skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Implementation of Dynamic Extensible Adaptive Locally Exchangeable Measures (IDEALEM) v 0.1

    Handling large streaming data is essential for various applications such as network traffic analysis, social networks, energy cost trends, and environment modeling. However, it is in general intractable to store, compute, search, and retrieve large streaming data. This software addresses a fundamental issue, which is to reduce the size of large streaming data and still obtain accurate statistical analysis. As an example, when a high-speed network such as 100 Gbps network is monitored, the collected measurement data rapidly grows so that polynomial time algorithms (e.g., Gaussian processes) become intractable. One possible solution to reduce the storage of vast amounts ofmore » measured data is to store a random sample, such as one out of 1000 network packets. However, such static sampling methods (linear sampling) have drawbacks: (1) it is not scalable for high-rate streaming data, and (2) there is no guarantee of reflecting the underlying distribution. In this software, we implemented a dynamic sampling algorithm, based on the recent technology from the relational dynamic bayesian online locally exchangeable measures, that reduces the storage of data records in a large scale, and still provides accurate analysis of large streaming data. The software can be used for both online and offline data records.« less
  2. Comparison of Clustering Techniques for Residential Energy Behavior using Smart Meter Data

    Current practice in whole time series clustering of residential meter data focuses on aggregated or subsampled load data at the customer level, which ignores day-to-day differences within customers. This information is critical to determine each customer’s suitability to various demand side management strategies that support intelligent power grids and smart energy management. Clustering daily load shapes provides fine-grained information on customer attributes and sources of variation for subsequent models and customer segmentation. In this paper, we apply 11 clustering methods to daily residential meter data. We evaluate their parameter settings and suitability based on 6 generic performance metrics and post-checkingmore » of resulting clusters. Finally, we recommend suitable techniques and parameters based on the goal of discovering diverse daily load patterns among residential customers. To the authors’ knowledge, this paper is the first robust comparative review of clustering techniques applied to daily residential load shape time series in the power systems’ literature.« less
  3. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology,more » our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.« less
  4. Time-Series Forecast Modeling on High-Bandwidth Network Measurements

    With the increasing number of geographically distributed scientific collaborations and the growing sizes of scientific data, it has become challenging for users to achieve the best possible network performance on a shared network. In this paper, we have developed a model to forecast expected bandwidth utilization on high-bandwidth wide area networks. The forecast model can improve the efficiency of the resource utilization and scheduling of data movements on high-bandwidth networks to accommodate ever increasing data volume for large-scale scientific data applications. A univariate time-series forecast model is developed with the Seasonal decomposition of Time series by Loess (STL) and themore » AutoRegressive Integrated Moving Average (ARIMA) on Simple Network Management Protocol (SNMP) path utilization measurement data. Compared with the traditional approach such as Box-Jenkins methodology to train the ARIMA model, our forecast model reduces computation time up to 92.6 %. It also shows resilience against abrupt network usage changes. Finally, our forecast model conducts the large number of multi-step forecast, and the forecast errors are within the mean absolute deviation (MAD) of the monitored measurements.« less
  5. An approach to online network monitoring using clustered patterns

    Network traffic monitoring is a core element in network operations and management for various purposes such as anomaly detection, change detection, and fault/failure detection. In this study, we introduce a new approach to online monitoring using a pattern-based representation of the network traffic. Unlike the past online techniques limited to a single variable to summarize (e.g., sketch), the focus of this study is on capturing the network state from the multivariate attributes under consideration. To this end, we employ clustering with its benefit of the aggregation of multidimensional variables. The clustered result represents the state of the network with regardmore » to the monitored variables, which can also be compared with the previously observed patterns visually and quantitatively. Finally, we demonstrate the proposed method with two popular use cases, one for estimating state changes and the other for identifying anomalous states, to confirm its feasibility.« less
  6. A lightweight network anomaly detection technique

    While the network anomaly detection is essential in network operations and management, it becomes further challenging to perform the first line of detection against the exponentially increasing volume of network traffic. In this paper, we develop a technique for the first line of online anomaly detection with two important considerations: (i) availability of traffic attributes during the monitoring time, and (ii) computational scalability for streaming data. The presented learning technique is lightweight and highly scalable with the beauty of approximation based on the grid partitioning of the given dimensional space. With the public traffic traces of KDD Cup 1999 andmore » NSL-KDD, we show that our technique yields 98.5% and 83% of detection accuracy, respectively, only with a couple of readily available traffic attributes that can be obtained without the help of post-processing. Finally, the results are at least comparable with the classical learning methods including decision tree and random forest, with approximately two orders of magnitude faster learning performance.« less
  7. Machine learning based job status prediction in scientific clusters

