Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information
  1. Conserved residue His-257 of Vibrio cholerae flavin transferase ApbE plays a critical role in substrate binding and catalysis

    The flavin transferase ApbE plays essential roles in bacterial physiology, covalently incorporating FMN cofactors into numerous respiratory enzymes that use the integrated cofactors as electron carriers. In this work we performed a detailed kinetic and structural characterization of Vibrio cholerae WT ApbE and mutants of the conserved residue His-257, to understand its role in substrate binding and in the catalytic mechanism of this family. Bi-substrate kinetic experiments revealed that ApbE follows a random Bi Bi sequential kinetic mechanism, in which a ternary complex is formed, indicating that both substrates must be bound to the enzyme for the reaction to proceed. Steady-state kinetic analyses show that the turnover rates of His-257 mutants are significantly smaller than those of WT ApbE, and have increased Km values for both substrates, indicating that the His-257 residue plays important roles in catalysis and in enzyme-substrate complex formation. Analyses of the pH dependence of ApbE activity indicate that the pKa of the catalytic residue (pKES1) increases by 2 pH units in the His-257 mutants, suggesting that this residue plays a role in substrate deprotonation. The crystal structures of WT ApbE and an H257G mutant were determined at 1.61 and 1.92 Å resolutions, revealing that His-257 is located in the catalytic site and that the substitution does not produce major conformational changes. In this paper, we propose a reaction mechanism in which His-257 acts as a general base that deprotonates the acceptor residue, which subsequently performs a nucleophilic attack on FAD for flavin transfer.

  2. Characterization of biochar prepared from biogas digestate

    Highlights: • Solid digestate (SD) is a potential feedstock for preparing biochars. • The optimal BET surface area of resulting biochar from SD is over 100 m{sup 2}/g. • The higher temperature leads to the increase in true density of resulting biochar, but exhibited a decreased higher heating value. • The SD-based biochar may be used as a biofertilizer due to the mesoporosity and the abundant in nutrient minerals. - Abstract: In the study, the biogas digestate was evaluated as a potential feedstock for preparing biochars at a broad temperature range of 300–900 °C. The physico-chemical and pore properties of the resulting biochars (denoted as SDBC, solid digestate biochar), including calorific value (higher heating value), surface area/pore volume/pore size distribution, true density, scanning electron microscopy – energy dispersive X-ray spectroscopy (SEM-EDS) and X-ray powder diffraction (XRD), were studied. It was found that the higher heating values of the SDBC products were on a decreasing trend as pyrolysis temperature increased, but they indicated an increase in true density. The results are probably associated with the active pyrolysis of the lignocellulosic fragments and the calcination (or shrinkage) processes, thus resulting in the increased contents of aromatic carbon clusters and main mineral constituents remained. Based on the pore properties, pyrolysis temperature at around 800 °C seemed to be the optimal condition for producing SDBC, where its Brunauer-Emmet-Teller (BET) surface area (>100 m{sup 2}/g) largely increased as compared to that of the digestate feedstock (<1 m{sup 2}/g). Furthermore, the main compositions of mineral ash in the resulting biochar could exist as phosphates, carbonates, or oxides of calcium and other alkali/alkaline earth elements. According to the data on EDS and XRD, more pores could be significantly generated under severe pyrolysis (>700 °C) due to the high aromaticity via the thermal decomposition of lignocelluloses and the volatilization of inorganic minerals.

