Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information
  1. Mapping and probing Froggatt-Nielsen solutions to the quark flavor puzzle

    The Froggatt-Nielsen (FN) mechanism is an elegant solution to the flavor problem. In its minimal application to the quark sector, the different quark types and generations have different charges under a U ( 1 ) X flavor symmetry. The SM Yukawa couplings are generated below the flavor breaking scale with hierarchies dictated by the quark charge assignments. Only a handful of charge assignments are generally considered in the literature. We analyze the complete space of possible charge assignments with | X q i | 4 and perform both a set of Bayesian-inspired numerical scans and an analytical spurion analysis to identify those charge assignments that reliably generate SM-like quark mass and mixing hierarchies. The resulting set of top-20 flavor charge assignments significantly enlarges the viable space of FN models but is still compact enough to enable focused phenomenological study. We then apply our numerical methodology to demonstrate that these distinct charge assignments result in the generation of correlated flavor-violating four-quark operators characterized by significantly varied strengths, potentially differing substantially from the possibilities previously explored in the literature. Future precision measurement of Δ F = 2 observables, along with increasingly accurate SM predictions, may therefore enable us to distinguish among otherwise equally plausible FN charges, thus shedding light on the UV structure of the flavor sector. Published by the American Physical Society 2025

  2. Dissipative Dark Substructure: The Consequences of Atomic Dark Matter on Milky Way Analog Subhalos

    Using cosmological hydrodynamical zoom-in simulations, we explore the properties of subhalos in Milky Way analogs that contain a subcomponent of atomic dark matter (ADM). ADM differs from cold dark matter (CDM) due to the presence of self-interactions that lead to energy dissipation, analogous to standard model baryons. This model can arise in dark sectors that are natural and theoretically motivated extensions to the standard model. The simulations used in this work were carried out using GIZMO and utilize the FIRE-2 galaxy formation physics in the standard model baryonic sector. For the parameter points we consider, the ADM gas cools efficiently, allowing it to collapse to the center of subhalos. This increases a subhalo's central density and affects its orbit, with more subhalos surviving small pericentric passages. The subset of subhalos that host satellite galaxies have cuspier density profiles and smaller stellar half-mass radii relative to CDM. The entire population of dwarf galaxies produced in the ADM simulations is more compact than those seen in CDM simulations, unable to reproduce the entire diversity of observed dwarf galaxy structures. Additionally, we also identify a population of highly compact subhalos that consist nearly entirely of ADM and form in the central region of the host, where they can leave distinctive imprints in the baryonic disk. This work presents the first detailed exploration of subhalo properties in a strongly dissipative dark matter scenario, providing intuition for how other regions of ADM parameter space, as well as other dark sector models, would impact galactic-scale observables.

  3. Dark photons from charged pion bremsstrahlung at proton beam experiments

    The production and subsequent rescattering of secondary pions produced in proton beam dumps provide additional opportunities for the production of light new particles such as dark photons. This new mechanism has been overlooked in the past but can extend the mass reach of the SpinQuest experiment and its proposed DarkQuest upgrade. We use chiral perturbation theory to calculate the production of kinetically mixed dark photons through bremsstrahlung off secondary charged pions. We find that the reach of SpinQuest/DarkQuest can be pushed further into the multi-GeV mass range compared to estimates based only on primary dark photon production through meson decay or proton bremsstrahlung. Furthermore, our analysis can be regarded as the first of several steps to include secondary pion contributions. In an upcoming analysis we will extend our calculation into the high-momentum-transfer regime through the use of pion parton distribution functions and including hadronic resonances, which will further increase the estimated mass reach.

