skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Analysis of the quantum-confined stark effect in InGaN single quantum wells.

    No abstract prepared.
  2. Novel optical probes of InGaN/GaN light-emitting diodes.

    Abstract not provided.
  3. Electroreflectance studies of stark-shifts and polarization-induced electric fields in InGaN/GaN single quantum wells.

    To observe the effects of polarization fields and screening, we have performed contacted electroreflectance (CER) measurements on In{sub 0.07}Ga{sub 0.93}N/GaN single quantum well light emitting diodes for different reverse bias voltages. Room-temperature CER spectra exhibited three features which are at lower energy than the GaN band gap and are associated with the quantum well. The position of the lowest-energy experimental peak, attributed to the ground-state quantum well transition, exhibited a limited Stark shift except at large reverse bias when a redshift in the peak energy was observed. Realistic band models of the quantum well samples were constructed using self-consistent Schroedinger-Poissonmore » solutions, taking polarization and screening effects in the quantum well fully into account. The model predicts an initial blueshift in transition energy as reverse bias voltage is increased, due to the cancellation of the polarization electric field by the depletion region field and the associated shift due to the quantum-confined Stark effect. A redshift is predicted to occur as the applied field is further increased past the flatband voltage. While the data and the model are in reasonable agreement for voltages past the flatband voltage, they disagree for smaller values of reverse bias, when charge is stored in the quantum well, and no blueshift is observed experimentally. To eliminate the blueshift and screen the electric field, we speculate that electrons in the quantum well are trapped in localized states.« less
  4. Electronic properties of the AlGaN/GaN heterostructure and 2-dimensional electron gas observed by electroreflectance.

    No abstract prepared.
  5. Advances in AlGaN-based deep UV LEDs.

    Materials studies of high Al-content (> 30%) AlGaN epilayers and the performance of AlGaN-based LEDs with emission wavelengths shorter than 300 nm are reported. N-type AlGaN films with Al compositions greater than 30% reveal a reduction in conductivity with increasing Al composition. The reduction of threading dislocation density from the 1-5 x10{sup 10} cm{sup -2} range to the 6-9 x 10{sup 9}cm{sup -2} range results in an improvement of electrical conductivity and Al{sub 0.90}Ga{sub 0.10}N films with n= 1.6e17 cm-3 and f{acute Y}=20 cm2/Vs have been achieved. The design, fabrication and packaging of flip-chip bonded deep UV LEDs is described.more » Large area (1 mm x 1 mm) LED structures with interdigitated contacts demonstrate output powers of 2.25 mW at 297 nm and 1.3 mW at 276 nm when operated under DC current. 300 f{acute Y}m x 300 f{acute Y}m LEDs emitting at 295 nm and operated at 20 mA DC have demonstrated less than 50% drop in output power after more than 2400 hours of operation. Optimization of the electron block layer in 274 nm LED structures has enabled a significant reduction in deep level emission bands, and a peak quantum well to deep level ratio of 700:1 has been achieved for 300 f{acute Y}m x 300 f{acute Y}m LEDs operated at 100 mA DC. Shorter wavelength LED designs are described, and LEDs emitting at 260 nm, 254nm and 237 nm are reported.« less
  6. III-antimonide/nitride based semiconductors for optoelectronic materials and device studies : LDRD 26518 final report.

    The goal of this LDRD was to investigate III-antimonide/nitride based materials for unique semiconductor properties and applications. Previous to this study, lack of basic information concerning these alloys restricted their use in semiconductor devices. Long wavelength emission on GaAs substrates is of critical importance to telecommunication applications for cost reduction and integration into microsystems. Currently InGaAsN, on a GaAs substrate, is being commercially pursued for the important 1.3 micrometer dispersion minima of silica-glass optical fiber; due, in large part, to previous research at Sandia National Laboratories. However, InGaAsN has not shown great promise for 1.55 micrometer emission which is themore » low-loss window of single mode optical fiber used in transatlantic fiber. Other important applications for the antimonide/nitride based materials include the base junction of an HBT to reduce the operating voltage which is important for wireless communication links, and for improving the efficiency of a multijunction solar cell. We have undertaken the first comprehensive theoretical, experimental and device study of this material with promising results. Theoretical modeling has identified GaAsSbN to be a similar or potentially superior candidate to InGaAsN for long wavelength emission on GaAs. We have confirmed these predictions by producing emission out to 1.66 micrometers and have achieved edge emitting and VCSEL electroluminescence at 1.3 micrometers. We have also done the first study of the transport properties of this material including mobility, electron/hole mass, and exciton reduced mass. This study has increased the understanding of the III-antimonide/nitride materials enough to warrant consideration for all of the target device applications.« less
  7. Materials physics and device development for improved efficiency of GaN HEMT high power amplifiers.

    GaN-based microwave power amplifiers have been identified as critical components in Sandia's next generation micro-Synthetic-Aperture-Radar (SAR) operating at X-band and Ku-band (10-18 GHz). To miniaturize SAR, GaN-based amplifiers are necessary to replace bulky traveling wave tubes. Specifically, for micro-SAR development, highly reliable GaN high electron mobility transistors (HEMTs), which have delivered a factor of 10 times improvement in power performance compared to GaAs, need to be developed. Despite the great promise of GaN HEMTs, problems associated with nitride materials growth currently limit gain, linearity, power-added-efficiency, reproducibility, and reliability. These material quality issues are primarily due to heteroepitaxial growth of GaNmore » on lattice mismatched substrates. Because SiC provides the best lattice match and thermal conductivity, SiC is currently the substrate of choice for GaN-based microwave amplifiers. Obviously for GaN-based HEMTs to fully realize their tremendous promise, several challenges related to GaN heteroepitaxy on SiC must be solved. For this LDRD, we conducted a concerted effort to resolve materials issues through in-depth research on GaN/AlGaN growth on SiC. Repeatable growth processes were developed which enabled basic studies of these device layers as well as full fabrication of microwave amplifiers. Detailed studies of the GaN and AlGaN growth of SiC were conducted and techniques to measure the structural and electrical properties of the layers were developed. Problems that limit device performance were investigated, including electron traps, dislocations, the quality of semi-insulating GaN, the GaN/AlGaN interface roughness, and surface pinning of the AlGaN gate. Surface charge was reduced by developing silicon nitride passivation. Constant feedback between material properties, physical understanding, and device performance enabled rapid progress which eventually led to the successful fabrication of state of the art HEMT transistors and amplifiers.« less
  8. Self-heating study of an AlGaN/GaN-based heterostructure field effect transistor using ultraviolet micro-Raman scattering.

