skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. The DarkSide experiment aims to perform a background-free direct search for dark matter with a dual-phase argon TPC. The current phase of the experiment, DarkSide-50, is acquiring data at Laboratori Nazionali del Gran Sasso and produced the most sensitive limit on the WIMP-nucleon cross section ever obtained with a liquid argon target (2.0 × 10 -44 cm2 for a WIMP mass of 100 GeV/c 2). The future phase of the experiment will be a 20 t fiducial mass detector, designed to reach a sensitivity of ~1 × 10 -47 cm2 (at 1 TeV/c 2 WIMP mass) with a background-free exposuremore » of 100 ty. Here, this work contains a discussion of the current status of the DarkSide-50 WIMP search and of the results which are more relevant for the construction of the future detector.« less
  2. In this report, the abstract of a number of published works during the funding period are included. The titles and the detailed citations of these published work are also enclosed.
  3. Nuclear reactor codes require validation with appropriate data representing the plant for specific scenarios. The thermal-hydraulic data is scattered in different locations and in different formats. Some of the data is in danger of being lost. A relational database is being developed to organize the international thermal hydraulic test data for various reactor concepts and different scenarios. At the reactor system level, that data is organized to include separate effect tests and integral effect tests for specific scenarios and corresponding phenomena. The database relies on the phenomena identification sections of expert developed PIRTs. The database will provide a summary ofmore » appropriate data, review of facility information, test description, instrumentation, references for the experimental data and some examples of application of the data for validation. The current database platform includes scenarios for PWR, BWR, VVER, and specific benchmarks for CFD modelling data and is to be expanded to include references for molten salt reactors. There are place holders for high temperature gas cooled reactors, CANDU and liquid metal reactors. This relational database is called The International Experimental Thermal Hydraulic Systems (TIETHYS) database and currently resides at Nuclear Energy Agency (NEA) of the OECD and is freely open to public access. Going forward the database will be extended to include additional links and data as they become available.« less
  4. High-fidelity, multi-physics modeling and simulation (M&S) tools are being developed and utilized for a variety of applications in nuclear science and technology and show great promise in their abilities to reproduce observed phenomena for many applications. Even with the increasing fidelity and sophistication of coupled multi-physics M&S tools, the underpinning models and data still need to be validated against experiments that may require a more complex array of validation data because of the great breadth of the time, energy and spatial domains of the physical phenomena that are being simulated. The Expert Group on Multi-Physics Experimental Data, Benchmarks and Validationmore » (MPEBV) of the Nuclear Energy Agency (NEA) of the Organization for Economic Cooperation and Development (OECD) was formed to address the challenges with the validation of such tools. The work of the MPEBV expert group is shared among three task forces to fulfill its mandate and specific exercises are being developed to demonstrate validation principles for common industrial challenges. This paper describes the overall mission of the group, the specific objectives of the task forces, the linkages among the task forces, and the development of a validation exercise that focuses on a specific reactor challenge problem.« less
  5. Presentation slides address: The Laboratory infrastructure supports hundreds of high hazard, complex operations daily; LANL’s unique science and engineering infrastructure is critical to delivering on our mission; LANL FY17 Budget & Workforce; Direct-Funded Infrastructure Accounts; LANL Org Chart; Weapons Infrastructure Program Office; The Laboratory’s infrastructure relies on both Direct and Indirect funding; NA-50’s Operating, Maintenance & Recapitalization funding is critical to the execution of the mission; Los Alamos is currently executing several concurrent Line Item projects; Maintenance @ LANL; NA-50 is helping us to address D&D needs; We are executing a CHAMP Pilot Project at LANL; G2 = Main Toolmore » for Program Management; MDI: Future Investments are centered on facilities with a high Mission Dependency Index; Los Alamos hosted first “Deep Dive” in November 2016; Safety, Infrastructure & Operations is one of the most important programs at LANL, and is foundational for our mission success.« less
  6. The successful development of high-performance, durable platinum group metal-free (PGM-free) electrocatalysts and electrodes for polymer electrolyte membrane fuel cells (PEMFCs) will ultimately improve the cost-competiveness of fuel cells in a wide range of applications. This is considered to be a critical development especially for automotive fuel cell applications in order to bring the system cost of an automotive fuel cell system down to the $30/kW cost target set by the U.S. Department of Energy (DOE). The platinum group metal (PGM) electrocatalysts are a major contributor to the system cost. Addressing the technical challenges to PGM-free electrocatalyst and electrode development, therefore,more » represents one of DOE's most pressing research and development (R&D) priorities. ElectroCat was formed by the DOE as part of the Energy Materials Network (EMN) in early 2016, and shares with other EMN consortia the goal of decreasing the time to market for advanced materials related to clean energy technologies, in the context of increasing U.S. fuel cell electric vehicle (FCEV) manufacturing competitiveness. To accomplish this, the consortium performs core research and development and provides universities and companies streamlined access to the unique, world-class set of tools and expertise relevant to early-stage applied PGM-free catalyst R&D of the member national laboratories. Moreover, ElectroCat fosters a systematic methodology by which prospective catalysts and electrodes are prepared and analyzed rapidly and comprehensively using high-throughput, combinatorial methods. Catalyst discovery is augmented by theory as well as foundational electrocatalysis and materials knowledge at the participating national laboratories. Furthermore, ElectroCat has developed a data sharing framework, requisite of all EMN consortia, for disseminating its findings to the public via a searchable database, to further expedite incorporation of PGM-free electrocatalysts into next-generation fuel cells by advancing the general understanding of the PGM-free electrocatalyst field.« less
