skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. WO x supported on γ-Al 2 O 3 with different morphologies as model catalysts for alkanol dehydration

    The distinctive morphological and surface characteristics of platelet-like γ-Al2O3 were compared to a regular, commercial γ-Al2O3. γ-Al2O3 platelets display dominant (110) surface facets and higher densities of coordinative unsaturated penta-coordinate Al3+ (Al3+penta) sites than regular γ-Al2O3, as measured by solid-state magic-angle spinning nuclear magnetic resonance spectroscopy (MAS NMR). Such Al3+penta sites are also the preferred surface anchoring sites for tungsten oxide (WOx) species consistent with NMR analysis indicating that these sites are consumed upon WOx adsorption. The higher Al3+penta density on γ-Al2O3 platelets leads to greater WOx dispersion (or smaller WOx clusters), as demonstrated by scanning transmission electron microscopy andmore » ultraviolet–visible spectroscopy, and WOx species at intermediate WOx surface concentration are the most active for the probe reaction of 2-butanol dehydration. WOx on γ-Al2O3 platelets approaches the highest turnover rates at higher surface densities than WOx on regular γ-Al2O3, yet with similar highest rate values for both series of catalysts. This indicates that different Al2O3 supports mainly affect the dispersion of supported WOx rather than the intrinsic reactivity of individual WOx clusters with similar size.« less
  2. In situ Stripline Electrochemical NMR for Batteries

    Here, there exist some long outstanding technical challenges that continue to be of hindrance to fully harnessing the unique investigative advantages of nuclear magnetic resonance (NMR) spectroscopy in the in situ investigation of rechargeable battery chemistry. For instance, the conducting materials and circuitry necessary for an operational battery always deteriorate the coil–based NMR sensitivity when placed inside the coil, and the shape mismatch between them leads to low sample filling factors and even higher detection limits. We report herein a novel and successful adaptation of stripline NMR detection that integrates seamlessly the NMR detection with construction of an electro–chemical devicemore » in general (or a battery in particular) which leads to a technique with much higher detection sensitivity, higher sample filling factors, and which is particularly suitable for mass–limited samples.« less
  3. Identification of major matrix metalloproteinase-20 proteolytic processing products of murine amelogenin and tyrosine-rich amelogenin peptide using a nuclear magnetic resonance spectroscopy based method

    Here, the aim of this study was to identify major matrix metalloproteinase-20 (MMP20) proteolytic processing products of amelogenin over time and determine if the tyrosine-rich amelogenin peptide (TRAP) was a substrate of MMP20.
  4. Understanding the influences of different pretreatments on recalcitrance of Populus natural variants

    Here, four different pretreatment technologies were applied to two Populus natural variants and the effects of each pretreatment on glucose release were compared. Physicochemical properties of pretreated biomass were analyzed by attenuated total reflection Fourier transform infrared spectroscopy, gel permeation chromatography, and cross polarization/magic angle spinning carbon-13 nuclear magnetic resonance techniques. The results revealed that hemicellulose and lignin were removed to different extents during various pretreatments. The degree of polymerization of cellulose was decreased in the order of alkali > hydrothermal > organosolv > dilute acid pretreatment. Cellulose crystallinity index was slightly increased after each pretreatment. The results also demonstratedmore » that organosolv pretreatment resulted in the highest glucose yield. Among the tested properties of Populus, degree of polymerization of cellulose was negatively correlated with glucose release, whereas hemicellulose and lignin removal, and cellulose accessibility were positively associated with glucose release from the two Populus natural variants.« less
  5. Nature of lattice distortions in the cubic double perovskite Ba 2 NaOsO 6

    In this paper, we present detailed calculations of the electric field gradient (EFG) using a point charge approximation inmore » $${\mathrm{Ba}}_{2}{\mathrm{NaOsO}}_{6}$$, a Mott insulator with strong spin-orbit interaction. Recent $$^{23}\mathrm{Na}$$ nuclear magnetic resonance (NMR) measurements found that the onset of local point symmetry breaking, likely caused by the formation of quadrupolar order [Chen, Pereira, and Balents, Phys. Rev. B 82, 174440 (2010)], precedes the formation of long range magnetic order in this compound [Lu et al., Nat. Commun. 8, 14407 (2017); Liu et al., Physica B 536, 863 (2018)]. An extension of the static $$^{23}\mathrm{Na}$$ NMR measurements as a function of the orientation of a 15 T applied magnetic field at 8 K in the magnetically ordered phase is reported. Broken local cubic symmetry induces a nonspherical electronic charge distribution around the Na site and thus finite EFG, affecting the NMR spectral shape. We combine the spectral analysis as a function of the orientation of the magnetic field with calculations of the EFG to determine the exact microscopic nature of the lattice distortions present in low temperature phases of this material. Finally, we establish that orthorhombic distortions, constrained along the cubic axes of the perovskite reference unit cell, of oxygen octahedra surrounding Na nuclei are present in the magnetic phase. Other common types of distortions often observed in oxide structures are considered as well.« less
  6. Si Oxidation and H 2 Gassing During Aqueous Slurry Preparation for Li-Ion Battery Anodes