    We report micro-Raman studies of self-heating in an AlGaN/GaN heterostructure field-effect transistor using below (visible 488.0 nm) and near (UV 363.8 nm) GaN band-gap excitation. The shallow penetration depth of the UV light allows us to measure temperature rise ({Delta}T) in the two-dimensional electron gas (2DEG) region of the device between drain and source. Visible light gives the average {Delta}T in the GaN layer, and that of the SiC substrate, at the same lateral position. Combined, we depth profile the self-heating. Measured {Delta}T in the 2DEG is consistently over twice the average GaN-layer value. Electrical and thermal transport properties aremore » simulated. We identify a hotspot, located at the gate edge in the 2DEG, as the prevailing factor in the self-heating.« less
  9. Final report on grand challenge LDRD project : a revolution in lighting : building the science and technology base for ultra-efficient solid-state lighting.

    This SAND report is the final report on Sandia's Grand Challenge LDRD Project 27328, 'A Revolution in Lighting -- Building the Science and Technology Base for Ultra-Efficient Solid-state Lighting.' This project, which for brevity we refer to as the SSL GCLDRD, is considered one of Sandia's most successful GCLDRDs. As a result, this report reviews not only technical highlights, but also the genesis of the idea for Solid-state Lighting (SSL), the initiation of the SSL GCLDRD, and the goals, scope, success metrics, and evolution of the SSL GCLDRD over the course of its life. One way in which the SSLmore » GCLDRD was different from other GCLDRDs was that it coincided with a larger effort by the SSL community - primarily industrial companies investing in SSL, but also universities, trade organizations, and other Department of Energy (DOE) national laboratories - to support a national initiative in SSL R&D. Sandia was a major player in publicizing the tremendous energy savings potential of SSL, and in helping to develop, unify and support community consensus for such an initiative. Hence, our activities in this area, discussed in Chapter 6, were substantial: white papers; SSL technology workshops and roadmaps; support for the Optoelectronics Industry Development Association (OIDA), DOE and Senator Bingaman's office; extensive public relations and media activities; and a worldwide SSL community website. Many science and technology advances and breakthroughs were also enabled under this GCLDRD, resulting in: 55 publications; 124 presentations; 10 book chapters and reports; 5 U.S. patent applications including 1 already issued; and 14 patent disclosures not yet applied for. Twenty-six invited talks were given, at prestigious venues such as the American Physical Society Meeting, the Materials Research Society Meeting, the AVS International Symposium, and the Electrochemical Society Meeting. This report contains a summary of these science and technology advances and breakthroughs, with Chapters 1-5 devoted to the five technical task areas: 1 Fundamental Materials Physics; 2 111-Nitride Growth Chemistry and Substrate Physics; 3 111-Nitride MOCVD Reactor Design and In-Situ Monitoring; 4 Advanced Light-Emitting Devices; and 5 Phosphors and Encapsulants. Chapter 7 (Appendix A) contains a listing of publications, presentations, and patents. Finally, the SSL GCLDRD resulted in numerous actual and pending follow-on programs for Sandia, including multiple grants from DOE and the Defense Advanced Research Projects Agency (DARPA), and Cooperative Research and Development Agreements (CRADAs) with SSL companies. Many of these follow-on programs arose out of contacts developed through our External Advisory Committee (EAC). In h s and other ways, the EAC played a very important role. Chapter 8 (Appendix B) contains the full (unedited) text of the EAC reviews that were held periodically during the course of the project.« less
  10. Electron paramagnetic resonance studies of beta-alumina, a prototype glass

    Electron paramagnetic resonance techniques are used to study single crystal Na, K, and Li beta-alumina. Color centers are introduced into this material by irradiating the samples with electrons at liquid nitrogen temperature. Using electron paramagnetic resonance and electron nuclear double resonance, the color centers generated in this manner are identified, and their location within the material is determined. For one of these centers, an F + center, the electron spin relaxation rate is measured over the range 2 -20 K using the pulse saturation and recovery technique. These measurements reveal an exceptionally fast relaxation rate with anomalous temperature and microwavemore » frequency dependence. Beta-alumina is a structurally unique system. It is partially disordered and consists of ordered blocks of aluminum oxide separated by planar disordered regions. Extensive measurements have shown that beta-alumina displays properties identical to those observed for glasses at low temperature as a result of this limited structural disorder. These glass-like properties have been explained by proposing that atomic tunneling occurs in beta-alumina at low temperature producing a system of localized two level states. A model is developed which quantitatively describes the electron spin relaxation data. The proposed relaxation mechanism couples the color center spin to the phonon induced relaxation of a nearby localized two level tunneling state. A detailed comparison shows that this model is in good agreement with earlier heat capacity, thermal conductivity, and dielectric susceptibility measurements in beta-alumina.« less

Search for:
All Records
Creator / Author
"Kurtz, Steven Ross"

Refine by:
Resource Type
Publication Date
Creator / Author
Research Organization