  7. We report a nanoparticulate iron oxide based catalyst for CO2 conversion with high efficiency at low pressures and on the effect of the presence of copper on the catalyst's restructuring and its catalytic performance. In situ X-ray scattering reveals the restructuring of the catalyst at the nanometer scale. In situ X-ray absorption near edge structure (XANES) shows the evolution of the composition and oxidation state of the iron and copper components under reaction conditions along with the promotional effect of copper on the chemical transformation of the iron component. X-ray diffraction (XRD), XANES and Raman spectroscopy proved that the startingmore » nano catalyst is composed of iron oxides differing in chemical nature (alpha-Fe2O3, Fe3O4, FeO(OH)) and dimensionality, while the catalyst after CO2 conversion was identified as a mixture of alpha-Fe, Fe3C, and traces of Fe5C2. The significant increase of the rate CO2 is turned over in the presence of copper nanoparticles indicates that Cu nanoparticles activate hydrogen, which after spilling over to the neighbouring iron sites, facilitate a more efficient conversion of carbon dioxide.« less
  8. We investigate the temperature dependence of low-frequency spectra in the frequency range of 0.3–200 cm -1 for ionic liquids (ILs) whose cations possess two systematically different cyclic groups, using femtosecond Raman-induced Kerr effect spectroscopy. The target ILs are bis(trifluoromethylsulfonyl)amide [NTf 2]– salts of 1-cyclohexylmethyl-1-methylpyrrolidinium [CHxmMPyrr] +, 1-cyclohexylmethyl-3-methylimidazolium [CHxmMIm] +, N-cyclohexylmethylpyridinium [CHxmPy]+, 1-benzyl-1-methylpyrrolidinium [BzMPyrr] +, 1-benzyl-3-methylimidazolium [BzMIm] +, and N-benzylpyridinium [BzPy] + cations. The aim of this study is to better understand the effects of aromaticity in the cations’ constituent groups on the temperature-dependent low-frequency spectral features of the ILs. The low-frequency spectra of these ILs are temperature dependent, but themore » temperature-dependent spectrum of [CHxmMPyrr][NTf 2] is different from that of other ILs. While [CHxmMPyrr][NTf 2] shows spectral changes with temperature in the low-frequency region below 50 cm -1, the other ILs also show spectral changes in the high-frequency region above 80 cm -1 (above 50 cm -1 in the case of [BzMPyrr][NTf 2]). We conclude that the spectral change in the low-frequency region is due to both the cation and anion, while the change in the high-frequency region is attributed to the red shift of the aromatic ring librations. On the basis of the plots of the first moment of the spectra vs. temperature, we found that the first moment of the low-frequency spectrum of the IL whose cation does not have an aromatic ring is less temperature dependent than that of the other ILs. However, the intrinsic first moment, the first moment at 0 K, of the low-frequency spectrum is governed by the absence or presence of a charged aromatic group, while a neutral aromatic group does not have much influence on determining the intrinsic first moment.« less
  9. Polar-direct-drive exploding pushers are used as a high-yield, low-areal-density fusion product source at the National Ignition Facility with applications including diagnostic calibration, nuclear security, backlighting, electron-ion equilibration, and nucleosynthesis-relevant experiments. In this paper, two different paths to improving the performance of this platform are explored: (i) optimizing the laser drive, and (ii) optimizing the target. While the present study is specifically geared towards nucleosynthesis experiments, the results are generally applicable. Example data from T 2/ 3He-gas-filled implosions with trace deuterium are used to show that yield and ion temperature (Tion) from 1.6 mm-outer-diameter thin-glass-shell capsule implosions are improved at amore » set laser energy by switching from a ramped to a square laser pulse shape, and that increased laser energy further improves yield and Tion, although by factors lower than predicted by 1 D simulations. Using data from D2-3He-gas-filled implosions, yield at a set Tion is experimentally verified to increase with capsule size. Uniform D-3He-proton spectra from 3 mm-outer-diameter CH shell implosions demonstrate the utility of this platform for studying charged-particle-producing reactions relevant to stellar nucleosynthesis.« less
  10. In this work, we use neutron reflectometry (NR) to investigate the roles of hydrogen in plasma treated hydrogen doped mesoporous black titania thin films in their visible light absorption and enhanced photoactivity for water oxidation. The cubic ordered mesoporous TiO2 thin films are prepared by a surfactant-templated sol-gel method and are treated with hydrogen plasma, an approach hypothesized to capitalize on the high degree of disorder in the material and the high energy of the plasma species to achieve efficient hydrogen doping. UV-vis absorbance spectra indicate that H2 plasma treatment makes TiO2 films black, with broad-spectrum enhancement of visible lightmore » absorption, and XPS analysis shows peak for Ti3+ state in treated films. The presence of hydrogen in black mesoporous titania (H-TiO2) films is confirmed by the scattering length density (SLD) profiles obtained from neutron reflectometry measurements. The H-TiO2 shows ca. 28 times and 8 times higher photocurrent for photoelectrochemical water oxidation compared to undoped TiO2 films under UV (365 nm) and blue (455 nm) LED irradiation, respectively. These findings provide the first direct evidence that the dramatic change in visible light absorbance of H-treated black TiO2 is accompanied by significant hydrogen uptake and not just Ti3+ generation or surface disordering.« less

Search for:
All Records

Refine by:
Resource Type
Publication Date
Creator / Author
Research Organization