Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information
  1. Quantitative Representativeness and Constituency of the Long-Term Agroecosystem Research Network and Analysis of Complementarity with Existing Ecological Networks

    Studies conducted at sites across ecological research networks usually strive to scale their results to larger areas, trying to reach conclusions that are valid throughout larger enclosing regions. Network representativeness and constituency can show how well conditions at sampling locations represent conditions also found elsewhere and can be used to help scale-up results over larger regions. Multivariate statistical methods have been used to design networks and select sites that optimize regional representation, thereby maximizing the value of datasets and research. However, in networks created from already established sites, an immediate challenge is to understand how well existing sites represent the range of environments in the whole area of interest. We performed an analysis to show how well sites in the USDA Long-Term Agroecosystem Research (LTAR) Network represent all agricultural working lands within the conterminous United States (CONUS). Our analysis of 18 LTAR sites, based on 15 climatic and edaphic characteristics, produced maps of representativeness and constituency. Representativeness of the LTAR sites was quantified through an exhaustive pairwise Euclidean distance calculation in multivariate space, between the locations of experiments within each LTAR site and every 1 km cell across the CONUS. Network representativeness is from the perspective of all CONUS locations, but we also considered the perspective from each LTAR site. For every LTAR site, we identified the region that is best represented by that particular site—its constituency—as the set of 1 km grid locations best represented by the environmental drivers at that particular LTAR site. Representativeness shows how well the combination of characteristics at each CONUS location was represented by the LTAR sites’ environments, while constituency shows which LTAR site was the closest match for each location. LTAR representativeness was good across most of the CONUS. Representativeness for croplands was higher than for grazinglands, probably because croplands have more specific environmental criteria. Constituencies resemble ecoregions but have their environmental conditions “centered” on those at particular existing LTAR sites. Constituency of LTAR sites can be used to prioritize the locations of experimental research at or even within particular sites, or to identify the extents that can likely be included when generalizing knowledge across larger regions of the CONUS. Sites with a large constituency have generalist environments, while those with smaller constituency areas have more specialized environmental combinations. These “specialist” sites are the best representatives for smaller, more unusual areas. The potential of sharing complementary sites from the Long-Term Ecological Research (LTER) Network and the National Ecological Observatory Network (NEON) to boost representativeness was also explored. LTAR network representativeness would benefit from borrowing several NEON sites and the Sevilleta LTER site. Later network additions must include such specialist sites that are targeted to represent unique missing environments. While this analysis exhaustively considered principal environmental characteristics related to production on working lands, we did not consider the focal agronomic systems under study, or their socio-economic context.

  2. Neural message-passing for objective-based uncertainty quantification and optimal experimental design

    Various real-world scientific applications involve the mathematical modeling of complex uncertain systems with numerous unknown parameters. Accurate parameter estimation is often practically infeasible in such systems, as the available training data may be insufficient and the cost of acquiring additional data may be high. In such cases, based on a Bayesian paradigm, we can design robust operators retaining the best overall performance across all possible models and design optimal experiments that can effectively reduce uncertainty to enhance the performance of such operators maximally. While objective-based uncertainty quantification (objective-UQ) based on MOCU (mean objective cost of uncertainty) provides an effective means for quantifying uncertainty in complex systems, the high computational cost of estimating MOCU has been a challenge in applying it to real-world scientific/engineering problems. In this work, we propose a novel scheme to reduce the computational cost for objective-UQ via MOCU based on a data-driven approach. We adopt a neural message-passing model for surrogate modeling, incorporating a novel axiomatic constraint loss that penalizes an increase in the estimated system uncertainty. As an illustrative example, we consider the optimal experimental design (OED) problem for uncertain Kuramoto models, where the goal is to predict the experiments that can most effectively enhance robust synchronization performance through uncertainty reduction. We show that our proposed approach can accelerate MOCU-based OED by four to five orders of magnitude, without any visible performance loss compared to the state-of-the-art. The proposed approach applies to general OED tasks, beyond the Kuramoto model.

