Li, Manni; Qiu, Tian; Welborn, Samuel; ... - Journal of Materials Chemistry. A
Using ai-GCMC simulations, operando WAXS, and kinetics analysis, we found that the high-rate performance of Sb as an alloy anode in Na-ion batteries is due to the presence of an amorphous intermediate phase formed during sodiation and desodiation.
Luo, Xin; Liu, Weiyan; Wang, Zeyu; ... - Journal of Chemical Physics
Halide perovskites are promising light-absorbing materials for high-efficiency solar cells, while the crystalline phase of halide perovskites may influence the device’s efficiency and stability. In this work, we investigated the thermally driven phase transition of perovskite (CsPbI x Br 3−x ), which was confirmed by electron diffraction and high-resolution transmission electron microscopy results. CsPbI x Br 3−x transitioned from δ phase to α phase when heated, and the γ phase was obtained when the sample was cooled down. The γ phase was stable as long as it was isolated from humidity and air. A template matching-based data analysis method enabled visualization of the thermally driven phase evolution of perovskite during heating. We also proposed a possible atomic movement in the process of phase transition based on our in situ heating experimental data. The results presented here may improve our understanding of the thermally driven phase transition of perovskite as well as provide a protocol for big-data analysis of in situ experiments.
In this paper, we numerically study the threefold accidental degeneracy conical dispersion (Driac-like cone) at the Brillouin zone center of the two-dimensional photonic crystals, which are composed of silicon pillars arranging in a triangular lattice. The effective permittivity and permeability near the Dirac-like point evolve from negative to positive by using the method of eigen-field averaging. Also, the isotropic behaviour of the Dirac-like cone is revealed by analysing the isofrequency contours. Moreover, we carry out numerical simulations including the reverse Snell’s law effect, negative Goos–Hänchen shifts and superfocusing lens to verify the negative refractive index characteristics of the designed structure. The proposed structure might find significant applications in the on-chip photonic interconnect and the photonic integrated circuit techniques.
Recent severe outages highlight the urgency of improving grid resiliency in the U.S. Microgrid formation schemes are proposed to restore critical loads after outages occur. Most distribution networks have unbalanced configurations that are not represented in sufficient detail by single-phase models. This study provides a microgrid formation plan that adopts a three-phase network model to represent unbalanced distribution networks. The problem formulation has a quadratic objective function with mixed-integer linear constraints. The three-phase network model enables us to examine the three-phase power outputs of distributed generators (DGs), preventing unbalanced operation that might trip DGs. Because the DG unbalanced operation constraint is non-convex, an iterative process is presented that checks whether the unbalanced operation limits for DGs are satisfied after each iteration of optimization. We also develop a relatively conservative linear approximation on the unbalanced operation constraint to handle larger networks. Compared with the iterative solution process, the conservative linear approximation is able to accelerate the solution process at the cost of sacrificing optimality to a limited extent. Simulation in the IEEE 34 node and IEEE 123 test feeders indicate that the proposed method yields more practical microgrid formations results. In addition, this paper explores the coordinated operation of DGs and energy storage (ES) installations. The unbalanced three-phase outputs of ESs combined with the relatively balanced outputs of DGs could supply unbalanced loads. In conclusion, the case study also validates the DG-ES coordination.