Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information
  1. Leaf functional traits highlight phenotypic variation of two tree species in the urban environment

    Urbanization is transforming landscapes globally, altering environmental conditions that affect ecosystem functioning, particularly in urban areas where trees are crucial for regulating microclimates, improving air quality, and sustaining biodiversity. This study investigates the environmental differences and tree leaf structure and morphology in urban and suburban sites in the Chicago Metropolitan Region. The leaf functional traits of Norway Maple and Little − leaved Linden were studied in three locations in the summer of 2023: an urban park (University of Illinois Chicago, Chicago, IL), a suburban park (Morton Arboretum, Lisle, IL), and a suburban residential site (Lombard, IL). The urban site had higher daytime and nighttime air, and land surface temperatures compared to the suburban sites with significant fluctuations observed across the sites. Cumulative growing degree days, a measure of potential photosynthetically active days, were also higher in the urban park than in the suburban sites between March and August. Norway Maple trees growing in the urban site displayed higher specific leaf area (SLA) and lower leaf dry matter content (LDMC) than in the suburban sites, resulting in thinner leaves. Similarly, Little−leaved Linden trees in the suburban residential site displayed higher SLA and lower LDMC than those in the suburban park. The values of gas exchange traits − namely photosynthetic assimilation, transpiration rates, and stomatal conductance − of Norway Maple were higher at the urban site compared to suburban sites as temperatures increased during the summer. Norway Maple gas exchange values decreased as the growing season progressed, as expected by ontogeny. In contrast, Little−leaved Linden maintained similar leaf gas exchange values throughout the growing season. Both species in the urban site exhibited lower instantaneous water use efficiency and reduced LDMC, suggesting greater water loss in response to elevated temperatures compared to suburban park and residential sites. Comparisons with existing global trait databases emphasize the need for localized data to accurately capture site−specific responses. Although some traits aligned with database values, others deviated significantly, underscoring the importance of comprehensive, site−specific datasets for robust ecosystem modeling and management strategies.

  2. Observational Constraints on the Spatial Effect of Greenness and Canopy Cover on Urban Heat in a Major Midlatitude City

    Abstract Urban heat stress is a critical issue, particularly in cities where dense infrastructure and limited green space exacerbate temperature extremes. This study investigates the impact of greenery (EVI2), canopy cover (CC), impervious cover (IC), and water bodies on heat index in Chicago using high‐resolution data from the Heat Watch campaign. We find that EVI2, CC and proximity to water body significantly reduce heat while IC increases heat, particularly in the afternoon when solar radiation is intense. Additionally, the effective radius that land cover impacts heat is smaller in the afternoon. The combined effect analysis indicates that enhancing total greenness, not just canopy cover, is the most effective strategy to reduce heat. This study underscores the importance of strategic vegetation management, highlighting the critical role of integrated approaches in reducing urban heat.

  3. Urban Land Surface Temperature Downscaling in Chicago: Addressing Ethnic Inequality and Gentrification

    In this study, we developed a XGBoost-based algorithm to downscale 2 km-resolution land surface temperature (LST) data from the GOES satellite to a finer 70 m resolution, using ancillary variables including NDVI, NDBI, and DEM. This method demonstrated a superior performance over the conventional TsHARP technique, achieving a reduced RMSE of 1.90 °C, compared to 2.51 °C with TsHARP. Our approach utilizes the geostationary GOES satellite data alongside high-resolution ECOSTRESS data, enabling hourly LST downscaling to 70 m—a significant advancement over previous methodologies that typically measure LST only once daily. Applying these high-resolution LST data, we examined the hottest days in Chicago and their correlation with ethnic inequality. Our analysis indicated that Hispanic/Latino communities endure the highest LSTs, with a maximum LST that is 1.5 °C higher in blocks predominantly inhabited by Hispanic/Latino residents compared to those predominantly occupied by White residents. This study highlights the intersection of urban development, ethnic inequality, and environmental inequities, emphasizing the need for targeted urban planning to mitigate these disparities. The enhanced spatial and temporal resolution of our LST data provides deeper insights into diurnal temperature variations, crucial for understanding and addressing the urban heat distribution and its impact on vulnerable communities.