  3. Angiotensin-converting enzyme 2 regulates mitochondrial function in pancreatic β-cells

    Highlights: • ACE2 improved glucose stimulated insulin secretion (GSIS) and mitochondrial membrane potential in INS-1 cells. • PCR array demonstrated that ACE2 up-regulated 67 mitochondria-related genes in INS-1 cells. • ACE2 deletion suppressed mitochondrial oxidation and calcium influx in islets. • ACE2 over-expression in db/db mice promoted mitochondrial oxidation and calcium influx in islets. Mitochondrial metabolism plays an essential role in the regulation of insulin release and glucose homeostasis. Evidence demonstrated that the angiotensin-converting enzyme 2 (ACE2) participates in the regulation of glucose metabolism, however, its role in mitochondrial metabolism remains unclear. The purpose of our study was to determine if ACE2 can regulate mitochondrial function in pancreatic β-cells. We found that ACE2 over-expression restored glucose-stimulated insulin secretion (GSIS) and mitochondrial membrane potential (MMP) in the presence of H{sub 2}O{sub 2} in INS-1 cells. PCR array demonstrated that ACE2 over-expression up-regulated 67 mitochondria-related genes in INS-1 cells. In pancreatic islets, ACE2 ablation attenuated intracellular calcium influx with a decrease in GSIS. Ace2{sup −/y} mice islets exhibited impaired mitochondrial respiration and lower production of ATP, along with decreased expression of genes involved in mitochondrial oxidation. In islets from db/db mice, ACE2 over-expression increased intracellular calcium influx and restored impaired mitochondrial oxidation, potentially causing an increase in GSIS. These results shed light on the potential roles of ACE2 in mitochondrial metabolism, moreover, may improve our understanding of diabetes.

  4. Quantum phase transitions between a class of symmetry protected topological states

    The subject of this paper is the phase transition between symmetry protected topological states (SPTs). We consider spatial dimension d and symmetry group G so that the cohomology group, Hd+1(G,U(1)), contains at least one Z2n or Z factor. We show that the phase transition between the trivial SPT and the root states that generate the Z2n or Z groups can be induced on the boundary of a (d+1)-dimensional View the MathML source-symmetric SPT by a View the MathML source symmetry breaking field. Moreover we show these boundary phase transitions can be “transplanted” to d dimensions and realized in lattice models as a function of a tuning parameter. The price one pays is for the critical value of the tuning parameter there is an extra non-local (duality-like) symmetry. In the case where the phase transition is continuous, our theory predicts the presence of unusual (sometimes fractionalized) excitations corresponding to delocalized boundary excitations of the non-trivial SPT on one side of the transition. This theory also predicts other phase transition scenarios including first order transition and transition via an intermediate symmetry breaking phase.

  5. Quantum phase transitions between a class of symmetry protected topological states

    The subject of this paper is the phase transition between symmetry protected topological states (SPTs). We consider spatial dimension d and symmetry group G so that the cohomology group, Hd+1(G,U(1)), contains at least one Z2n or Z factor. We show that the phase transition between the trivial SPT and the root states that generate the Z2n or Z groups can be induced on the boundary of a (d+1)-dimensional G x ZT2-symmetric SPT by a ZT2 symmetry breaking field. Moreover we show these boundary phase transitions can be “transplanted” to d dimensions and realized in lattice models as a function of a tuning parameter. The price one pays is for the critical value of the tuning parameter there is an extra non-local (duality-like) symmetry. In the case where the phase transition is continuous, our theory predicts the presence of unusual (sometimes fractionalized) excitations corresponding to delocalized boundary excitations of the non-trivial SPT on one side of the transition. This theory also predicts other phase transition scenarios including first order transition and transition via an intermediate symmetry breaking phase.

  6. Blue–green afterglow of BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors

    Highlights: • Afterglow can be achieved when Eu{sup 2+} is absent in the DyAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors. • The afterglow of DyAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors is discernible to naked eyes for minutes. • Dy{sup 3+} introduced trap centers are believed to be responsible for the afterglow. - Abstract: Dy{sup 3+} doped barium aluminate (BaAl{sub 2}O{sub 4}:Dy{sup 3+}) phosphors were prepared via the sol–gel combustion route at the ignition temperature of 600 °C. The phosphors were characterized with X-ray diffractometry, scanning electron microscopy, transmission electron microscopy, photoluminescence spectroscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy. Regardless of the absence of Eu{sup 2+} luminescent centers, broadband blue–green afterglow with its peak at about 490 nm was recorded in the BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors. The decay profile of the blue–green afterglow can be best fitted into a two-component exponential function with the two lifetime decay constants to be 8.81 and 45.25 s, respectively. The observation of blue–green afterglow from BaAl{sub 2}O{sub 4}:Dy{sup 3+} in the absence of Eu{sup 2+} provides unique opportunity in unveiling the afterglow mechanisms of rare-earth doped alkaline-metal aluminates. Possible mechanisms on the blue–green afterglow in BaAl{sub 2}O{sub 4}:Dy{sup 3+} phosphors are discussed in terms of the Dy{sup 3+} ions introduced trap centers as well as luminescent centers in the crystal lattice.

