave computations o
mitigate the latency, Using just one adder of k cycles la-
tency, and interleaving & separate dot-product caleulations,
the dot-products for k pixels can be compuied simuliane-
ously without incurring any additional resource costs, Thus,
the parallelism is both signature-wise across the systolic ar-
ray and pixel-wise within a single unit.

3.3 FPGA Resulis

Using the Cray XD-1 with a Virtex 2-Pro 50 -7, we
placed and routed the design with 20 dot product units to
130 MHz. This rate is less due to the design of the dot prod
uct units and more 1o the SRAM interfaces and arrangement
of the pin constraints for the FPGA board. Each unit re-
quires 2 block RAM elements and roughly 4000 logic cells.

The partitioning choices have a big impact on the perfor-
mance of the design, and Amdahl’s law becomes a limiting
factor. Only the dot-product is moved to the FPGA, and the
dotr-product accounts for somewhat more than 50% of the
running time per signature. Thus, the maximum speedup
is 2x. Caleulating the per-signature speedup is complicated
by the systolic array. Because the system has 20 doi-product
units, computing the result for one signalure requires essen-
tially the same time as calculating rwenty, Al 130 MHz,
a 240x 1000 frame with 240 spectral components requires,
on average, 124 seconds to transfer the datacube, perform
the computation, and return the results 1o the CPU. This is
equal to (.62 seconds per signature for only the dot-product.
Integrating the FPGA-based dot-product with the rest of the
matched filer application, the per-signature time is roughly
3 seconds,

While the architecture could easily be implemented in a
cusiom ASIC — in fact, the simple units that make up the
systolic array are designed explicitly for ease of ASIC im-
plementation - the use of FPGA allows the user to vtilize
parameterized designs which allow for variable numbers of
spectral bands as well as optimized memory sizes for a par-
ticular problem. As well, FPGAs allow the design to he
scaled upward easily as process technology allows for ever-
larger gate counts,

4 Matched Filter Implementation on the Cell
4.1 Cell Broadband Engine

The Cell Broadband Engine (CBE) is a new micropro-
cessor architecture designed that exiends the fd-bit Pow-
erPC Architecture. The Cell is the result of collaboration
between Sony, Toshiba and TBM. Despite the fact that the
processor was primarily designed for game consoles and
media centered electronic devices, it was designed to over-
come fundamental problems in microprocessor design. To
this end, the Cell is being used in other application areas,
such as supercomputing [9].

The Cell consists of a single-chip multiprocessor with
nine separate processors which share a single coherent
memory. The cell follows the current microprocessor trend
of added multiple cores to a single chip. but instead of all
of the cores being the same, the Cell has one PowerPC Pro-
cessor Element (PPE) and eight Synergistic Processing ele-
ments (SPE).

The PPE is a general purpose 64-bit PowerPC architec-
ture processor capable of running 32-bit and 6d-bit operat-
ing systems and applications. It supports two simultaneous
threads of execution, which appear 1o the software as two
independent processing units, The PPE has a typical virtual
memory subsysiem with a 32 KByie L1 instruction cache, a
32 KByte L1 data cache and a unified 512 KByte L2 cache.



The caches und memory subsystem allow the PPE 1o see all
of the shared memory as a Aat memuory space. The PPE also
supports imteger, Hoating point and a SIMDfvector unit.
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Figure 5. Cell Broadband Engine Overview

The S5PE is opumized for running compute-intensive
tunctions and is not optimized for larger applications or op-
erating systems. The SPE is an independent processor that
runs its own program and has tull access to the shared 1O
and memory. The SPLE s called synergistic due to is reliance
on the PPE o run the operating system and to provide the
high-level application conteol. In wn, the PPE relies on the
SPE w provide application performance.

The SPE achieves its compule intensity through a spe-
cial SIMD instruction set. Although the SPE can be pro-
grammed in high-level languages and it has as special Veg-
tor/SIMD Multimedia instruction set extension for mcreas-
ing the parallel computation on each SPE. Operations thal
do not take advantage of the available vectorization reduce
overall performance. This is duc, in part, to the 128 125-bit
registers of the SPE. All operutions use the wide registers
regardless of data type. Vectonzation allows the most effi-
cient use of the registers.