  4. Simulating Atomic Dark Matter in Milky Way Analogs

    Dark sector theories naturally lead to multicomponent scenarios for dark matter where a subcomponent can dissipate energy through self-interactions, allowing it to efficiently cool inside galaxies. We present the first cosmological hydrodynamical simulations of Milky Way analogs where the majority of dark matter is collisionless cold dark matter (CDM) but a subcomponent (6%) is strongly dissipative minimal atomic dark matter (ADM). The simulations, implemented in GIZMO and utilizing FIRE-2 galaxy formation physics to model the standard baryonic sector, demonstrate that the addition of even a small fraction of dissipative dark matter can significantly impact galactic evolution despite being consistent with current cosmological constraints. We show that ADM gas with roughly standard model–like masses and couplings can cool to form a rotating "dark disk" with angular momentum closely aligned with the visible stellar disk. The morphology of the disk depends sensitively on the parameters of the ADM model, which affect the cooling rates in the dark sector. The majority of the ADM gas gravitationally collapses into dark "clumps" (regions of black hole or mirror star formation), which form a prominent bulge and a rotating thick disk in the central galaxy. These clumps form early and quickly sink to the inner ~kiloparsec of the galaxy, affecting the galaxy's star formation history and present-day baryonic and CDM distributions.

  5. Dark matter or regular matter in neutron stars? How to tell the difference from the coalescence of compact objects

    The mirror twin Higgs model is a candidate for (strongly-interacting) complex dark matter, which mirrors SM interactions with heavier quark masses. A consequence of this model are mirror neutron stars—exotic stars made entirely of mirror matter, which are significantly smaller than neutron stars and electromagnetically dark. This makes mergers of two mirror neutron stars detectable and distinguishable in gravitational wave observations, but can we observationally distinguish between regular neutron stars and those that may contain some mirror matter? This is the question we study in this paper, focusing on two possible realizations of mirror matter coupled to standard model matter within a compact object: (i) mirror matter captured by a neutron star and (ii) mirror neutron star-neutron star coalescences. Regarding (i), here we find that (nonrotating) mirror-matter-admixed neutron stars no longer have a single mass-radius sequence, but rather exist in a two-dimensional mass-radius plane. Regarding (ii), we find that binary systems with mirror neutron stars would span a much wider range of chirp masses and completely different binary Love relations, allowing merger remnants to be very light black holes. The implications of this are that gravitational wave observations with advanced LIGO and Virgo, and x-ray observations with NICER, could detect or constrain the existence of mirror matter through searches with wider model and parameter priors.

  6. Towards a muon collider

    A muon collider would enable the big jump ahead in energy reach that is needed for a fruitful exploration of fundamental interactions. The challenges of producing muon collisions at high luminosity and 10 TeV centre of mass energy are being investigated by the recently-formed International Muon Collider Collaboration. This Review summarises the status and the recent advances on muon colliders design, physics and detector studies. The aim is to provide a global perspective of the field and to outline directions for future work.

  7. Discovering the physics of (g – 2)μ at future muon colliders

    The longstanding muon g – 2 anomaly may indicate the existence of new particles that couple to muons, which could either be light ($$\lesssim$$ GeV) and weakly coupled, or heavy ($$\gg$$ 100 GeV) with large couplings. If light new states are responsible, upcoming intensity frontier experiments will discover further evidence of new physics. However, if heavy particles are responsible, many candidates are beyond the reach of existing colliders. We show that, if the (g – 2)μ anomaly is confirmed and no explanation is found at low-energy experiments, a high-energy muon collider program is guaranteed to make fundamental discoveries about our universe. New physics scenarios that account for the anomaly can be classified as either "Singlet" or "Electroweak" (EW) models, involving only EW singlets or new EW-charged states respectively. We argue that a TeV-scale future muon collider will discover all possible singlet model solutions to the anomaly. If this does not yield a discovery, the next step would be a $$\cal{O}$$(10 TeV) muon collider. Such a machine would either discover new particles associated with high-scale EW model solutions to the anomaly, or empirically prove that nature is fine-tuned, both of which would have profound consequences for fundamental physics.