  7. The effect of carbon on surface quality of solid-state-sintered silicon carbide as optical materials

    The microstructure and the distribution of carbon (C) in silicon carbide (SiC) ceramics were investigated by scanning electron microscopy and transmission electron microscopy. The results show that C can restrain the growth of SiC grains and densify SiC ceramics with the increase of the C content, but residual C introduces a new phase-C to SiC ceramics. The hardness of C is less than that of SiC, so it's difficult to be polished as optical materials. The existence of C phase doesn't lead to the increase of surface roughness on SiC optical materials, but it leads to the decrease of the reflectance of SiC as the optical materials because the optical absorption of C in visible light is stronger than that of SiC. It indicates that C content is very important to the surface properties of SiC, which will affect the coating of chemical vapor deposition SiC or Si on the surface of SiC ceramics because of the different physical and chemical properties between C and SiC. - Highlights: • The microstructure and the distribution of carbon were investigated. • A new phase in the optical materials is introduced. • It is difficult to be polished as the optical materials because of different phases. • Carbon leads to the decrease of reflectance because of its absorption to light wave. • The different properties may affect the coating of chemical vapor deposition on SiC.

  8. CTRP3 promotes energy production by inducing mitochondrial ROS and up-expression of PGC-1α in vascular smooth muscle cells

    C1q/tumor necrosis factor-related protein-3 (CTRP3) is an adipokine with modulation effects on metabolism and inflammation. Adenosine triphosphate (ATP) exerts multiple biological effects in vascular smooth muscle cells (VSMCs) and energy imbalance is involved in vascular diseases. This study aimed to explore the effect of CTRP3 on energy production and its underlying mechanism in VSMCs. Our results indicated that exogenous CTRP3 increased ATP synthesis and the protein expression of oxidative phosphorylation (OXPHOS)-related molecules, including peroxisome proliferator-activated receptor-γ coactivator (PGC)-1α, sirtuin-3 (SIRT3), complex I, II, III, and V in cultured VSMCs. Depletion of endogenous CTRP3 by small interfering RNA (siRNA) reduced ATP synthesis and the expression of those molecules. PGC-1α knockdown abrogated CTRP3-induced ATP production and OXPHOS-related protein expression. Furthermore, CTRP3 increased mitochondrial reactive oxygen species (ROS) production and mitochondrial membrane potential level. Pretreatment with N-acetyl-L-cysteine, a reactive oxygen species scavenger, and cyanidem-chlorophenylhydrazone, an uncoupler of OXPHOS, suppressed CTRP3-induced ROS production, PGC-1α expression and ATP synthesis. In conclusion, CTRP3 modulates mitochondrial energy production through targets of ROS and PGC-1α in VSMCs.

  9. A facile synthesis of novel nanorod-assembling hollow nanowires of cadmium sulfide/DBTU nanocomposite

    Novel nanorod-assembling hollow nanowires of cadmium sulfide/DBTU (N,N'-dibutylthiourea) nanocomposite were synthesized by reacting CdCl{sub 2} with in situ produced H{sub 2}S from reaction of butylamine and carbon disulfide at molar ratio 3:3 of CS{sub 2}:BuNH{sub 2} at 50 {sup o}C. This product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SEAD), energy dispersive X-ray spectroscopy (EDAX), thermogravimetric (TG), Fourier transform infrared (FTIR) and UV-vis absorption spectra. A plausible mechanism that the extending DBTU molecules in solvent of CS{sub 2} induce the formation of CdS/DBTU nanorods by coordinating with the formed CdS particles, and construct these nanorods to hollow nanowires via molecular interactions is proposed and discussed on the basis of experimental results. Photoluminescence (PL) of CdS/DBTU nanocomposite exhibits increasing emission intensity largely.


Search for:
All Records
Author / Contributor
"Yuan, Ming"

Refine by:
Resource Type
Availability
Publication Date
  • 2010: 2 results
  • 2011: 3 results
  • 2012: 2 results
  • 2013: 1 results
  • 2014: 1 results
  • 2015: 4 results
  • 2016: 3 results
  • 2017: 3 results
  • 2018: 2 results
  • 2019: 5 results
  • 2020: 2 results
  • 2021: 0 results
  • 2022: 1 results
  • 2023: 3 results
  • 2024: 1 results
2010
2024
Author / Contributor
Research Organization