Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information
  1. A superstructure optimization approach for process synthesis under complex reaction networks

    Here in this work, we present mixed integer linear programming methods for the synthesis of processes that involve complex reaction networks. Specifically, we consider the modeling of reactors and interconnecting streams in systems where the composition of the reactor inlet streams can vary substantially, thereby making the determination of the limiting component as well as the calculation of the stream heating/cooling and power requirements challenging. First, towards the modeling of reactors, we develop an extent-based method which detects the limiting reactant of each reaction occurring in parallel with others, based on the inlet flows of the reactants. Second, we develop a computationally tractable method for the calculation of the work and heating/cooling duty needed to condition any stream of a process based on simple calculations that can be performed offline. Finally, we present how the two aforementioned components can be integrated in an optimization model generated based on a process superstructure. We demonstrate the application of the developed methods for the synthesis of a biorefinery.

  2. Toward biomass-derived renewable plastics: Production of 2,5-furandicarboxylic acid from fructose

    We report a process for converting fructose, at a high concentration (15 weight %), to 2,5-furandicarboxylic acid (FDCA), a monomer used in the production of polyethylene furanoate, a renewable plastic. In our process, fructose is dehydrated to hydroxymethylfurfural (HMF) at high yields (70%) using a γ-valerolactone (GVL)/H2O solvent system. HMF is subsequently oxidized to FDCA over a Pt/C catalyst with 93% yield. The advantage of our system is the higher solubility of FDCA in GVL/H2O, which allows oxidation at high concentrations using a heterogeneous catalyst that eliminates the need for a homogeneous base. In addition, FDCA can be separated from the GVL/H2O solvent system by crystallization to obtain >99% pure FDCA. Our process eliminates the use of corrosive acids, because FDCA is an effective catalyst for fructose dehydration, leading to improved economic and environmental impact of the process. Our techno-economic model indicates that the overall process is economically competitive with current terephthalic acid processes.

  3. A co-solvent hydrolysis strategy for the production of biofuels: process synthesis and technoeconomic analysis

    We develop an integrated strategy for the production of ethanol from lignocellulosic biomass.

  4. Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization

    The production of renewable chemicals and biofuels must be cost- and performance- competitive with petroleum-derived equivalents to be widely accepted by markets and society. We propose a biomass conversion strategy that maximizes the conversion of lignocellulosic biomass (up to 80% of the biomass to useful products) into high-value products that can be commercialized, providing the opportunity for successful translation to an economically viable commercial process. Our fractionation method preserves the value of all three primary components: (i) cellulose, which is converted into dissolving pulp for fibers and chemicals production; (ii) hemicellulose, which is converted into furfural (a building block chemical); and (iii) lignin, which is converted into carbon products (carbon foam, fibers, or battery anodes), together producing revenues of more than $500 per dry metric ton of biomass. Once de-risked, our technology can be extended to produce other renewable chemicals and biofuels.


Search for:
All Records
Author / Contributor
"Won, Wangyun"

Refine by:
Resource Type
Availability
Author / Contributor
Research Organization