The SPE does not have uny cache, but has a 256 KByte
soltware controlled local store (LS), The local store is for
both instruction and data, and has no protection or trans-
lahon for the access [rom its own SPE. Since there is no
cache or memuory translation, the SPE cannot directly ac-
cess the main shared memory. [t must mransfer the data via
DMA 10115 own local swore using the Memory Flow Con-
trioller (MBCT,

The MFC contains a DMA controller for transferring in-
structions and dita to the SPLUs local store. A DMA can
be iminated by the SPU, by another 5PU or by the PPE. It
15 the function of the MFC interface to the Element Inter-
face Bus (EIB) and synchronize the data transfers with all
the other processors in the system. The MFC operates asyn-

chronously with respect to the SPU, so that it is possible o
overlap DMA trunsfers with other concurrent uperations.

The EIB provide coherent communication between the
PPE processor, the SPE processors, main memory siorage
and YO, The LIB s 4 four ring structure [oc data and a tree
structure for commands. The internal bandwidth of the buss
1s 96 bytes per cycle and it 15 possible to have more than |00
ouistanding DMA requests between main storuge and the
SPEs. Besudes the SPEs and PPE, the EIRB is connected o
two other elements: the Memory Interface Controller (MIC)
and the Cell Broadband Engine Interface (BED, The MIC
provides the interface between the EIB and main storage.
The BEI provides the interface. conirol and translation for
all external YO communication.

4.2 Matched Filter

Three main areas impact the implementation of the
Matched Filter on the Cell processor.  First, the limated
memaory of the local store requires that the implementation
use no more that 236 KByies for o working set This is fur
ther reduced by instruction storage since both need to be in
the local store at the same time. Since the memory work-
ing set is much smaller than the wotal data (230 MByies),
then DMA transfers must be used to page through the dara,
Although the MFC provides a DMA controller, there are
very specitic limitations on the size and alignment of that
data. Finally, there are two levels of parallelism that can be
cxploited to increase the compute intensity. First, multiple
SPEs can operate in parallel. Second, vector operations can
he used to further compute effectiveness.

The DMA controller supports naturally aligned transfer
sizes of 1, 2. 4, or 8 bytes, and multiples of |6-bytes, with
a maximum transfer size of 16 KByies. Peak performance
15 obtained when the data s 128 bye aligned and the size
of the ransfer is an even multiple of 128 byies. The image
data cube of the matched flter is three dimensional with
the dimensions 240 by 240 by 1000, o order to DMA 4
240 Aoat row to the SPE. the data must be rearranged so
that the data necessary is adjacent. This inversion of the
data 15 expensive, hut allows the DMA to be padded o a
ransfer sixteen 256 Hoat rows (16 KByes). Otherwise, a
single value must he taken from each column to form the
data needed for the dot-product.

Since the SPE cannot directly access exiernal memiry
and must explicitly wransfer all data via DMA, the alloca.
tion of data in the LS is very important for effecuve perfor-
mance. The best DMA performance is achieved when trans
ferring the largest DMA size of 16 KBytes, Thuas, the data
input to the dot product will be sixteen rows of 256 floats.
Each of the sixteen will rows are used in the dot product
with the signature before the next DMA transfer. The sig-
nature data changes only after all the data (230 MByies)



has been processed. This is transferred only once and trans-
formed once before use in the dot product,

The parallelism is achieved by transferring a single sig-
mature o each of the SPEs and have each SPE look for a
match using all of the data. Since the application is inter-
ested in processing thousands of signatures, this approach
easily keeps all of the SPEs busy and can be made to efhi-
ciently process ull of the data input. The individual SPEs
calculate the dot product using vector add and multiplies,
which allow four floats to be processed concurrently. Not
all operations can be vectorized, but vectorization of key
computations increases the parallelization at the operation
level. The SPE also has two execution pipelines and can
schedule certain operations to run in parallel on its own ex-
ecution pipelines,

4.3 Results

Initial results for the Cell implementation ook over 30
seconds o process the data. Rearranging the data for the
DMAs to the SPEs took 26 seconds and the remaining 4
seconds were all that was needed to process from one o
eight signatures. The required transpose is very expensive
on the PPE of the Cell due to the fact that none of the reads
can take advantage of caching. Since the arrungement of the
data was derermined to be arbitrary, preprocessing the data
reduced the cost of reading the file to just 7 seconds.

