skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Searches over graphs representing geospatial-temporal remote sensing data

    Various technologies pertaining to identifying objects of interest in remote sensing images by searching over geospatial-temporal graph representations are described herein. Graphs are constructed by representing objects in remote sensing images as nodes, and connecting nodes with undirected edges representing either distance or adjacency relationships between objects and directed edges representing changes in time. Geospatial-temporal graph searches are made computationally efficient by taking advantage of characteristics of geospatial-temporal data in remote sensing images through the application of various graph search techniques.
  2. Geospatial-temporal semantic graph representations of trajectories from remote sensing and geolocation data

    Various technologies for facilitating analysis of large remote sensing and geolocation datasets to identify features of interest are described herein. A search query can be submitted to a computing system that executes searches over a geospatial temporal semantic (GTS) graph to identify features of interest. The GTS graph comprises nodes corresponding to objects described in the remote sensing and geolocation datasets, and edges that indicate geospatial or temporal relationships between pairs of nodes in the nodes. Trajectory information is encoded in the GTS graph by the inclusion of movable nodes to facilitate searches for features of interest in the datasetsmore » relative to moving objects such as vehicles.« less
  3. Registering coherent change detection products associated with large image sets and long capture intervals

    A set of co-registered coherent change detection (CCD) products is produced from a set of temporally separated synthetic aperture radar (SAR) images of a target scene. A plurality of transformations are determined, which transformations are respectively for transforming a plurality of the SAR images to a predetermined image coordinate system. The transformations are used to create, from a set of CCD products produced from the set of SAR images, a corresponding set of co-registered CCD products.
  4. Superpixel segmentation using multiple SAR image products.

    Abstract not provided.
  5. The PANTHER User Experience

    This document describes the PANTHER R&D Application, a proof-of-concept user interface application developed under the PANTHER Grand Challenge LDRD. The purpose of the application is to explore interaction models for graph analytics, drive algorithmic improvements from an end-user point of view, and support demonstration of PANTHER technologies to potential customers. The R&D Application implements a graph-centric interaction model that exposes analysts to the algorithms contained within the GeoGraphy graph analytics library. Users define geospatial-temporal semantic graph queries by constructing search templates based on nodes, edges, and the constraints among them. Users then analyze the results of the queries using bothmore » geo-spatial and temporal visualizations. Development of this application has made user experience an explicit driver for project and algorithmic level decisions that will affect how analysts one day make use of PANTHER technologies.« less
  6. Creating Fantastic PI Workshops

    The goal of this SAND report is to provide guidance for other groups hosting workshops and peerto-peer learning events at Sandia. Thus this SAND report provides detail about our team structure, how we brainstormed workshop topics and developed the workshop structure. A Workshop “Nuts and Bolts” section provides our timeline and check-list for workshop activities. The survey section provides examples of the questions we asked and how we adapted the workshop in response to the feedback.

Search for:
All Records
Creator / Author
"Perkins, David Nikolaus"

Refine by:
Resource Type
Availability
Publication Date
Creator / Author
Research Organization