skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Research on nuclear thermal propulsion systems (NTP) have been in forefront of the space nuclear power and propulsion due to their design simplicity and their promise for providing very high thrust at reasonably high specific impulse. During NERVA-ROVER program in late 1950's till early 1970's, the United States developed and ground tested about 18 NTP systems without ever deploying them into space. The NERVA-ROVER program included development and testing of NTP systems with very high thrust (~250,000 lbf) and relatively high specific impulse (~850 s). High thrust to weight ratio in NTP systems is an indicator of high acceleration thatmore » could be achieved with these systems. The specific impulse in the lowest mass propellant, hydrogen, is a function of square root of absolute temperature in the NTP thrust chamber. Therefor optimizing design performance of NTP systems would require achieving the highest possible hydrogen temperature at reasonably high thrust to weight ratio. High hydrogen exit temperature produces high specific impulse that is a diret measure of propellant usage efficiency.« less
  2. Any reactor that utilizes fuel consisting of a fissile material in a gaseous state may be referred to as a gaseous core reactor (GCR). Studies on GCRs have primarily been limited to the conceptual phase, mostly due to budget cuts and program cancellations in the early 1970's. A few scientific experiments have been conducted on candidate concepts, primarily of static pressure fissile gas filling a cylindrical or spherical cavity surrounded by a moderating shell, such as beryllium, heavy water, or graphite. The main interest in this area of nuclear power generation is for space applications. The interest in space applicationsmore » has developed due to the promise of significant enhancement in fuel utilization, safety, plant efficiency, special high-performance features, load-following capabilities, power conversion optimization, and other key aspects of nuclear power generation. The design of a successful GCR adapted for use in space is complicated. The fissile material studied in the pa st has been in a fluorine compound, either a tetrafluoride or a hexafluoride. Both of these molecules have an impact on the structural material used in the making of a GCR. Uranium hexafluoride as a fuel allows for a lower operating temperature, but at temperatures greater than 900K becomes essentially impossible to contain. This difficulty with the use of UF6 has caused engineers and scientists to use uranium tetrafluoride, which is a more stable molecule but has the disadvantage of requiring significantly higher operating temperatures. Gas core reactors have traditionally been studied in a steady state configuration. In this manner a fissile gas and working fluid are introduced into the core, called a cavity, that is surrounded by a reflector constructed of materials such as Be or BeO. These reactors have often been described as cavity reactors because the density of the fissile gas is low and criticality is achieved only by means of the reflector to reduce neutron leakage from the core. Still there are problems of containment since many of the proposed vessel materials such as W or Mo have high neutron cross sections making the design of a critical system difficult. There is also the possibility for a GCR to remain in a subcritical state, and by the use of a shockwave mechanism, increase the pressure and temperature inside the core to achieve criticality. This type of GCR is referred to as a shockwave-driven pulsed gas core reactor. These two basic designs were evaluated as advance concepts for space power and propulsion.« less
  3. This report focuses on the power conversion cycle and efficiency. The technical issues involving the ionization mechanisms, the power management and distribution and radiation shielding and safety will be discussed in future reports.
  4. An innovative reactor core design based on advanced, mixed carbide fuels was analyzed for nuclear space power applications. Solid solution, mixed carbide fuels such as (U,Zr,Nb)c and (U,Zr, Ta)C offer great promise as an advanced high temperature fuel for space power reactors.

Search for:
All Records
Creator / Author
"Samim Anghaie"

Refine by:
Resource Type
Publication Date
Creator / Author
Research Organization