  8. Searching for long-lived particles beyond the Standard Model at the Large Hadron Collider

    Particles beyond the Standard Model (SM) can generically have lifetimes that are long compared to SM particles at the weak scale. When produced at experiments such as the Large Hadron Collider (LHC) at CERN, these long-lived particles (LLPs) can decay far from the interaction vertex of the primary proton–proton collision. Such LLP signatures are distinct from those of promptly decaying particles that are targeted by the majority of searches for new physics at the LHC, often requiring customized techniques to identify, for example, significantly displaced decay vertices, tracks with atypical properties, and short track segments. Given their non-standard nature, a comprehensive overview of LLP signatures at the LHC is beneficial to ensure that possible avenues of the discovery of new physics are not overlooked. Here we report on the joint work of a community of theorists and experimentalists with the ATLAS, CMS, and LHCb experiments—as well as those working on dedicated experiments such as MoEDAL, milliQan, MATHUSLA, CODEX-b, and FASER—to survey the current state of LLP searches at the LHC, and to chart a path for the development of LLP searches into the future, both in the upcoming Run 3 and at the high-luminosity LHC. The work is organized around the current and future potential capabilities of LHC experiments to generally discover new LLPs, and takes a signature-based approach to surveying classes of models that give rise to LLPs rather than emphasizing any particular theory motivation. We develop a set of simplified models; assess the coverage of current searches; document known, often unexpected backgrounds; explore the capabilities of proposed detector upgrades; provide recommendations for the presentation of search results; and look towards the newest frontiers, namely high-multiplicity 'dark showers', highlighting opportunities for expanding the LHC reach for these signals.

  9. Physics beyond colliders at CERN: beyond the Standard Model working group report

    The Physics Beyond Colliders initiative is an exploratory study aimed at exploiting the full scientific potential of the CERN’s accelerator complex and scientific infrastructures through projects complementary to the LHC and other possible future colliders. These projects will target fundamental physics questions in modern particle physics. This document presents the status of the proposals presented in the framework of the Beyond the Standard Model physics working group, and explore their physics reach and the impact that CERN could have in the next 10-20 years on the international landscape.

  10. Long-lived particles at the energy frontier: the MATHUSLA physics case

    We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of standard model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the [Formula: see text]m scale up to the Big Bang Nucleosynthesis limit of [Formula: see text] m. Neutral LLPs with lifetimes above [Formula: see text]100 m are particularly difficult to probe, as the sensitivity of the LHC main detectors is limited by challenging backgrounds, triggers, and small acceptances. MATHUSLA is a proposal for a minimally instrumented, large-volume surface detector near ATLAS or CMS. It would search for neutral LLPs produced in HL-LHC collisions by reconstructing displaced vertices (DVs) in a low-background environment, extending the sensitivity of the main detectors by orders of magnitude in the long-lifetime regime. We study the LLP physics opportunities afforded by a MATHUSLA-like detector at the HL-LHC, assuming backgrounds can be rejected as expected. We develop a model-independent approach to describe the sensitivity of MATHUSLA to BSM LLP signals, and compare it to DV and missing energy searches at ATLAS or CMS. We then explore the BSM motivations for LLPs in considerable detail, presenting a large number of new sensitivity studies. While our discussion is especially oriented towards the long-lifetime regime at MATHUSLA, this survey underlines the importance of a varied LLP search program at the LHC in general. By synthesizing these results into a general discussion of the top-down and bottom-up motivations for LLP searches, it is our aim to demonstrate the exceptional strength and breadth of the physics case for the construction of the MATHUSLA detector.


Search for:
All Records
Author / Contributor
0000000302636195

Refine by:
Resource Type
Availability
Publication Date
  • 2019: 2 results
  • 2020: 1 results
  • 2021: 1 results
  • 2022: 0 results
  • 2023: 4 results
  • 2024: 1 results
  • 2025: 1 results
2019
2025
Author / Contributor
Research Organization