Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information
  1. Partial-Brain Radiation-Induced Microvascular Cognitive Impairment in Juvenile Murine Unilateral Hippocampal Synaptic Plasticity

    Radiation-induced cognitive deficits have a severe negative impact on pediatric brain tumor patients. The severity of cognitive symptoms is related to the age of the child when radiation was applied, with the most severe effects seen in the youngest. Previous studies using whole-brain irradiation in mice confirmed these findings. To understand ipsilateral and contralateral changes in the hippocampus after partial-brain radiation therapy (PBRT) of the left hemisphere, we assessed the neuroplasticity and changes in the microvasculature of the irradiated and nonirradiated hippocampus in juvenile mice.

  2. Msx1-modulated muscle satellite cells retain a primitive state and exhibit an enhanced capacity for osteogenic differentiation

    Multipotent muscle satellite cells (MuSCs) have been identified as potential seed cells for bone tissue engineering. However, MuSCs exhibit a rapid loss of stemness after in vitro culturing, thereby compromising their therapeutic efficiency. Muscle segment homeobox gene 1 (msx1) has been found to induce the dedifferentiation of committed progenitor cells, as well as terminally differentiated myotubes. In this study, a Tet-off retroviral gene delivery system was used to modulate msx1 expression. After ten passages, MuSCs that did not express msx-1 (e.g., the non-msx1 group) were compared with MuSCs with induced msx-1 expression (e.g., the msx1 group). The latter group exhibited a more juvenile morphology, it contained a significantly lower percentage of senescent cells characterized by positive β-galactosidase staining, and it exhibited increased proliferation and a higher proliferation index. Immunocytochemical stainings further detected a more primitive gene expression profile for the msx1 group, while osteogenic differentiation assays and ectopic bone formation assays demonstrated an improved capacity for the msx1 group to undergo osteogenic differentiation. These results suggest that transient expression of msx1 in MuSCs can retain a primitive state, thereby enhancing their capacity for osteogenic differentiation and restoring the potential for MuSCs to serve as seed cells for bone tissue engineering.

  3. Changes in Imaging and Cognition in Juvenile Rats After Whole-Brain Irradiation

    Purpose: In pediatric cancer survivors treated with whole-brain irradiation (WBI), long-term cognitive deficits and morbidity develop that are poorly understood and for which there is no treatment. We describe similar cognitive defects in juvenile WBI rats and correlate them with alterations in diffusion tensor imaging and magnetic resonance spectroscopy (MRS) during brain development. Methods and Materials: Juvenile Fischer rats received clinically relevant fractionated doses of WBI or a high-dose exposure. Diffusion tensor imaging and MRS were performed at the time of WBI and during the subacute (3-month) and late (6-month) phases, before behavioral testing. Results: Fractional anisotropy in the splenium of the corpus callosum increased steadily over the study period, reflecting brain development. WBI did not alter the subacute response, but thereafter there was no further increase in fractional anisotropy, especially in the high-dose group. Similarly, the ratios of various MRS metabolites to creatine increased over the study period, and in general, the most significant changes after WBI were during the late phase and with the higher dose. The most dramatic changes observed were in glutamine-creatine ratios that failed to increase normally between 3 and 6 months after either radiation dose. WBI did not affect the ambulatory response to novel open field testing in the subacute phase, but locomotor habituation was impaired and anxiety-like behaviors increased. As for cognitive measures, the most dramatic impairments were in novel object recognition late after either dose of WBI. Conclusions: The developing brains of juvenile rats given clinically relevant fractionated doses of WBI show few abnormalities in the subacute phase but marked late cognitive alterations that may be linked with perturbed MRS signals measured in the corpus callosum. This pathomimetic phenotype of clinically relevant cranial irradiation effects may be useful for modeling, mechanistic evaluations, and testing of mitigation approaches.