    Large high-performance computing systems are built with increasing number of components with more CPU cores, more memory, and more storage space. At the same time, scientific applications have been growing in complexity. Together, they are leading to more frequent unsuccessful job statuses on HPC systems. From measured job statuses, 23.4% of CPU time was spent to the unsuccessful jobs. Here, we set out to study whether these unsuccessful job statuses could be anticipated from known job characteristics. To explore this possibility, we have developed a job status prediction method for the execution of jobs on scientific clusters. The Random Forestsmore » algorithm was applied to extract and characterize the patterns of unsuccessful job statuses. Experimental results show that our method can predict the unsuccessful job statuses from the monitored ongoing job executions in 99.8% the cases with 83.6% recall and 94.8% precision. Lastly, this prediction accuracy can be sufficiently high that it can be used to mitigation procedures of predicted failures.« less
  8. Novel Data Reduction Based on Statistical Similarity

    Applications such as scientific simulations and power grid monitoring are generating so much data quickly that compression is essential to reduce storage requirement or transmission capacity. To achieve better compression, one is often willing to discard some repeated information. These lossy compression methods are primarily designed to minimize the Euclidean distance between the original data and the compressed data. But this measure of distance severely limits either reconstruction quality or compression performance. In this paper, we propose a new class of compression method by redefining the distance measure with a statistical concept known as exchangeability. This approach reduces the storagemore » requirement and captures essential features, while reducing the storage requirement. In this paper, we report our design and implementation of such a compression method named IDEALEM. To demonstrate its effectiveness, we apply it on a set of power grid monitoring data, and show that it can reduce the volume of data much more than the best known compression method while maintaining the quality of the compressed data. Finally, in these tests, IDEALEM captures extraordinary events in the data, while its compression ratios can far exceed 100.« less
  9. Performance Analysis Tool for HPC and Big Data Applications on Scientific Clusters

    Big data is prevalent in HPC computing. Many HPC projects rely on complex workflows to analyze terabytes or petabytes of data. These workflows often require running over thousands of CPU cores and performing simultaneous data accesses, data movements, and computation. It is challenging to analyze the performance involving terabytes or petabytes of workflow data or measurement data of the executions, from complex workflows over a large number of nodes and multiple parallel task executions. To help identify performance bottlenecks or debug the performance issues in large-scale scientific applications and scientific clusters, we have developed a performance analysis framework, using state-ofthe-more » art open-source big data processing tools. Our tool can ingest system logs and application performance measurements to extract key performance features, and apply the most sophisticated statistical tools and data mining methods on the performance data. It utilizes an efficient data processing engine to allow users to interactively analyze a large amount of different types of logs and measurements. To illustrate the functionality of the big data analysis framework, we conduct case studies on the workflows from an astronomy project known as the Palomar Transient Factory (PTF) and the job logs from the genome analysis scientific cluster. Our study processed many terabytes of system logs and application performance measurements collected on the HPC systems at NERSC. The implementation of our tool is generic enough to be used for analyzing the performance of other HPC systems and Big Data workows.« less
  10. Advanced Performance Modeling with Combined Passive and Active Monitoring

    To improve the efficiency of resource utilization and scheduling of scientific data transfers on high-speed networks, the "Advanced Performance Modeling with combined passive and active monitoring" (APM) project investigates and models a general-purpose, reusable and expandable network performance estimation framework. The predictive estimation model and the framework will be helpful in optimizing the performance and utilization of networks as well as sharing resources with predictable performance for scientific collaborations, especially in data intensive applications. Our prediction model utilizes historical network performance information from various network activity logs as well as live streaming measurements from network peering devices. Historical network performancemore » information is used without putting extra load on the resources by active measurement collection. Performance measurements collected by active probing is used judiciously for improving the accuracy of predictions.« less

Search for:
All Records
Creator / Author
"Sim, Alex"

Refine by:
Resource Type
Publication Date
Creator / Author
Research Organization