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ABSTRACT

The differential operator perturbation tech-
nique has been incorporated into the Monte.

Carlo N-Particle transport code MCNP™
[1] and will become a standard feature of
future releases. This feature includes first
and/or second order terms of the Taylor
Series expansion for response perturbations
related to cross-section data (i.e., density,
composition, etc.). Criticality analyses can
benefit from this technique in that predicted
changes in the track-length tally estimator of
Kefr may be obtained for multiple perturba-
tions in a single run. A key advantage of this
method is that a precise estimate of a small
change in response (i.e., < 1%) is easily
obtained. This technique can also offer
acceptable accuracy, to within a few percent,
for up to 20-30% changes in a response.

INTRODUCTION

As given by the Taylor Series expansion, the
evaluation of response sensitivities to cross-
section data involves finding the ratio of the
change in response to the infinitesimal
change in the data. In deterministic methods,
this ratio is approximated by performing two
calculations, one with the original data and

. MCNP is a trademark of the Regents of the Uni-
versity of California, Los Alamos National Labo-
ratory.

one with the perturbed-data. This approach is
useful even when the magnitude ‘of the per-
turbation becomes. very small. In Monte
Carlo methods, however, this approach fails

as the magnitude of the perturbation
becomes small due to the uncertainty associ-
ated with the response. For this reason, the
differential operator technique was devel-
oped. '

The differential operator perturbation
technique as applied to the Monte Carlo
method was introduced in the early 1970’s
[2]. Nearly a decade after its introduction,
this technique was applied to perturbations
in cross-section data by Hall [3,4] and later
Rief [S5]. A rudimentary implementation into
the Monte Carlo transport code MCNP fol-
lowed shortly thereafter [6]. With an
enhancement of the user interface and the
addition of second order effects, this imple-
mentation has evolved into a standard fea-
ture of future MCNP releases.

In the following sections, the theory of
this technique is reviewed, an overview of

the MCNP user interface is given, and results
for two criticality applications are presented.

DIFFERENTIAL OPERATOR
TECHNIQUE

Derivation Of The Operator



In the differential operator approach, a
change in the Monte Carlo response c, due to
changes in the related data set (represented
by the parameter v) is given by a Taylor
series expansion
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where the n™ order coefficient, u,, is given

by
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which can be written as
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where Ky(h) is some constant, B repre-
sents a set of macroscopic cross-sections,
and H represents a set of energies or an
energy interval. For a track based re-
sponse estimator

¢ = 2hd;
j

where t; is the response estimator and qj
is the probab111ty of path segment (path
segment j is comprised of segment j-1
plus the current track). Equation (1) be-
comes
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With some manipulations presented in
Reference [6], the path segment estima-
tor of equation (2) can be converted to a

particle history estimator
un= 2 Vmp i

where V;; is the nt® order coefficient esti-
mator for the i hlstory and is given by

1
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Note this sum involves only those path
segments j’ in particle history i. Equation
(3) shows how the history estimator for
the n't order coefficient can be comput-
ed from the track (or path segment)

based operator . The Monte Carlo ex-
pected value of un becomes

<un) = NZ Vm

= A—,ln-!;(;v,,,-tf) )

for a sample of N particle histories.
Computing the n'"* order differential op-
erator Yy follows.

First Order

For a first order perturbation, the differ-
ential operator becomes

BRI E

assuming the response estimator tj is not a
function of xy(h). The path segment proba-

bility can be written as the product of track
probabilities

m
9; = Hrk
k=0

where ry is the probability of track k and
segment j contains m+1 tracks. In terms



of tracks, the operator becomes
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Defining track probabilities, ry, in terms
of Monte Carlo transport parameters 1s
the final step of this derivation. If the k!

track starts with a neutron undergoing
reaction type “a” atenergy E’ and is scat-
tered from angle 8’ to angle 6 and E, con-

tinues for a length A, and collides, then
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where x,(E’) is the macroscopic reaction
cross-section at energy E’, xp(E’) is the
total cross-section at energy E’, and
P,(E’->E;0’->0)dEd® is the probability
distribution function in phase space of
the emerging neutron. Equation (5) be-
comes

Bjk =Z Z (Shb‘aba_—
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where 3,g and 3§y, are unity if h=E and
b=a, otherwise they vanish. Similarly for
other types of tracks (ie., collision to
boundary, boundary to collision, and
boundary to boundary), leading to one
or more of these four terms. Finally,

combining equations (4) and (5) gives
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where B is calculated from one or more
terms oi! equation (8) for track k.

