skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Transmission Line Ampacity Improvements of AltaLink Wind Plant Overhead Tie-Lines Using Weather-Based Dynamic Line Rating

    Abstract—Overhead transmission lines (TLs) are conventionally given seasonal ratings based on conservative environmental assumptions. Such an approach often results in underutilization of the line ampacity as the worst conditions prevail only for a short period over a year/season. We presents dynamic line rating (DLR) as an enabling smart grid technology that adaptively computes ratings of TLs based on local weather conditions to utilize additional headroom of existing lines. In particular, general line ampacity state solver utilizes measured weather data for computing the real-time thermal rating of the TLs. The performance of the presented method is demonstrated from a field studymore » of DLR technology implementation on four TL segments at AltaLink, Canada. The performance is evaluated and quantified by comparing the existing static and proposed dynamic line ratings, and the potential benefits of DLR for enhanced transmission assets utilization. For the given line segments, the proposed DLR results in real-time ratings above the seasonal static ratings for most of the time; up to 95.1% of the time, with a mean increase of 72% over static rating.« less
  2. Improvement of Transmission Line Ampacity Utilization by Weather-Based Dynamic Line Rating

    Most of the existing overhead transmission lines (TLs) are assigned a static rating by considering the conservative environmental conditions (e.g., high ambient temperature and low wind speed). Such a conservative approach often results in underutilization of line ampacity because the worst conditions prevail only for a short period of time during the year. Dynamic line rating (DLR) utilizes local meteorological conditions and grid loadings to adaptively compute additional line ampacity headroom that may be available due to favorable local environmental conditions. This paper details Idaho National Laboratory-developed weather-based DLR, which utilizes a state-of-the-art general line ampacity state solver for real-timemore » computation of thermal ratings of TLs. Performance of the proposed DLR solution is demonstrated in existing TL segments at AltaLink, Canada, and the potential benefits of the proposed DLR for enhanced transmission ampacity utilization are quantified. Moreover, we investigated a hypothetical case for emulating the impact of an additional wind plant near the test grid. Furthermore, the results for the given system and data configurations demonstrated that real-time ratings were above the seasonal static ratings for at least 76.6% of the time, with a mean increase of 22% over the static rating, thereby demonstrating huge potential for improvement on ampacity utilization.« less

Search for:
All Records
Creator / Author
"Renwick, Rodger"

Refine by:
Resource Type
Availability
Creator / Author
Research Organization