  4. Bisphenol A, bisphenol F and bisphenol S affect differently 5α-reductase expression and dopamine–serotonin systems in the prefrontal cortex of juvenile female rats

    Background: Early-life exposure to the endocrine disruptor bisphenol A (BPA) affects brain function and behavior, which might be attributed to its interference with hormonal steroid signaling and/or neurotransmitter systems. Alternatively, the use of structural analogs of BPA, mainly bisphenol F (BPF) and bisphenol S (BPS), has increased recently. However, limited in vivo toxicity data exist. Objectives: We investigated the effects of BPA, BPF and BPS on 5α-reductase (5α-R), a key enzyme involved in neurosteroidogenesis, as well as on dopamine (DA)- and serotonin (5-HT)-related genes, in the prefrontal cortex (PFC) of juvenile female rats. Methods: Gestating Wistar rats were treated with either vehicle or 10 μg/kg/day of BPA, BPF or BPS from gestational day 12 to parturition. Then, female pups were exposed from postnatal day 1 through day 21 (PND21), when they were euthanized and RT-PCR, western blot and quantitative PCR-array experiments were performed. Results: BPA decreased 5α-R2 and 5α-R3 mRNA and protein levels, while both BPF and BPS decreased 5α-R3 mRNA levels in PFC at PND21. Further, BPA, BPF and BPS significantly altered, respectively, the transcription of 25, 56 and 24 genes out of the 84 DA and 5-HT-related genes assayed. Of particular interest was the strong induction by all these bisphenols of Cyp2d4, implicated in corticosteroids synthesis. Conclusions: Our results demonstrate for the first time that BPA, BPF and BPS differentially affect 5α-R and genes related to DA/5-HT systems in the female PFC. In vivo evidence of the potential adverse effects of BPF and BPS in the brain of mammals is provided in this work, raising questions about the safety of these chemicals as substitutes for BPA. - Highlights: • Juvenile prefrontal cortex of female rats exposed to bisphenol A, F or S was analyzed. • We provide the first in vivo data of BPF and BPS effects in mammal brain. • BPA, BPF and BPS differently affected dopamine and serotonin-related genes. • 5α-reductase was found as a potential target for BPA action in juvenile female brain.

  5. SU-E-J-212: MR Diffusion Tensor Imaging for Assessment of Tumor and Normal Brain Tissue Responses of Juvenile Pilocytic Astrocytoma Treated by Proton Therapy

    Purpose: Diffusion tensor imaging (DTI) can measure molecular mobility at the cellular level, quantified by the apparent diffusion coefficient (ADC). DTI may also reveal axonal fiber directional information in the white matter, quantified by the fractional anisotropy (FA). Juvenile pilocytic astrocytoma (JPA) is a rare brain tumor that occurs in children and young adults. Proton therapy (PT) is increasingly used in the treatment of pediatric brain tumors including JPA. However, the response of both tumors and normal tissues to PT is currently under investigation. We report tumor and normal brain tissue responses for a pediatric case of JPA treated with PT assessed using DTI. Methods: A ten year old male with JPA of the left thalamus received passive scattered PT to a dose of 50.4 Gy (RBE) in 28 fractions. Post PT, the patient has been followed up in seven years. At each follow up, MRI imaging including DTI was performed to assess response. MR images were registered to the treatment planning CT and the GTV mapped onto each MRI. The GTV contour was then mirrored to the right side of brain through the patient’s middle line to represent normal brain tissue. ADC and FA were measured within the ROIs. Results: Proton therapy can completely spare contra lateral brain while the target volume received full prescribed dose. From a series of MRI ADC images before and after PT at different follow ups, the enhancement corresponding to GTV had nearly disappeared more than 2 years after PT. Both ADC and FA demonstrate that contralateral normal brain tissue were not affect by PT and the tumor volume reverted to normal ADC and FA values. Conclusion: DTI allowed quantitative evaluation of tumor and normal brain tissue responses to PT. Further study in a larger cohort is warranted.