5 GPU Implementation of Matched Filter
5.1 Overview of GPU Architecture

Graphics Processing Units (GPU) are a Commodity-Off-
The-Shelf (COTS) product that is meant for accelerating the
rendering of images to the screen. The intended audience
of these products is largely the gaming market, where high
frame rates and elaborate, complex 3-I» graphics require
state-of-the-art technology. Because of the demand from
the gaming community, companies such as NVIDIA [2] and
AMDVATI [1] have provided processing capabilities that
have outstripped the development of general-purpose mi-
CIOPrOCESSOrs,

Part of the ability of GPU developers to innovate comes
from the restrictions that come with their tarpet applica-
tions. Graphics code tends to be image centric, with data
access and result production occurring in a very predictable
manner. In particular, codes tend toward easily vectorizahle
computation with limited data usage. Other common char-
acteristics include [8];

s Single-instruction, multiple data (SIMD) structure -
the same code is executed for each pixel of an image.
Because all of the processors are performing the same

operations, there are fewer synchronization problems
and less resources dedicated o instruction queoes and
branch prediction. This architectural siructure does not
casily support branching, as data movement needs to
occur in lockstep through many parallel processors.

Single pixel outputs - this is a panicular restnction of
GPU architectures before the NVIDIA GeForce 8800
[2], released in late 2006, This model assumes that all
operations will produce a single result. This is a rea-
sonable assumption for many graphics-centric appli-
cations, as well as image processing applications that
do not necessarily result in a displayed image. Convo-
lution, for instance, and template matching produce a
single output,

In this model, computations executed on the GPU be-
have much like single-return value functions, This can
be inconvenient, as we will see later, as many compu-
tations have side effects and multiple results. In these
situations, the single pixel output restriction causes us
to repeat computation or build elaborate workarounds,

The single pixel output restriction also means that scat-
tering data is impossible. Because a function can only
produce one output, and that output 15 ultimately the
rendering output for a pixel, it is impossible o ran-
domly place data into memory. While gathering data
from arbitrary locations is supported, data outpuis are
restricied in the graphics paradigm. In that paradigm,
pixels are rendered to a image frame, and scatter is
rarely required.

Data locality - this 15 less of a constant across all
GPU applications and more of determination of perfor-
mance for a given application. Considering simple ker-
nels like convolution and template maiching, the data
locality 1% high, with each pixel output only consider-
ing the pixels in its immediate vicinity, While the in-
ternal architecture of GPUs is proprietary and closely
held by NVIDIA and ATL the importance of cache lo-
cality remains. Neighborhood operators continue to be
a strength of GPU devices even as their capabilites be-
come more general.

Vectorizable Code - There are two paradigms for this
approach within the GPU. Because of the SIMD na-
ture of the intended applications, there is benefit in per-
forming computation in a vector format. For instance,
in a serles of computations on successive pixels, the
computational pipeline can remain [ull as there 1s a
large volume of data and independent computation,

The second opportunity for vector acceleration is by
packing multiple values into the Red, Green, Blue, and
Alpha (RGBA) components of a pixel. In some situg-
tions, this allows the computation 1o be spread across



parallel vector units. However, the performance of the
packing seems 10 be a driver and implementation de-
pendent. We have observed kernels where using only
the Red channel is faster than packing the data across
RGBA.

These restrictions and behavioral patterns have allowed
the advancement of GPL architectures and performance at
a much higher rate than general purpose microprocessors.
Current GPU architectures actually appear much like a col-
lection of classic vector supercompulers on a single de-
vice. Because of the restrictions on the form of the oui-
put, the problems with cache coherency and other memory
issues that complicate other multi-processing architectures
are avoided.

Before the details of the implementation are presented
in Section 5.2, some GPU terminology should be defined.
The fexture is the basic storage structure on the GPU. Jtis
used normally for providing storage for a texture, or a se-
ries of values that can be mapped to a surface to provide the
appearance of a 3-D surface. This is used because it is com-
putationally cheaper to map a tiled texture 0 a surface than
it s 1o actually store the surface with detailed surface map-
ping. For general purpose use, matrices can be mapped to
texture memory, and recalled randomly. Multiple textures
can be used to calculate the output of a given function.

5.2 Implementation Details

We have implemented the main pixel loop of the
matched filter on a NVIDIA GeForce 7900 GTX, with an
Intel Pentium D 2.8 GHz with 2 GB RAM. The main pixel
leap is not the whole of the computation in the application,
but it does represent at least 85% of the execution ime. Re-
stricting the GPLs usage simplified development time as
well as allowing us to focus our attention on the most time
consuming part of the application.