Second Order

For a second order perturbation, the dif-
ferential operator becomes

2
2
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again assuming the response estimator tj is
not a function of xy(h). Omitting steps pre-

sented in Reference [7], the second order
operator becomes

2,( k)+(ZB,kJ2
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It is evident that y,; requires little additional
effort to v);, namely the computation of Oy
If . is given by equation (7), then Ok
becomes
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Once again, for other types of tracks one
or more of these four terms is required.
The second order coefficient estimator,
given by equation (4), becomes
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MOCNP USER INTERFACE

General Description

The PERT card allows the user to make per-
turbations in cell material density, composi-
tion, or cross-section data. Using the
differential operator technique, the perturba-
tion estimates are made without actually
changing the input material specifications.
Multiple perturbations can be applied in the
same run, each specified by a separate PERT
card. There is no limit to the number of per-
turbations, since dynamic memory is used
for perturbation storage. The entire tally out-
put is repeated for each perturbation, giving
the estimated differential change in the tally
or alternately this change added to the unper-
turbed tally (see the METHOD keyword).
Perturbations to the K¢ estimator can be
made by use of a track-length tally estimate
of Kqg. The CELL keyword and either the

MAT or RHO keyword are required.

PERT Card Keywords

CELL - The entry(s) following this keyword
indicate which cells are perturbed.

MAT - The entry following this keyword
specifies the perturbation material number,
which must have a corresponding M card.
Composition changes can only be made
through the use of this keyword.

RHO - Specifies the perturbed density of the
cells listed after the CELL keyword.

METHOD - This keyword specifies the
number of terms to include in the perturba-
tion estimate.

1 - include 1% and 2™ order (default)
2 - include only 1% order

3 - include only 2™ order
A positive entry produces perturbation tallies

which give the estimated differential change
in the unperturbed tally (default). A negative
entry generates perturbation tallies such that
this change is added to the unperturbed tally.
The ability to produce first and second order
terms separately enables the user to deter-
mine the significance of including the sec-
ond-order estimator for subsequent runs.

ERG - The two entries following this key-
word specify an energy range in which the
perturbation is applied. The default range in-
cludes all energies.

RXN - The entries following this keyword
must be ENDF/B reaction types that identify
one or more cross-sections to perturb. This
keyword allows the user to perturb a specific
cross-section of a single nuclide in a materi-
al, as well as to perturb a set of cross-sec-
tions for all nuclides in a material. The
default is the total cross-section.

APPLICATION RESULTS

Ten test problems were developed to validate
the accuracy of the differential operator tech-
nique in MCNP. These problems were taken
from the MCNP 25 problem test set and
included eight fixed-source problems (neu-
tron, photon, and coupled), as well as two
criticality problems [7]. Perturbation results
for the criticality problems follow.

First Problem

This problem is INP09 from the MCNP
test set and is comprised of a cubic shaped
piece of 235y (see Figure 1). The cube is
approximately 10 cm on each side and is
centered at the origin. It has two rectangular
pieces of copper within it and a cone shape
hole extending through it. A sphere of air
extending 20 cm in radius from the origin
surrounds the cube. The density of this air

was increased from .0lg/cc to .6, .8, 1.5, 2,
and 3 g/cc, which effectively increased the



track-length tally of K. (Tally 14) by 7%,
9%, 16%, 21%, and 30%, respectively.

Fig. 1. A view of criticality problem INPQ9,
. showing the 235U cube, copper plates, and
conical hole.

