skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information
  1. Current techniques for building detection in Synthetic Aperture Radar (SAR) imagery can be computationally expensive and/or enforce stringent requirements for data acquisition. The desire is to present a technique that is effective and efficient at determining an approximate building location. This approximate location can be used to extract a portion of the SAR image to then perform a more robust detection. The proposed technique assumes that for the desired image, bright lines and shadows, SAR artifact effects, are approximately labeled. These labels are enhanced and utilized to locate buildings, only if the related bright lines and shadows can be grouped.more » In order to find which of the bright lines and shadows are related, all of the bright lines are connected to all of the shadows. This allows the problem to be solved from a connected graph viewpoint. Where the nodes are the bright lines and shadows and the arcs are the connections between bright lines and shadows. Constraints based on angle of depression and the relationship between connected bright lines and shadows are applied to remove unrelated arcs. Once the related bright lines and shadows are grouped, their locations are combined to provide an approximate building location. Experimental results are provided showing the outcome of the technique.« less
  2. Abstract not provided.
  3. No abstract prepared.
  4. Abstract not provided.
  5. Abstract not provided.
  6. Abstract not provided.
  7. Vehicle classification is a challenging problem, since vehicles can take on many different appearances and sizes due to their form and function, and the viewing conditions. The low resolution of uncooled-infrared video and the large variability of naturally occurring environmental conditions can make this an even more difficult problem. We develop a multilook fusion approach for improving the performance of a single look system. Our single look approach is based on extracting a signature consisting of a histogram of gradient orientations from a set of regions covering the moving object. We use the multinomial pattern matching algorithm to match themore » signature to a database of learned signatures. To combine the match scores of multiple signatures from a single tracked object, we use the sequential probability ratio test. Using real infrared data we show excellent classification performance, with low expected error rates, when using at least 25 looks.« less
  8. A major goal of next-generation physical protection systems is to extend defenses far beyond the usual outer-perimeter-fence boundaries surrounding protected facilities. Mitigation of nuisance alarms is among the highest priorities. A solution to this problem is to create a robust capability to Automatically Recognize Malicious Indicators of intruders. In extended defense applications, it is not enough to distinguish humans from all other potential alarm sources as human activity can be a common occurrence outside perimeter boundaries. Our approach is unique in that it employs a stimulus to determine a malicious intent indicator for the intruder. The intruder's response to themore » stimulus can be used in an automatic reasoning system to decide the intruder's intent.« less
  9. Abstract not provided.

Search for:
All Records
Creator / Author
"Koch, Mark William"

Refine by:
Resource Type
Publication Date
Creator / Author
Research Organization