We break the computation into four parts, in order to
work within the confines of the GPU architecture,

The first operational block 1s the calculation of the mean
for each row of the hyperspectral data cube, and the subse-
gquent subtraction of the mean from each element of the row.
The calculation for a single row is as follows;

for (i = 0; 1 < n; ++#i) sum += bli];
mean = sumin;

for (1 = 0 1 < n; ++1)
b[1] —-= mean;

The mean calculation reveals many of the oddities that
make programming for the GPU not as straightforward as
programming for a general purpose CPLL.

Because only one result can be generated per pixel, a
vector subtraction can not be executed in one step, Ideally,
the summation of the vector could be computed. the divi-
sion executed, and then that result subtracted from each of
the componenis of the vector. However, because temporary
results cannot be Stored between individual pixel, two ren-
dering passes are used.

The array b[(h..n] is laid out as a row in a texture, A block
of sums are calculated in one pass, with each b[0.n] row
producing vne element in & vector of sums. In this format,
a single column of the output frame buffer is rendered. The
coordinate of the particular row of each pixel to be rendered
15 used along with a loop variahle to sum the entire row. The
mean is caleulated from the sum and stored as the output
pixel Red channel.

The second rendering pass subtracts the previously com-
puted mean from all elements of the texture. Conveniently,
while the rendering kernel has changed, the texiures remain
in memory, allowing the new computational kernel to com-
pute the new texture values from the data still on the GPU.

The computation of the Cimages and mi_images resulis
are the most complicated kernels. They require hoth the dot-
product of the newly mean-subtracted b[] with another ma-
trix, a[], and a dot-product of b[] with itself. The difference
fimages and mf_images is a collection of scalar operations,

The interesting and problematic aspect of these finul re-
sults 1s that they both share the results of the two dot
products, which are the most data intensive computations
of the entire pixel loop. However, because of the single-
result restriction of the GPU, the products must be calcu-
lated twice. This is highly wasteful, Feasibly, the dot prod-
ucts could be calculated first and then stored for use in cal-
culating the final results independently. Ir is currently un-
clear if the overhead cost of the two additional rendering
passes would outweigh the cost of recomputing the dot-
products.

5.3 Results

We have implemented the main pixel loop of the
matched filter on a NVIDIA GeForce 7900 GTX, in an In-
tel Pentium D 2.8 GHe with 2 GB RAM. For the input_5 bin
dataset, which contains a single datacube and 5 signatures,
the CPU-only time is 33 seconds. Of this time, about 6
seconds is required for pre-processing, and then & seconds
per signature. The preprocessing stage includes reading and
transposing the input data cube.

The GeForce 7900 GTX implementation for the same
dataset requires only 12 seconds. almost a 3x improvement.
Because only the pixel loop has been moditfied, the 6 sec-
ond pre-processing time remains constant. In the pixel loop,
however, each signature now only requires aboul one sec-
ond. For large signature databases, this means that the sig-



nature throughput will approach a 6x speedup over the mi-
croprocessor implementation.

5.4 Remaining Work

54.1 Floating Point Inconsistencies in Results

There are some interesting inconsistencies in the resulis that
we are still exploring. The GPU results largely match the
CPU results to several decimal places. However, in some
cases the results are up o 0.9 in error. This sort of error is
rare (perhaps one in 10,000 results) bul they do occur. We
have exccuted the code on various platforms and thus var
ious implementations of floating point, and no errors have
heen ohserved that approach the differences between a CPU
and GPU implementation.

There was some suspicion that the limited use of double-
precision operands in the microprocessor implementation
could have caused some of the differences, The GeForce
7900 only suppons single precision floating point, b
reducing the few double-precision operands to single-
precision did not move the CPU results toward the GPU
resulis,

In the following table, any result with an error larger than
0.1 15 recorded for the first row and the first few signatures;

Sig Col | GPU__ CPU

0 57 | 5507 5.650 |

0 396 | 6591 6.703

I 178 | 6032 6146

2179 | -4.846 -5.540
|| 2 673 ) 1738 1617 |
| 2

It should be clear that there is no particular pattern - the
errors do not accur on the same columns, or n the same
number for each signature. This is an issue that needs to be
resolved.

54.2 Additional Improvements to the Approach

We are interested in exploring vanous improvements to the
GPU design. The time to implement the improvements is
one constraint that has limited our ability to explore the de-
sign space. It will also be useful to more carefully eval-
uate the likely effectiveness of some of the more complex
changes before they are actually implemented.