    Si has the possibility to greatly increase the energy density of Li-ion battery anodes, though it is not without its problems. One issue often overlooked is the decomposition of Si during large scale slurry formulation and battery fabrication. Here, we investigate the mechanism of H 2 production to understand the role of different slurry components and their impact on the Si oxidation and surface chemistry. Mass spectrometry and in situ pressure monitoring identifies that carbon black plays a major role in promoting the oxidation of Si and generation of H 2. Si oxidation also occurs through atmospheric O 2 consumption.more » Both pathways, along with solvent choice, impact the surface silanol chemistry, as analyzed by 1H– 29Si cross-polarization magic angle spinning nuclear magnetic resonance (MAS NMR) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR FTIR). An understanding of the oxidation of Si, during slurry processing, provides a pathway toward improving the manufacturing of Si based anodes by maximizing its capacity and minimizing safety hazards.« less
  7. Synthesis, surface chemistry and pseudocapacitance mechanisms of VN nanocrystals derived by a simple two-step halide approach

    Chloroamide precursors generated via a simple two-step ammonolysis reaction of transition metal chloride in the liquid phase at room temperature were heat treated in ammonia at moderate temperature to yield nano-sized VN crystallites. Grain growth inhibited by lowering the synthesis temperature (≈400°C) yielded agglomerated powders of spherical crystallites of cubic phase of VN with particle sizes as small as 6nm in diameter. X-ray diffraction, FTIR, mass spectroscopy (MS), and nuclear magnetic resonance (NMR) spectroscopy assessed the ammonolysis and nitridation reaction of the VCl 4-NH 3 system. X-ray Rietveld refinement, the BET technique and high-resolution transmission microscopy (HRTEM), energy dispersive x-raymore » (EDX) and thermogravimetric analysis (TGA) helped assess the crystallographic and microstructural nature of the VN nanocrystals. The surface chemistry and redox reaction leading to the gravimetric pseudo-capacitance value of (≈855 F/g) measured for the VN nanocrystals was determined and validated using FTIR, XPS and cyclic voltammetry analyses.« less
  8. Effect of Acid on Surface Hydroxyl Groups on Kaolinite and Montmorillonite

    Mineral dust aerosol participates in heterogeneous chemistry in the atmosphere. In particular, the hydroxyl groups on the surface of aluminosilicate clay minerals are important for heterogeneous atmospheric processes. These functional groups may be altered by acidic processing during atmospheric transport. In this study, we exposed kaolinite (KGa-1b) and montmorillonite (STx-1b) to aqueous sulfuric acid and then rinsed the soluble reactants and products off in order to explore changes to functional groups on the mineral surface. To quantify the changes due to acid treatment of edge hydroxyl groups, we use 19F magic angle spinning nuclear magnetic resonance spectroscopy and a probemore » molecule, 3,3,3-trifluoropropyldimethylchlorosilane. We find that the edge hydroxyl groups (OH) increase in both number and density with acid treatment. Chemical reactions in the atmosphere may be impacted by the increase in OH at the mineral edge.« less
  9. NMR Methodologies for the Detection and Quantification of Nanostructural Defects in Silicone Networks

    Here, we present and discuss a sensitive spectroscopic means of detecting and quantifying network defects within a series of polysiloxane elastomers through a novel application of 19F solution state nuclear magnetic resonance (NMR). Polysiloxanes are the most utilized non-carbon polymeric material today. Their final network structure is complex, hierarchical, and often ill-defined due to modification. Characterization of these materials with respect to starting and age-dependent network structure is obfuscated by the intractable nature of polysiloxane network elastomers. We report a synthetic strategy for selectively tagging chain-end silanols with an organofluorine compound, which may then be conveniently and quantitatively measured asmore » a function of structure and environment by means of 19F NMR. This study represents a new and sensitive means of directly quantifying aspects of network architecture in polysiloxane materials and has the potential to be a powerful new tool for the spectroscopic assessment of structural dynamic response in polysiloxane networks.« less
  10. Recent Advances in Targeted and Untargeted Metabolomics by NMR and MS/NMR Methods

    Metabolomics has made significant progress in multiple fronts in the last 18 months. This minireview aimed to give an overview of these advancements in the light of their contribution to targeted and untargeted metabolomics. New computational approaches have emerged to overcome manual absolute quantitation step of metabolites in 1D 1H NMR spectra. This provides more consistency between inter-laboratory comparisons. Integration of 2D NMR metabolomics databases under a unified web server allowed very accurate identification of the metabolites that have been catalogued in these databases. For the remaining uncatalogued and unknown metabolites, new cheminformatics approaches have been developed by combining NMRmore » and mass spectrometry. These hybrid NMR/MS approaches accelerated the identification of unknowns in untargeted studies, and now they are allowing to profile ever larger number of metabolites in application studies.« less

Search for:
All Records

Refine by:
Resource Type
Publication Date
Creator / Author
Research Organization