Table I lists the actual and predicted per-
cent changes to Tally 14, along with their rel-
ative errors. The actual changes were
calculated by performing separate MCNP
runs and correctly combining their relative
errors. The predicted changes were calcu-
lated all within a single run using five appro-

priate PERT cards. Figure 2 plots these

results and indicates the accuracy of this
method (first and second order) is acceptable
up to 10-15% changes in K. The deviation
from the actual changes is most likely due to
changes in the shape of the eigenfunction
which is currently not accounted for.

Table I. Actual and predicted values of K¢
for perturbations in air density of INP09.

, . Air Density (g/ec)
O 06 08 15 20 30

Actual -
ﬁ;ﬁ( 1.009 |1.078 |1.100 }1.175{1.223 | 1.308
Rel. Error|.0001 |.0015 |.0017 [.0021 |.0022 {.0025

%Change|  |6.81 [8.94

16.4121.14[29.56

Rel. Error 0219 |.0189 [.0127.0103 |.0084
Predicted
ARy 0837 |.1121 |.2114 |.2823 | 4241
Rel. Brrof 0167 |.0221 |.0411 |.0547 |.0820
% Change 829 [11.11 [20.95[27.97 |42.02
Rel. Error 0167 |.0221 |.0411 |.0547 |.0820
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Fig. 2. Actual and predicted percent change
in K¢ versus air density for INP09.



Second Problem

This problem is INP18 from the MCNP
test set and is comprised of a hexagonal
prism lattice in the shape of a cylindrical
reactor (see figure 3). It is cut in half and
uses a reflective plane for simplification. The
fuel is 70% enriched uranium in the shape of
cylindrical rods. The clad on the fuel is a
mixture of zirconium and niobium with a
inner liner of tungsten. Inside the clad, water
blankets the fuel for cooling. Water is also
used as the moderator and heat transfer agent
for the reactor outside the fuel rods. There
are three half control rods and five whole
ones, made of !B, !!B, and carbon. The
control rods are encased in the same zirco-
nium and niobium clad as the fuel, but with-
out a liner. The sheath for the control rod is
also made of zirconium and niobium and has
water that traverses between the sheath and
clad. The water is a mixture of heavy and
light water. The water density was increased
from 1 g/cc to 2, 3, 4, and 6 g/cc, which
increased the track-length tally of K¢ (Tally
. 14) by 9%, 15%, 21%, and 30%, respec-
tively.

Fig. 3. A view of criticality problem INP18,
showing the triangular pitched fuel rods,
moderator, and control rods.

Table II lists the actual and predicted per-
cent changes to Tally 14, along with their rel-
ative errors.  Once again, the predicted
changes were calculated all within a single
run using four appropriate PERT cards. Fig-
ure 4 plots this data and indicates the accu-
racy is quite good up to 20-25% changes in

Keff-

Table II. Actual and predicted values of K¢
for perturbations in water density of INP18.

\j&a'tefiljehsity (g/co) -

10 - 26 3.0 - 490 6.0
Aptna¥ T
Keﬂ:f“ 1.037 |1.126 |1.195 [1.253 [1.344
Rel. Error |.0003 |.0016 |.0016 |.0016 |.0018
% Change 8.60 {1520 [20.81 [29.59
Rel. Error 0183 [.0103 {.0075 |.0060
Predlcted
ARg - 0954 [.1669 |2144 |.2376
Rel. Error 0186 |.0349 [0581 |.1410
%éhangé 9.20 (16.10 |20.68 [22.92
Rel. Exror 0186 [.0349 [.0581 {.1410

L] kY s . 14
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Fig. 4. Actual and predicted percent change
in K¢ versus air density for INP18.



CONCLUSIONS

The differential operator perturbation tech-
nique implemented into future versions of
MCNP will provide the radiation transport
analyst with a powerful tool for estimating
the effect of multiple perturbations within a
single run. This technique has shown to pro-

vide adequate accuracy for up to 20-30%
changes in a response for fixed-source prob-
lems and up to 10-20% changes in K for
criticality problems.
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