  3. Sensitivity Analysis of Genome-Scale Metabolic Flux Prediction

    TRIMER, Transcription Regulation Integrated with MEtabolic Regulation, is a genome-scale modeling pipeline targeting at metabolic engineering applications. Using TRIMER, regulated metabolic reactions can be effectively predicted by integrative modeling of metabolic reactions with a Transcription Factor (TF)-gene regulatory network (TRN), which is modeled via a Bayesian network (BN). In this paper, we focus on sensitivity analysis of metabolic flux prediction for uncertainty quantification of BN structures for TRN modeling in TRIMER. We propose a computational strategy to construct the uncertainty class of TRN models based on the inferred regulatory order uncertainty given transcriptomic expression data. With that, we analyze the prediction sensitivity of the TRIMER pipeline for the metabolite yields of interest. The obtained sensitivity analyses can guide Optimal Experimental Design (OED) to help acquire new data that can enhance TRN modeling and achieve specific metabolic engineering objectives, including metabolite yield alterations. Here we have performed small- and large-scale simulated experiments, demonstrating the effectiveness of our developed sensitivity analysis strategy for BN structure learning to quantify the edge importance in terms of metabolic flux prediction uncertainty reduction and its potential to effectively guide OED.

  4. Pickaxe: a Python library for the prediction of novel metabolic reactions

    Biochemical reaction prediction tools leverage enzymatic promiscuity rules to generate reaction networks containing novel compounds and reactions. The resulting reaction networks can be used for multiple applications such as designing novel biosynthetic pathways and annotating untargeted metabolomics data. It is vital for these tools to provide a robust, user-friendly method to generate networks for a given application. However, existing tools lack the flexibility to easily generate networks that are tailor-fit for a user’s application due to lack of exhaustive reaction rules, restriction to pre-computed networks, and difficulty in using the software due to lack of documentation. Here we present Pickaxe, an open-source, flexible software that provides a user-friendly method to generate novel reaction networks. This software iteratively applies reaction rules to a set of metabolites to generate novel reactions. Users can select rules from the prepackaged JN1224min ruleset, derived from MetaCyc, or define their own custom rules. Additionally, filters are provided which allow for the pruning of a network on-the-fly based on compound and reaction properties. The filters include chemical similarity to target molecules, metabolomics, thermodynamics, and reaction feasibility filters. Example applications are given to highlight the capabilities of Pickaxe: the expansion of common biological databases with novel reactions, the generation of industrially useful chemicals from a yeast metabolome database, and the annotation of untargeted metabolomics peaks from an E. coli dataset. Pickaxe predicts novel metabolic reactions and compounds, which can be used for a variety of applications. This software is open-source and available as part of the MINE Database python package (https://pypi.org/project/minedatabase/) or on GitHub (https://github.com/tyo-nu/MINE-Database). Documentation and examples can be found on Read the Docs (https://mine-database.readthedocs.io/en/latest/). Through its documentation, pre-packaged features, and customizable nature, Pickaxe allows users to generate novel reaction networks tailored to their application.

  5. Reinforcement Learning Environment for Cyber-Resilient Power Distribution System

    Recently, numerous data-driven approaches to control an electric grid using machine learning techniques have been investigated. Reinforcement learning (RL)-based techniques provide a credible alternative to conventional, optimization-based solvers especially when there is uncertainty in the environment, such as renewable generation or cyber system performance. Efficiently training an agent, however, requires numerous interactions with an environment to learn the best policies. There are numerous RL environments for power systems, and, similarly, there are environments for communication systems. Most cyber system simulators are based in a UNIX environment, while the power system simulators are based in the Windows operating system. Hence the generation of a cyber-physical, mixed-domain RL environment has been challenging. Existing co-simulation methods are efficient but are resource and time intensive to generate large-scale data sets for training RL agents. Hence, this work focuses on the development and validation of a mixed-domain RL environment using OpenDSS for the power system and leveraging a discrete event simulator Python package, SimPy for the cyber system, which is operating system agnostic. Further, we present the results of co-simulation and training RL agents for a cyber-physical network reconfiguration and Volt-Var control problem in a power distribution feeder.