  4. Effect of Environmental and Socioeconomic Factors on Increased Early Childhood Blood Lead Levels: A Case Study in Chicago

    This study analyzes the prevalence of elevated blood lead levels (BLLs) in children across Chicagoland zip codes from 2019 to 2021, linking them to socioeconomic, environmental, and racial factors. Wilcoxon tests and generalized additive model (GAM) regressions identified economic hardship, reflected in per capita income and unemployment rates, as a significant contributor to increased lead poisoning (LP) rates. Additionally, LP rates correlate with the average age of buildings, particularly post the 1978 lead paint ban, illustrating policy impacts on health outcomes. The study further explores the novel area of land surface temperature (LST) effects on LP, finding that higher nighttime LST, indicative of urban heat island effects, correlates with increased LP. This finding gains additional significance in the context of anthropogenic climate change. When these factors are combined with the ongoing expansion of urban territories, a significant risk exists of escalating LP rates on a global scale. Racial disparity analysis revealed that Black and Hispanic/Latino populations face higher LP rates, primarily due to unemployment and older housing. The study underscores the necessity for targeted public health strategies to address these disparities, emphasizing the need for interventions that cater to the unique challenges of these at-risk communities.

  5. Assessment of U.S. Urban Surface Temperature Using GOES-16 and GOES-17 Data: Urban Heat Island and Temperature Inequality

    Abstract This study utilizes hourly land surface temperature (LST) data from the Geostationary Operational Environmental Satellite (GOES) to analyze the seasonal and diurnal characteristics of surface urban heat island intensity (SUHII) across 120 largest U.S. cities and their surroundings. Distinct patterns emerge in the classification of seasonal daytime SUHII and nighttime SUHII. Specifically, the enhanced vegetation index (EVI) and albedo (ALB) play pivotal roles in influencing these temperature variations. The diurnal cycle of SUHII further reveals different trends, suggesting that climate conditions, urban and nonurban land covers, and anthropogenic activities during nighttime hours affect SUHII peaks. Exploring intracity LST dynamics, the study reveals a significant correlation between urban intensity (UI) and LST, with LST rising as UI increases. Notably, populations identified as more vulnerable by the social vulnerability index (SVI) are found in high UI regions. This results in discernible LST inequality, where the more vulnerable communities are under higher LST conditions, possibly leading to higher heat exposure. This comprehensive study accentuates the significance of tailoring city-specific climate change mitigation strategies, illuminating LST variations and their intertwined societal implications.

  6. Impact of air and refrigerant maldistributions on the performance of finned-tube evaporators with R-22 and R-407C. Final Report

    The report presents basic features of the evaporator model, EVAP5M, and simulation results for an evaporator operating with R-22 and R-407C at non-uniform air and refrigerant distributions. EVAP5M was developed under this project to provide a tool for simulating a finned-tube air-to refrigerant evaporator operating with single-component refrigerants and refrigerant mixtures. The tube-by-tube modeling approach allowed for one-dimensional non-uniformity in the air velocity profile and arbitrary maldistribution on the refrigerant side. The model uses the Carnahan-Starling-DeSantis equation of state for calculating refrigerant thermodynamic properties. Simulations were performed for three evaporator slabs with different refrigerant circuitry designs. For the maldistributions studied, maldistributed air caused much more significant capacity degradation than maldistributed refrigerant. In some cases capacity decreased to as low as 57 percent of the value obtained for uniform velocity profile. Simulation results showed that R-22 and R-407C have similar susceptibility to capacity degradation. Relative change of capacity varied depending on the evaporator design and maldistribution studied. 17 refs., 18 figs., 9 tabs.


Search for:
All Records
Author / Contributor
"Lee, Jangho"

Refine by:
Resource Type
Availability
Author / Contributor
Research Organization