  6. DNAJC6 promotes hepatocellular carcinoma progression through induction of epithelial–mesenchymal transition

    Highlights: • DNAJC6 is up-regulated in hepatocellular carcinoma tissues. • DNAJC6 promotes hepatocellular carcinoma cell proliferation and invasion. • DNAJC6 induces epithelial–mesenchymal transition by activating transforming growth factor β signaling. - Abstract: Epithelial–mesenchymal transition (EMT) is a developmental program, which is associated with hepatocellular carcinoma (HCC) development and progression. DNAJC6 (DNA/HSP40 homolog subfamily C member 6) encodes auxilin, which is responsible for juvenile Parkinsonism with phenotypic variability. However, the role of DNAJC6 in HCC development and progression is limited. Here, we report that DNAJC6 is up-regulated in HCC tissues and up-regulation of DNAJC6 expression predicts poor outcome in patients with HCC. Furthermore, overexpression of DNAJC6 enhances the ability for acquisition of mesenchymal traits, enhanced cell proliferation and invasion. DNAJC6 positively regulated expression of EMT-related transcription factor, also activating transforming growth factor β (TGF-β) pathway to contribute to EMT. Our findings demonstrated an important function of DNAJC6 in the progression of HCC by induction of EMT, and they implicate DNAJC6 as a marker of poor outcome in HCC.

  7. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1{sup Δchon} cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone.

  8. The Batten disease gene CLN3 confers resistance to endoplasmic reticulum stress induced by tunicamycin

    Highlights: • The work reveals a protective properties of CLN3 towards TM-induced apoptosis. • CLN3 regulates expression of the GRP78 and the CHOP in response to the ER stress. • CLN3 plays a specific role in the ERS response. - Abstract: Mutations in CLN3 gene cause juvenile neuronal ceroid lipofuscinosis (JNCL or Batten disease), an early-onset neurodegenerative disorder that is characterized by the accumulation of ceroid lipofuscin within lysosomes. The function of the CLN3 protein remains unclear and is presumed to be related to Endoplasmic reticulum (ER) stress. To investigate the function of CLN3 in the ER stress signaling pathway, we measured proliferation and apoptosis in cells transfected with normal and mutant CLN3 after treatment with the ER stress inducer tunicamycin (TM). We found that overexpression of CLN3 was sufficient in conferring increased resistance to ER stress. Wild-type CLN3 protected cells from TM-induced apoptosis and increased cell proliferation. Overexpression of wild-type CLN3 enhanced expression of the ER chaperone protein, glucose-regulated protein 78 (GRP78), and reduced expression of the proapoptotic protein CCAAT/-enhancer-binding protein homologous protein (CHOP). In contrast, overexpression of mutant CLN3 or siRNA knockdown of CLN3 produced the opposite effect. Together, our data suggest that the lack of CLN3 function in cells leads to a failure of management in the response to ER stress and this may be the key deficit in JNCL that causes neuronal degeneration.

  9. TNF/TNFR{sub 1} pathway and endoplasmic reticulum stress are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes

    Background and purpose: Quinolones cause obvious cartilaginous lesions in juvenile animals by chondrocyte apoptosis, which results in the restriction of their use in pediatric and adolescent patients. Studies showed that chondrocytes can be induced to produce TNFα, and the cisternae of the endoplasmic reticulum in quinolone-treated chondrocytes become dilated. We investigated whether TNF/TNFR{sub 1} pathway and endoplasmic reticulum stress (ERs) are involved in ofloxacin (a typical quinolone)-induced apoptosis of juvenile canine chondrocytes. Experimental approach: Canine juvenile chondrocytes were treated with ofloxacin. Cell survival and apoptosis rates were determined with MTT method and flow cytometry, respectively. The gene expression levels of the related signaling molecules (TNFα, TNFR{sub 1}, TRADD, FADD and caspase-8) in death receptor pathways and main apoptosis-related molecules (calpain, caspase-12, GADD153 and GRP78) in ERs were measured by qRT-PCR. The gene expression of TNFR{sub 1} was suppressed with its siRNA. The protein levels of TNFα, TNFR{sub 1} and caspase-12 were assayed using Western blotting. Key results: The survival rates decreased while apoptosis rates increased after the chondrocytes were treated with ofloxacin. The mRNA levels of the measured apoptosis-related molecules in death receptor pathways and ERs, and the protein levels of TNFα, TNFR{sub 1} and caspase-12 increased after the chondrocytes were exposed to ofloxacin. The downregulated mRNA expressions of TNFR{sub 1}, Caspase-8 and TRADD, and the decreased apoptosis rates of the ofloxacin-treated chondrocytes occurred after TNFR{sub 1}–siRNA interference. Conclusions and implications: Ofloxacin-induced chondrocyte apoptosis in a time- and concentration-dependent fashion. TNF/TNFR{sub 1} pathway and ERs are involved in ofloxacin-induced apoptosis of juvenile canine chondrocytes in the early stage. - Highlights: • Chondrocyte apoptosis is induced by ofloxacin in a time- and concentration-dependent manners. • TNF/TNFR{sub 1} pathway is involved in ofloxacin-induced apoptosis of chondrocytes in the early stage. • Endoplasmic reticulum stress is involved in ofloxacin-induced apoptosis of chondrocytes in the early stage.

