Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information
  1. Dispersive nonreciprocity between a qubit and a cavity

    The dispersive interaction between a qubit and a cavity is ubiquitous in circuit and cavity quantum electrodynamics. It describes the frequency shift of one quantum mode in response to excitations in the other and, in closed systems, is necessarily bidirectional, i.e., reciprocal. Here, we present an experimental study of a nonreciprocal dispersive-type interaction between a transmon qubit and a superconducting cavity, arising from a common coupling to dissipative intermediary modes with broken time reversal symmetry. We characterize the qubit-cavity dynamics, including asymmetric frequency pulls and photon shot noise dephasing, under varying degrees of nonreciprocity by tuning the magnetic field bias of a ferrite component in situ. We introduce a general master equation model for nonreciprocal interactions in the dispersive regime, providing a compact description of the observed qubit-cavity dynamics agnostic to the intermediary system. Our result provides an example of quantum nonreciprocal phenomena beyond the typical paradigms of non-Hermitian Hamiltonians and cascaded systems.

  2. Autonomous quantum error correction and fault-tolerant quantum computation with squeezed cat qubits

    We propose an autonomous quantum error correction scheme using squeezed cat (SC) code against excitation loss in continuous-variable systems. Through reservoir engineering, we show that a structured dissipation can stabilize a two-component SC while autonomously correcting the errors. The implementation of such dissipation only requires low-order nonlinear couplings among three bosonic modes or between a bosonic mode and a qutrit. While our proposed scheme is device independent, it is readily implementable with current experimental platforms such as superconducting circuits and trapped-ion systems. Compared to the stabilized cat, the stabilized SC has a much lower dominant error rate and a significantly enhanced noise bias. Furthermore, the bias-preserving operations for the SC have much lower error rates. In combination, the stabilized SC leads to substantially better logical performance when concatenating with an outer discrete-variable code. The surface-SC scheme achieves more than one order of magnitude increase in the threshold ratio between the loss rate κ1 and the engineered dissipation rate κ2. Under a practical noise ratio κ12 = 10-3, the repetition-SC scheme can reach a 10-15 logical error rate even with a small mean excitation number of 4, which already suffices for practically useful quantum algorithms.

  3. Detecting Spin-Bath Polarization with Quantum Quench Phase Shifts of Single Spins in Diamond

    Single-qubit sensing protocols can be used to measure qubit-bath coupling parameters. However, for sufficiently large coupling, the sensing protocol itself perturbs the bath, which is predicted to result in a characteristic response in the sensing measurements. Here, we observe this bath perturbation, also known as a quantum quench, by preparing the nuclear spin bath of a nitrogen-vacancy (NV) center in polarized initial states and performing phase-resolved spin-echo measurements on the NV electron spin. These measurements reveal a time-dependent phase determined by the initial state of the bath. We derive the relationship between the sensor phase and the Gaussian spin-bath polarization and apply it to reconstruct both the axial and transverse polarization components. Using this insight, we optimize the transfer efficiency of our dynamic nuclear polarization sequence. This technique for directly measuring bath polarization may assist in preparing high-fidelity quantum memory states, improving nanoscale NMR methods, and investigating non-Gaussian quantum baths.

  4. Distinguishing between Quantum and Classical Markovian Dephasing Dissipation

    Understanding whether dissipation in an open quantum system is truly quantum is a question of both fundamental and practical interest. We consider n qubits subject to correlated Markovian dephasing and present a sufficient condition for when bath-induced dissipation can generate system entanglement and hence must be considered quantum. Surprisingly, we find that the presence or absence of time-reversal symmetry plays a crucial role: broken time-reversal symmetry is required for dissipative entanglement generation. Further, simply having nonzero bath susceptibilities is not enough for the dissipation to be quantum. We also present an explicit experimental protocol for identifying truly quantum dephasing dissipation and lay the groundwork for studying more complex dissipative systems and finding optimal noise mitigating strategies.

  5. Intrinsic and induced quantum quenches for enhancing qubit-based quantum noise spectroscopy

    Quantum sensing protocols that exploit the dephasing of a probe qubit are powerful and ubiquitous methods for interrogating an unknown environment. They have a variety of applications, ranging from noise mitigation in quantum processors, to the study of correlated electron states. Here, we discuss a simple strategy for enhancing these methods, based on the fact that they often give rise to an inadvertent quench of the probed system: there is an effective sudden change in the environmental Hamiltonian at the start of the sensing protocol. These quenches are extremely sensitive to the initial environmental state, and lead to observable changes in the sensor qubit evolution. We show how these new features give access to environmental response properties. This enables methods for direct measurement of bath temperature, and for detecting non-thermal equilibrium states. We also discuss how to deliberately control and modulate this quench physics, which enables reconstruction of the bath spectral function. Extensions to non-Gaussian quantum baths are also discussed, as is the application of our ideas to a range of sensing platforms (e.g., nitrogen-vacancy (NV) centers in diamond, semiconductor quantum dots, and superconducting circuits).

  6. Quantum Spin Probe of Single Charge Dynamics

  7. Guiding diamond spin qubit growth with computational methods


Search for:
All Records
Author / Contributor
"Wang, Yu-Xin"

Refine by:
Resource Type
Availability
Publication Date
  • 2020: 1 results
  • 2021: 1 results
  • 2022: 1 results
  • 2023: 2 results
  • 2024: 4 results
2020
2024
Author / Contributor
Research Organization