The following list orders potential changes from the
highest and most likely 1o be profitable to the least

« Block signature execution - currently, a single column
is rendered, During the operation of the maiched fil-
ter, a hyper-spectral datacube is reduced o a single 2-
D frame for each signature. Rendering a single col-
umn is an effective way of generating results without

resorting to large-strided cache-unfriendly 3-D matrix
representations. If a complete result frame for a single
signature 15 produced, there is no allernative.

However, we have noticed that there is some opportu-
nity for data reuse as well as an efficient data represen-
tation if signatures are processed in parallel instead of
the pixel-level parallelism that we are currently using.
In this mode, @ row is computed in parallel for a block
of signatures. This should allow the GPL instruction
scheduler to be exiract more parallelism.

6 Results

We have implemented the matched filter on a variety of
platforms. In each system, our objective was 1o produce a
system that is reasonable for production use, This largely
means that a CPU, bus interfaces, power supplies, and in-
volved support hardware are included in all of the perfor
mance measurements.

We have considered several performance metrics.
Speedup compared to the CPU implementation is the pri-
mary metric, as throughput per signatures is a primary de-
ciding factor when data volumes are high. Cost and power
are secondary factors, Cost is often an object, after all, and
for large data volumes the difference in price belween a
commodity GPU retailing for roughly $500 and an S8,000
IBM Cell processor board from Mercury Computing [3).
The cost of GPUs, FPOA, and Cell-based systems also must
include the price of a host machine that can support the add-
on board, The ideal approach for large data centers is
maximize the speedup per cost, captured in the second to
last column,

Power is of utmost concern in embedded systems. While
we are only concerned with a basic matched filter kernel, a
more ¢laborate system would perform the matched filter on
the embedded system and then only transmit the interesting
bits to the base station. This is an appropriate approach for
satellite or aerial reconaissance, In these situations, power
is measurement of instantaneous power when the system
is active. Of course, because the add-on cards provide an
increase in time performance, the system could feasible be
shut off for some percentage of the time, so energy — (Lime
¥ power) - is a useful metric. We capture energy in the form
of speedup/watt, the final column of the table.

Our results for the vanous implementations are listed Ta-
ble 6. The results are normalized against an Opteron 2.8
GHz with 2 GB RAM and a 15k RPM SATA harddrive. In
all situations, the tming results are based on the average
of several runs of the filter. The highest speedup we post.
12.4% over the CPU, is for the IBM Cell processor. This is
for the first version of the Cell, running at xx GHaz.

In terms of speedup per dollar, the GeForee 7900 GTX
GPLT far outstrips its competition, Because the GPL 15 a



commaodity add-on card that is sold in vast numbers, its
price is very reasonable compared to the more esoteric
FPGA and Cell co-processors. The value of the GPU in
performance per dollar is orders of magnitude faster than
the Cell.

The FPGA does not fare well in the comparisons. Be-
cause only the dot-product was implemented on the FPGA,
the maximum possible speedup over the sofware version
wis 2x. We have achieved nearly that through extensive
parallelism, but are limited by the difficulty of implement-
ing the more control intensive and scalar operations of the
filter.

7. Conclusions

In this work, we evaluated the performance of a matched
filter algorithm implementation on accelerated co-processor
(XD 10007, the IBM Cell microprocessor, and the NVIDIA
Gelorce 6900 GTX GPU graphics card.

We found the FPGA-based implementation to be highly
scalable and very effective at calculating the dot-product
portion of the computation in parallel, but ultimately found
Amdahl’s law o be a limiting factor.

The Cell proved to be the highest performing solution
from a time and throughput perspective. The Cell imple-
ments vector processors that easily map the matched filter,
as well as the miscellaneous scalar operations and setup data
transfer,

The GeForce 73N GTX GPU co-processor was found to
be the highest value in terms of performance per dollar. The
GPU also maps the vectorizable filter computations easily,
but requires more elaborate software design as the devices
are meant for graphics-centric applications and not general
purpose computation.
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Implementation | Speedup over CPU  Time per Signature  Cost  Power Speedup/k  Speedup/mWatt
FPGA 2.1 12sec SI0000 350 W 02 3
GPu 6.2 1.0 sec $2550 350W 26 k!
Cell 124 0.5 sec FEO00 35S W 1.55 3
cru 1 6.2 sec 52000 300W 0.5 3
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