Skip to main content
U.S. Department of Energy
Office of Scientific and Technical Information
  1. Spatio–Temporal Coarse–Graining Decomposition of the Global Ocean Geostrophic Kinetic Energy

    We expand on a recent determination of the first global energy spectrum of the ocean’s surface geostrophic circulation using a coarse-graining (CG) method. We compare spectra from CG to those from spherical harmonics by treating land in a manner consistent with the boundary conditions. While the two methods yield qualitatively consistent domain-averaged results, spherical harmonics spectra are too noisy at gyre-scales (> 1000 km). More importantly, spherical harmonics are inherently global and cannot provide local information connecting scales with currents geographically. CG shows that the extra-tropics mesoscales (100–500 km) have a root-mean-square (rms) velocity of ~15 cm/s, which increases to ~30–40 cm/s locally in the Gulf Stream and Kuroshio and to ~16–28 cm/s in the ACC. There is notable hemispheric asymmetry in mesoscale energy-per-area, which is higher in the north due to continental boundaries. We estimate that ≈25–50% of total geostrophic energy is at scales smaller than 100 km, and is un(der)-resolved by pre-SWOT satellite products. Spectra of the time-mean circulation show that most of its energy (up to 70%) resides in stationary eddies with characteristic scales smaller than (< 500 km). This highlights the preponderance of ‘standing’ small-scale structures in the global ocean due to the temporally coherent forcing by boundaries. By coarse-graining in space and time, we compute the first spatio-temporal global spectrum of geostrophic circulation from AVISO and NEMO. These spectra show that every length-scale evolves over a wide range of time-scales with a consistent peak at ≈200 km and ≈2–3 weeks.

  2. Electronic and structural properties of molybdenum thin films as determined by real-time spectroscopic ellipsometry

    Real-time spectroscopic ellipsometry (RTSE) is shown to be an effective contactless probe of radio frequency magnetron sputtered molybdenum thin films used as the back electrode in chalcopyrite [Cu(In,Ga)Se{sub 2}] solar cells. A series of Mo thin films was sputtered onto soda-lime glass substrates at Ar pressures ranging from 4 to 20 mTorr. RTSE measurements reveal how Ar pressure affects the nucleation and growth mechanisms that influence the films' ultimate grain structure and properties. Determinations of the free electron relaxation times at optical frequencies reveal that higher pressures lead to a smaller average grain size and increased void volume fraction.

  3. Extraction and spectrophotometric determination of molybdenum with thiocyanate and amides

    The organic solution of commonly available amides (HAL), such as N-phenylacetamide, N-(methylphenyl) acetamide, N-(dimethylphenyl)acetamide, N-(diethylphenyl)acetamide, N-phenylpropionamide, N-phenylbutramide, and benzamide, is capable of extracting Mo(V) from SCN/sup -/ solutions. Mo(VI) was reduced to Mo(V) with mild reducing agents and allowed to react with SCN/sup -/ in strongly acidic media. The species formed was extracted with a benzene solution of amide dimers as a mixed-ligand complex. The special advantage of the method is that the HAL has good chemical stability with a very simple method of preparation. Moreover, it eliminates most of the drawbacks of established methods, such as interference from metal ions, variation of color intensity of the complex with respect to amounts of reagents, or prolonged extraction of the metal. The effect of various acids in the extraction of the metal was studied, as well as the effect of diverse ions in the determination of Mo. The ions and their tolerated amounts causing an error <2% are reported. The present method was accurately applied to ore, alloy steels, and synthetic matrices. 19 references, 3 figures, 2 tables.


Search for:
All Records
Author / Contributor
"Khatri, H."

Refine by:
Resource Type
Availability
Author / Contributor
Research Organization