  6. Using Artificial Neural Networks to Predict Physical Properties of Membrane Polymers

    Membrane polymers are a promising technology for use in many challenging gas separation applications. Here, the techniques of computer-aided molecular design can be used to search through the massive molecular space of heteropolymers and develop a set of likely candidate repeat units matching specific physical property targets. However, reasonably accurate property prediction algorithms are needed, but these algorithms must be very fast in order to be combined with an optimization framework. Artificial neural networks (ANNs), a branch of machine learning, are applied in this work to predict the physical properties of polymers. All of the physical properties investigated were found to be predicted by ANNs with R2 scores exceeding 0.82.

  7. Wind turbine blade design with airfoil shape control using invertible neural networks

    Wind turbine blade design is a highly multidisciplinary process that involves aerodynamics, structures, controls, manufacturing, costs, and other considerations. More efficient blade designs can be found by controlling the airfoil cross-sectional shapes simultaneously with the bulk blade twist and chord distributions. Prior work has focused on incorporating panel-based aerodynamic solvers with a blade design framework to allow for airfoil shape control within the design loop in a tractable manner. Including higher fidelity aerodynamic solvers, such as computational fluid dynamics, makes the design problem computationally intractable. In this work, we couple an invertible neural network trained on high-fidelity airfoil aerodynamic data to a turbine design framework to enable the design of airfoil cross sections within a larger blade design problem. We detail the methodology of this coupled framework and showcase its efficacy by aerostructurally redesigning the IEA 15-MW reference wind turbine blade. The coupled approach reduces the cost of energy by 0.9% compared to a more conventional design approach. This work enables the inclusion of high-fidelity aerodynamic data earlier in the design process, reducing cycle time and increasing certainty in the performance of the optimal design.

  8. A machine learning approach to water quality forecasts and sensor network expansion: Case study in the Wabash River Basin, United States

    Midwestern cities require forecasts of surface nitrate loads to bring additional treatment processes online or activate alternative water supplies. Concurrently, networks of nitrate monitoring stations are being deployed in river basins, co-locating water quality observations with established stream gauges. However, tools to evaluate the future value of expanded networks to improve water quality forecasts remains challenging. Here, we construct a synthetic data set of stream discharge and nitrate for the Wabash River Basin—one of the United States’ most nutrient polluted basins—using the established Agro-IBIS and THMB models. Synthetic data enables rapid, unbiased and low-cost assessment of potential sensor placements to support management objectives, such as near-term forecasting. Using the synthetic data, we established baseline 1-day forecasts for surface water nitrate at 12 cities in the basin using support vector machine regression (SVMR; RMSE 0.48–3.3 ppm). Next, we used the SVMRs to evaluate the improvement in forecast performance associated with deployment of additional nitrate sensors. We identified the optimal sensor placement to improve forecasts at each city, and the relative value of sensors at each candidate location. Finally, we assessed the co-benefit realized by other cities when a sensor is deployed to optimize a forecast at one city, finding significant positive externalities in all cases. Ultimately, our study explores the potential for machine learning to make near-term predictions and critically evaluate the improvement realized by expanding a monitoring network. While we use nitrate pollution in the Wabash River Basin as a case study, this approach could be readily applied to any problem where the future value of sensors and network design are being evaluated.