  10. Preoperative Direct Puncture Embolization of Advanced Juvenile Nasopharyngeal Angiofibroma in Combination with Transarterial Embolization: An Analysis of 22 Consecutive Patients

    ObjectiveThis study was designed to evaluate the clinical application of preoperative auxiliary embolization for juvenile nasopharyngeal angiofibroma (JNA) by direct puncture embolization (DPE) of the tumor in combination with transarterial embolization (TAE). The study included 22 patients. An 18-gauge needle was used to puncture directly into the tumor, and 20-25 % N-butyl cyanoacrylate was injected under the guidance of fluoroscopy after confirming the placement of the needle into the JNA and no leaking into the surrounding tissue. Tumors were obstructed later via TAE. The supplying arteries of JNA were from branches of the internal carotid and external carotid arteries. Control angiography showed the obliteration of contrast stain in the entire tumor mass and the distal supplying arteries disappeared after DPE in combination with TAE. Surgical resection was performed within 4 days after embolization and none of the patients required blood transfusion. The use of DPE in combination with TAE was a safe, feasible, and efficacious method. It can devascularize effectively the JNAs and reduce intraoperative bleeding when JNAs are extirpated.


Search for:
All Records
Subject
JUVENILES

Refine by:
Resource Type
Availability
Publication Date
  • 1946: 1 results
  • 1947: 0 results
  • 1948: 0 results
  • 1949: 0 results
  • 1950: 0 results
  • 1951: 0 results
  • 1952: 0 results
  • 1953: 0 results
  • 1954: 0 results
  • 1955: 0 results
  • 1956: 0 results
  • 1957: 0 results
  • 1958: 0 results
  • 1959: 0 results
  • 1960: 0 results
  • 1961: 0 results
  • 1962: 1 results
  • 1963: 0 results
  • 1964: 0 results
  • 1965: 0 results
  • 1966: 0 results
  • 1967: 0 results
  • 1968: 0 results
  • 1969: 1 results
  • 1970: 3 results
  • 1971: 1 results
  • 1972: 0 results
  • 1973: 1 results
  • 1974: 1 results
  • 1975: 1 results
  • 1976: 20 results
  • 1977: 7 results
  • 1978: 11 results
  • 1979: 6 results
  • 1980: 7 results
  • 1981: 6 results
  • 1982: 3 results
  • 1983: 4 results
  • 1984: 6 results
  • 1985: 21 results
  • 1986: 20 results
  • 1987: 13 results
  • 1988: 17 results
  • 1989: 15 results
  • 1990: 28 results
  • 1991: 20 results
  • 1992: 19 results
  • 1993: 11 results
  • 1994: 9 results
  • 1995: 11 results
  • 1996: 10 results
  • 1997: 14 results
  • 1998: 11 results
  • 1999: 11 results
  • 2000: 19 results
  • 2001: 27 results
  • 2002: 38 results
  • 2003: 70 results
  • 2004: 51 results
  • 2005: 31 results
  • 2006: 37 results
  • 2007: 27 results
  • 2008: 35 results
  • 2009: 62 results
  • 2010: 24 results
  • 2011: 31 results
  • 2012: 19 results
  • 2013: 1 results
  • 2014: 4 results
  • 2015: 2 results
  • 2016: 1 results
  • 2017: 1 results
  • 2018: 0 results
  • 2019: 0 results
  • 2020: 0 results
  • 2021: 0 results
  • 2022: 1 results
1946
2022
Author / Contributor
Research Organization