Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information
  1. Enabling portable demand flexibility control applications in virtual and real buildings

    Control applications that facilitate Demand Flexibility (DF) are difficult to deploy at scale in existing buildings. The heterogeneity of systems and non-standard naming conventions for metadata describing data points in building automation systems often lead to ad-hoc and building-specific applications. In recent years, several researchers investigated semantic models to describe the meaning of building data. They suggest that these models can enhance the deployment of building applications, enabling data exchanges among heterogeneous sources and their portability across different buildings. However, the studies in question fail to explore these capabilities in the context of controls. This paper proposes a novel semantics-driven framework for developing and deploying portable DF control applications. The design of the framework leverages an iterative design science research methodology, evolving from evidence gathered through simulation and field demonstrations. The framework aims to decouple control applications from specific buildings and control platforms, enabling these control applications to be configured semi-automatically. This allows application developers and researchers to streamline the onboarding of new applications that could otherwise be time-consuming and resource-intensive. The framework has been validated for its capability to facilitate the deployment of control applications sharing the same codebase across diverse virtual and real buildings. The demonstration successfully tested two controls for load shifting and shedding in four virtual buildings using the Building Optimization Testing Framework (BOPTEST) and in one real building using the control platform VOLTTRON. Insights into the current limitations, benefits, and challenges of generalizable controls and semantic models are derived from the deployment efforts and outcomes to guide future research in this field.

  2. Comparing simulated demand flexibility against actual performance in commercial office buildings

    Commercial building energy benchmarking has been used as a mechanism to evaluate energy use of a single building over time, relative to other similar buildings, or to simulations of a reference building conforming to various energy standards. Lack of empirical demand flexibility data and consistent flexibility metrics has limited the ability to compare demand flexibility performance with estimated demand flexibility in buildings. In this study, we collected demand response performance data for a total of 831 demand response events from 192 sites as a first step to build such a building demand flexibility dataset, and propose a standard core data schema to consolidate field data from different sources. We also performed parametric simulations of a control strategy called “global temperature adjustment” using commercial office prototype building models. We then compared the simulated demand flexibility performance against the actual data for offices with global temperature adjustment strategy implemented. During demand response events with an average outside air temperature of 34 °C (range 23 °C–42 °C), the measured demand decrease intensity of the demand flexibility metrics were 6.1 watts per square meter (W/m2), 10.0 W/m2, 11.1 W/m2, 7.1 W/m2, and 4.7 W/m2 for small, small–medium, medium, medium–large, and large office buildings, respectively. Compared to the measured data in medium- and large-size buildings, the simulated demand decrease intensity was 0.7 W/m2 (17%) lower on average. The discrepancy between simulated and measured peak demand intensities fell within one standard deviation of the mean measured data. Here, the comparison results validate the credibility of simulations in capturing real building data for assessing the technical potential of building demand flexibility.


Search for:
All Records
Author / Contributor
0000000175283330

Refine by:
Resource Type
Availability
Author / Contributor
Research Organization