skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Abstract not provided.
  2. Abstract not provided.
  3. Abstract not provided.
  4. Abstract not provided.
  5. Abstract not provided.
  6. InP substrates form the starting point for a wide variety of semiconductor devices. The surface morphology produced during epitaxy depends critically on the starting substrate. We evaluated (1 0 0)-oriented InP wafers from three different vendors by growing thick (5 mu m) lattice-matched epilayers of InP, Gain As, and AlInAs. We assessed the surfaces with differential interference contrast microscopy and atomic force microscopy. Wafers with near singular (1 0 0) orientations produced inferior surfaces in general. Vicinal substrates with small misorientations improved the epitaxial surface for InP dramatically, reducing the density of macroscopic defects while maintaining a low RMS roughness.more » GaInAs and AlInAs epitaxy step-bunched forming undulations along the miscut direction. Sulfur-doped wafers were considered for singular (1 0 0) and for 0.2 degrees misorientation toward (1 1 0). We found that mound defects observed for InP and GaInAs layers on iron-doped singular wafers were absent for singular sulfur-doped wafers. These observations support the conclusion that dislocation termination at the surface and expansion of the step spiral lead to the macroscopic defects observed.« less
  7. Abstract not provided.
  8. Abstract not provided.
  9. Abstract not provided.
  10. Abstract not provided.

Search for:
All Records
Creator / Author
"Overberg, Mark E."

Refine by:
Resource Type
Publication Date
Creator / Author
Research Organization