Demonstration of Complete Recycling Processes of Reversible Epoxies Using Solar Energy Conversion
Reversible epoxies using the Diels–Alder chemistry enables recycling processes through depolymerizing the polymer at higher temperature and then repolymerizing upon cooling. Compared to conventional bulk heating, photothermal heating can save time and resource and, consequently, reduce costs to reach an elevated temperature for recycling processes of the reversible epoxies. In previous studies, self‐healing of cracks and reattachments of two broken pieces have been presented using a laser; however, recycling of a sample as a whole is not feasible by using such a point light source. Herein, complete recycling processes are demonstrated utilizing an area light source, i.e., sunlight. Reversible epoxies are incorporated with carbon black and refractory plasmonic titanium nitride nanoparticles (NPs). Under concentrated (10 times) sunlight, they can generate sufficient heat (≈140 °C) to completely liquefy, reprocess, and reshape the samples multiple times. Recycling processes are validated by evaluation of mechanical properties for each cycle. Using an integrated experimental and theoretical approach, photothermal performance is investigated in terms of the dispersion and loading of photothermal NPs in the matrix, as well as the sample thickness. In this study, an insight is provided into the design of polymer/photothermal nanomaterial composites which can be sustainably recycled using abundant solar energy.