  9. $$\mathrm{IH}$$-$$\mathrm{GAN}$$: A conditional generative model for implicit surface-based inverse design of cellular structures

    Variable-density cellular structures can overcome connectivity and manufacturability issues of topologically optimized structures, particularly those represented as discrete density maps. However, the optimization of such cellular structures is challenging due to the multiscale design problem. Past work addressing this problem generally either only optimizes the volume fraction of single-type unit cells but ignoring the effects of unit cell geometry on properties, or considers the geometry–property relation but builds this relation via heuristics. In contrast, we propose a simple yet more principled way to accurately model the property to geometry mapping using a conditional deep generative model, named Inverse Homogenization Generative Adversarial Network (IH-GAN). It learns the conditional distribution of unit cell geometries given properties and can realize the one-to-many mapping from properties to geometries. Here we further reduce the complexity of IH-GAN by using the implicit function parameterization to represent unit cell geometries. Results show that our method can 1) generate various unit cells that satisfy given material properties with high accuracy (R2-scores between target properties and properties of generated unit cells >98%) and 2) improve the optimized structural performance over the conventional variable-density single-type structure. In the minimum compliance example, our IH-GAN generated structure achieves a 79.7% reduction in concentrated stress and an extra 3.03% reduction in displacement. In the target deformation examples, our IH-GAN generated structure reduces the target matching error by 86.4% and 79.6% for two test cases, respectively. We also demonstrated that the connectivity issue for multi-type unit cells can be solved by transition layer blending.

  10. Netostat: analyzing dynamic flow patterns in high-speed networks

    Understanding flow traffic patterns in networks, such as the Internet or service provider networks, is crucial to improving their design and building them robustly. However, as networks grow and become more complex, it is increasingly cumbersome and challenging to study how the many flow patterns, sizes and the continually changing source-destination pairs in the network evolve with time. Here, we present Netostat, a visualization-based network analysis tool that uses visual representation and a mathematics framework to study and capture flow patterns, using graph theoretical methods such as clustering, similarity and difference measures. Netostat generates an interactive graph of all traffic patterns in the network, to isolate key elements that can provide insights for traffic engineering. We present results for U.S. and European research networks, ESnet and GEANT, demonstrating network state changes, to identify major flow trends, potential points of failure, and bottlenecks.


Search for:
All Records
Subject
network design

Refine by:
Resource Type
Availability
Publication Date
  • 1966: 1 results
  • 1967: 0 results
  • 1968: 3 results
  • 1969: 0 results
  • 1970: 0 results
  • 1971: 2 results
  • 1972: 0 results
  • 1973: 0 results
  • 1974: 0 results
  • 1975: 0 results
  • 1976: 0 results
  • 1977: 3 results
  • 1978: 3 results
  • 1979: 3 results
  • 1980: 5 results
  • 1981: 6 results
  • 1982: 6 results
  • 1983: 4 results
  • 1984: 1 results
  • 1985: 1 results
  • 1986: 2 results
  • 1987: 4 results
  • 1988: 5 results
  • 1989: 9 results
  • 1990: 6 results
  • 1991: 6 results
  • 1992: 4 results
  • 1993: 3 results
  • 1994: 3 results
  • 1995: 4 results
  • 1996: 11 results
  • 1997: 5 results
  • 1998: 3 results
  • 1999: 4 results
  • 2000: 2 results
  • 2001: 1 results
  • 2002: 1 results
  • 2003: 0 results
  • 2004: 1 results
  • 2005: 1 results
  • 2006: 2 results
  • 2007: 3 results
  • 2008: 4 results
  • 2009: 3 results
  • 2010: 4 results
  • 2011: 6 results
  • 2012: 2 results
  • 2013: 2 results
  • 2014: 1 results
  • 2015: 3 results
  • 2016: 5 results
  • 2017: 3 results
  • 2018: 3 results
  • 2019: 2 results
  • 2020: 6 results
  • 2021: 7 results
  • 2022: 6 results
  • 2023: 5 results
  • 2024: 9 results
  • 2025: 2 results
1966
2025
Author / Contributor
Research Organization