skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Abstract not provided.
  2. Abstract not provided.
  3. Here, epsilon-near-zero materials provide a new path for tailoring light-matter interactions at the nanoscale. In this paper, we analyze a compact electroabsorption modulator based on epsilon-near-zero confinement in transparent conducting oxide films. The non-resonant modulator operates through field-effect carrier density tuning. We compare the performance of modulators composed of two different conducting oxides, namely indium oxide (In2O3) and cadmium oxide (CdO), and show that better modulation performance is achieved when using high-mobility (i.e. low-loss) epsilon-near-zero materials such as CdO. In particular, we show that non-resonant electroabsorption modulators with sub-micron lengths and greater than 5 dB extinction ratios may be achievedmore » through the proper selection of high-mobility transparent conducting oxides, opening a path for device miniaturization and increased modulation depth.« less
  4. A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitchmore » is preserved across the enlarged pixel array.« less
  5. Abstract not provided.
  6. Abstract not provided.
  7. Abstract not provided.
  8. Abstract not provided.
  9. Abstract not provided.
  10. Abstract not provided.
...

Search for:
All Records
Creator / Author
"Serkland, Darwin K"

Refine by:
Resource Type
Availability
Publication Date
Creator / Author
Research Organization